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Abstract
BACKGROUND 
Adipose-derived stem cells (ASCs) have been increasingly explored for cell-based 
medicine because of their numerous advantages in terms of easy availability, high 
proliferation rate, multipotent differentiation ability and low immunogenicity. In 
this respect, they have been widely investigated in the last two decades to develop 
therapeutic strategies for a variety of human pathologies including eye disease. In 
ocular diseases involving the retina, various cell types may be affected, such as 
Müller cells, astrocytes, photoreceptors and retinal pigment epithelium (RPE), 
which plays a fundamental role in the homeostasis of retinal tissue, by secreting a 
variety of growth factors that support retinal cells.

AIM 
To test ASC neural differentiation using conditioned medium (CM) from an RPE 
cell line (ARPE-19).

METHODS 
ASCs were isolated from adipose tissue, harvested from the subcutaneous region 
of healthy donors undergoing liposuction procedures. Four ASC culture condi-
tions were investigated: ASCs cultured in basal Dulbecco's Modified Eagle 
Medium (DMEM); ASCs cultured in serum-free DMEM; ASCs cultured in serum-
free DMEM/F12; and ASCs cultured in a CM from ARPE-19, a spontaneously 
arising cell line with a normal karyotype derived from a human RPE. Cell prolif-
eration rate and viability were assessed by crystal violet and MTT assays at 1, 4 
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and 8 d of culture. At the same time points, ASC neural differentiation was 
evaluated by immunocytochemistry and western blot analysis for typical 
neuronal and glial markers: Nestin, neuronal specific enolase (NSE), protein gene 
product (PGP) 9.5, and glial fibrillary acidic protein (GFAP).

RESULTS 
Depending on the culture medium, ASC proliferation rate and viability showed 
some significant differences. Overall, less dense populations were observed in 
serum-free cultures, except for ASCs cultured in ARPE-19 serum-free CM. 
Moreover, a different cell morphology was seen in these cultures after 8 d of 
treatment, with more elongated cells, often showing cytoplasmic ramifications. 
Immunofluorescence results and western blot analysis were indicative of ASC 
neural differentiation. In fact, basal levels of neural markers detected under 
control conditions significantly increased when cells were cultured in ARPE-19 
CM. Specifically, neural marker overexpression was more marked at 8 d. The 
most evident increase was observed for NSE and GFAP, a modest increase was 
observed for nestin, and less relevant changes were observed for PGP9.5.

CONCLUSION 
The presence of growth factors produced by ARPE-19 cells in tissue culture 
induces ASCs to express neural differentiation markers typical of the neuronal 
and glial cells of the retina.

Key Words: Adipose-derived mesenchymal stem cells; Retinal pigment epithelium; Neural 
markers; Neural differentiation; Retina damage; Cell-based medicine

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Neural-like differentiation of adipose-derived stem cells (ASCs) was tested 
using a conditioned medium from ARPE-19 cells, a cell line derived from human 
retinal pigment epithelium. Following this treatment, the expression of typical glial and 
neuronal markers increased in a time-dependent manner. Neural-like differentiated 
ASCs may represent a valuable tool for cell-based therapeutic approaches in the field 
of regenerative medicine for the treatment of eye diseases.

Citation: Mannino G, Cristaldi M, Giurdanella G, Perrotta RE, Lo Furno D, Giuffrida R, 
Rusciano D. ARPE-19 conditioned medium promotes neural differentiation of adipose-derived 
mesenchymal stem cells. World J Stem Cells 2021; 13(11): 1783-1796
URL: https://www.wjgnet.com/1948-0210/full/v13/i11/1783.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i11.1783

INTRODUCTION
Mesenchymal stem cells (MSCs) have been widely investigated in the last two decades 
in order to develop cell-based therapeutic strategies for a variety of human pathologies 
including eye disease[1-4]. Based on their multipotent differentiation ability, MSCs of 
different sources (bone marrow, adipose tissue, umbilical cord) have been successfully 
differentiated not only into cells of mesodermal origin, but also into cells of different 
derivation, such as epithelial and neural cells[5,6]. In particular, adipose-derived stem 
cells (ASCs) have been increasingly explored because they offer numerous advantages: 
They can be obtained in a large amount from subcutaneous tissue with minimal 
discomfort for the donors; they feature a high proliferation rate; they can also be used 
for allogeneic transplantation because of their low immunogenicity.

In a recent study, we were able to induce pericyte-like differentiated human ASCs
[7], suitable for the treatment of diabetic retinopathy, characterized by extensive 
pericyte loss. However, several other cell types may be affected in retinal diseases, 
such as Müller cells[8], astrocytes[9], and photoreceptors[4]. Moreover, the visual loss 
occurring in diabetic retinopathy or in glaucoma is related to retinal sensory 
dysfunction, mainly due to retinal ganglion cell (RGC) loss.
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The purpose of this study was to test whether growth of ASCs in serum free tissue 
culture medium conditioned by retinal pigment epithelium (RPE) could trigger their 
neural differentiation.

RPE is a specialized epithelium lying between the neural retina and the capillary 
lamina of the choroid[10]. Early in development, RPE is required for the normal 
growth of the eye. However, it is also fundamental to maintain the correct retina 
homeostasis also in adults[11].

It has multiple functions, such as absorption of light and protection against photo-
oxidation, transport of nutrients, water, and ions. Other than playing a crucial role in 
the constitution of the outer blood-retina barrier, RPE cells govern differentiation and 
regeneration of photoreceptors and retinal progenitor cells through a variety of growth 
factors within the retinal stem cell niche[12]. RPE-secreted factors are able to rescue 
degenerating photoreceptors by prolonging their survival. In addition, they can 
transdifferentiate and give rise to photoreceptors, bipolar or multipolar (ganglionic 
and amacrine) cells[13]. In addition, RPE conditioned medium (CM) drives differen-
tiation of retinal progenitor cells towards photoreceptors, depending on the cell 
density.

Indeed, the effects of human or porcine RPE cell CM on ASCs were tested in a work 
by Vossmerbaeumer et al[14], reporting a possible ASC differentiation toward the RPE 
lineage, as suggested by the increased expression of typical RPE markers such as 
bestrophin, cytokeratins 8 and 18, and RPE 65. However, a systematic study on neural 
marker expression was not carried out.

In the present work, ASC neural differentiation was induced by culture in CM from 
ARPE-19, a spontaneously arising cell line with a normal karyotype derived from 
human retinal pigmented epithelium[15]. In this way, ASCs would grow in an in vitro 
environment resembling the environment existing in the normal eye, without addition 
of chemical agents that might be potentially toxic. ASC differentiation was verified by 
immunocytochemical techniques and western blot analysis for nestin, neuronal 
specific enolase (NSE), protein gene product (PGP) 9.5 and glial fibrillary acidic 
protein (GFAP).

MATERIALS AND METHODS
ARPE-19 cultures and preparation of ARPE-19 CM 
The human retinal pigment epithelial cell line (ARPE-19) was purchased from the 
American Type Culture Collection (CRL-2302™) and cultured at 37 °C in Dulbecco's 
Modified Eagle Medium (DMEM)/F12 medium (ATCC 30-2006, Washington, DC, 
United States) containing 10% phosphate buffered saline (FBS) and 1% penicillin/ 
streptomycin. For CM preparation, ARPE-19 cells were seeded and cultured until 80% 
confluence was reached, usually after 24 h, when the medium was replaced with fresh, 
serum-free, DMEM/F12. The day after, the medium was collected, filtered to remove 
debris and floating cells, and stored at −20 °C before further use.

ASC cultures
ASCs were isolated from adipose tissue, harvested from the subcutaneous region of 
four healthy female donors (32–38-years-old) undergoing liposuction procedures at 
the Cannizzaro Hospital, Catania (Italy). Lipoaspirate was obtained after donors 
signed a written informed consent to allow the use of the adipose tissue for experi-
mental investigations, which were carried out in accordance with the Declaration of 
Helsinki. The protocol was approved by the local ethics committee (Comitato etico 
Catania1; Authorization n. 155/2018/PO).

Red blood cells and debris were removed by washing the raw lipoaspirate (50–100 
mL) with sterile PBS (Invitrogen). It was then incubated for 3 h at 37 °C with DMEM 
containing 0.075% of type I collagenase (GIBCO 17100017, Thermo Fisher Scientific, 
Waltham, MA, United States). The collagenase was then inactivated by adding an 
equal volume of DMEM (Lonza 12-707F, Basel, CH) containing 10% FBS (DMEM/FBS) 
and the lipoaspirate was centrifuged for 10 min at 1200 rpm. After pellet resuspension 
in PBS, cells were filtered through a 100 μm nylon cell strainer (Falcon BD Biosciences, 
Milan, Italy). Following a final centrifugation/resuspension procedure, cells were 
plated in T75 culture flasks (Falcon BD Biosciences) with DMEM/FBS, 1% penici-
llin/streptomycin, 1% MSC growth supplement (MSCGS; ScienCell Research 
Laboratories, Milan, Italy). Cells were incubated at 37 °C with 5% CO2 until confluence 
(about 80% of total flask surface) was reached. Cells were cultured for 3 passages 
before the subsequent procedures.
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The MSC nature of ASCs used in the present study had been verified in previous 
studies, where cells of the same stock had been investigated[7]. Virtually the entire 
population (above 98% of cells) was immunopositive for typical MSC markers (CD44, 
CD73, CD90, and CD105), whereas only a few cells (less than 1%) were immunos-
tained for typical hematopoietic stem cell markers (CD14, CD34, and CD45).

For the present investigation, four groups of ASC cultures were prepared. In the 
first group ASCs were maintained in DMEM/FBS (ASCs); in the second group, ASCs 
were cultured in serum-free DMEM (sfASCs); in the third group ASCs were cultured 
in serum-free DMEM/F12 (F12/ASCs); and in the fourth group, ASCs were grown in 
ARPE-19 CM (CM/ASCs). From each group, some samples were processed at 1 d of 
culture; other samples were processed at day 4; further samples were processed at day 
8. At each time point, cell proliferation and viability assays, fluorescence immunocyto-
chemistry and western blot procedures were carried out for specific signal detection.

Cell proliferation assay
The crystal violet assay was used to evaluate the proliferation rate of ASCs of each 
group at 1, 4 and 8 d of culture. To this purpose, cells were stained with 0.5% crystal 
violet solution in 20% methanol for 10 min. After photomicrographs were taken (Leica 
Microscope), the crystal violet was solubilized in 1% sodium dodecyl sulphate (SDS) 
and absorbance values were measured at 570 nm with a microplate reader (Synergy 2-
BioTek). Each assay was carried out in triplicate, from three independent experiments.

Cell viability assay
Cell viability was evaluated in ASCs of each group at 1, 4 and 8 d of culture. To this 
purpose, 3-[4,5-dimethylthiazol-2-y l]-2,5-diphenyl tetrasodium bromide (MTT assay, 
Chemicon, Temecula, CA, United States) was added to each sample and incubated for 
3 h at 37 °C. The supernatant was then removed and 100 μL Dimethyl Sulfoxide 
(DMSO) were used to dissolve the precipitate. Absorbance values were determined at 
570 nm in a plate reader (Synergy 2-BioTek). Each assay was carried out in triplicate, 
from three independent experiments.

Immunofluorescence
Immunocytochemical staining was carried out following a protocol previously 
described[6]. Briefly, cells were washed with PBS, fixed with 4% paraformaldehyde 
and incubated for 30 min with a 5% solution of normal goat serum (Sigma–Aldrich) in 
PBS containing 0.1% Triton (Sigma–Aldrich). They were then exposed overnight at 4 
°C to primary antibodies: Mouse anti-nestin (1:100, Abcam, ab22035 Cambridge, MA, 
United States); mouse anti-NSE (1:100, Abcam ab16808); rabbit anti-PGP9.5 (1:100, 
Abcam ab108986), and mouse anti-GFAP (1:100; Novus Biologicals NB120-10062, 
Centennial, CO, United States). The following day, cells were washed with PBS and 
incubated for 60 min at room temperature with secondary antibodies conjugated to 
different fluorochromes: FITC conjugated goat anti-rabbit (Abcam ab96899) and/or 
Cy3-conjugated goat anti-mouse (Abcam ab96880). Finally, DAPI was applied for 10 
min to stain cell nuclei. In each experiment, specificity of immunostaining was verified 
in some samples by omitting the primary antibody. Immunofluorescence was detected 
using a Leica DMRB Fluorescence Microscope. Digital images were acquired through a 
40 × oil objective and a computer-assisted digital camera (Leica DFC 320).

Immunostaining quantification was carried out using the FIJI-ImageJ measure tool 
(NIH, Bethesda, MD, United States). At each time point, at least three samples of each 
group were examined. Three digital photomicrographs were randomly selected from 
each sample. Up to five immunofluorescent cells were analyzed from each photomic-
rograph. Values were calculated from the average grayscale intensity. For each cell, the 
integrated density, the cell area and the mean fluorescence value were assessed. Three 
replicate measurements were performed for each capture region. The same procedure 
was applied to three different background areas, close to the selected cell. The 
corrected total cell fluorescence (CTCF) was then calculated, using the following 
equation:

CTCF = Integrated density - (cell area × background mean fluorescence).
Percentages of immunopositive cells were estimated counting immunostained cells 

and DAPI-stained nuclei in randomly selected microscopic fields.

Western blot analysis
Immunoblots were carried out on samples of each treatment group (ASCs, sfASCs, 
F12/ASCs and CM/ASCs) at day 1, 4 and 8 of growth. Cells were trypsinized, 
centrifuged and resuspended in RIPA buffer (Life Technologies), in the presence of a 
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protease inhibitor cocktail (Sigma), serine/threonine phosphatase inhibitors (Sigma) 
and tyrosine protein phosphatase inhibitors (Sigma). Protein concentrations were 
determined by the BCA protein assay using BSA as the standard. Cell lysates (50 μg 
protein) were loaded onto 4%-20% SDS-PAGE, blotted and probed for different target 
proteins.

Membranes were incubated overnight at 4 °C with the same primary antibodies 
used for immunofluorescence: Mouse anti-nestin (1:1000); rabbit anti-PGP9.5 (1:2000); 
mouse anti-NSE (1:1500); and mouse anti-GFAP (1:1500). The following day, the 
membranes were incubated with the respective secondary antibodies (1:2000) for 1 h at 
room temperature, and the immunocomplexes were detected by the ChemiDocTM 
Touch Imaging System (BIO-RAD). All blots were checked for equal loading by 
probing with GAPDH (rabbit, 1:1000; Cell Signaling). Densitometry analysis was 
performed using free software Image J (NIH, Bethesda, MD, United States).

Statistical analysis
Statistical analysis was performed by using GraphPad Prism 7.0 (GraphPad Software, 
La Jolla, CA, United States). For each experimental condition, values are reported as 
mean ± SD. Differences between samples were assessed using two-way analysis of 
variance (two-way ANOVA) followed by post hoc Tukey’s multiple comparisons test. 
P values of 0.05 or less were considered statistically significant. The statistical methods 
of this study were reviewed by Dr Vincenzo Guardabasso, Specialist in Public Health 
Statistics, University of Catania, Italy.

RESULTS
ASC morphology, proliferation, and viability
Depending on the culture medium, ASCs showed some significant differences. At day 
1 (Figure 1A), all samples exhibited the typical fibroblast-like morphology. However, a 
decrease in population density was observed in serum-free cultures, especially in 
F12/ASCs. A lower decrease was seen in CM/ASCs. More marked differences were 
observed at day 8. At this time, a denser cell population was observed in control ASCs, 
still conserving the same shape as day 1. Moreover, a decreased population density 
was observed for ASCs cultured under serum-free conditions; however, this was less 
evident in CM/ASCs. It is worth noting that under the CM/ASC condition, a different 
cell morphology was apparent, with more elongated cells, often showing cytoplasmic 
ramifications. Data illustrated in representative pictures are supported by quantitative 
measurements, for cell proliferation (Figure 1B) and viability (Figure 1C).

ASC neural differentiation
Immunofluorescence results and western blot analyses indicated that a neural differ-
entiation likely occurs when ASCs were cultured in ARPE-19 CM. Overall, although to 
a different extent, all neural markers increased their expression in a time-dependent 
fashion.

Nestin
Immunofluorescence photomicrographs (Figure 2) and western blot (Figure 3) 
analyses revealed that a basal level of nestin could be detected in a considerable 
portion (62%) of cells in all ASC samples at 1 d of culture (Table 1). At day 4, these 
basal levels were reduced in serum-free cultures (sfASCs and F12/ASCs), whereas 
comparable values were maintained in CM/ASCs. At day 8, basal nestin levels were 
still present in control ASCs, while they were strongly decreased in serum-free-
cultures, especially in F12/ASCs. On the contrary, increased nestin levels were 
observed in CM/ASCs.

These observations were in agreement with quantitative immunofluorescence 
estimates (Figure 4). No evident changes were observed at day 1, except for a modest 
increase in CM/ASCs. At day 8, fluorescence intensity and percentages of immuno-
positive cells (Table 1) were lower in serum-free cultures, whereas both parameters 
were increased in CM/ASCs.

NSE
A similar trend was observed for NSE expression modifications (Figures 3 and 5). 
Comparable basal values were detected at day 1 in all ASC samples. At day 4 a 
decreased NSE expression was observed in sfASCs and F12/ASCs, whereas increased 
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Table 1 Percentage of immunostained cells of each sample for neural markers at day 1 and day 8 of culture

Marker Day 1 Day 8

ASCs sfASCs F12/ASCs CM/ASCs ASCs sfASCs F12/ASCs CM/ASCs

Nestin 62 ± 5 53 ± 4 51 ± 3 78 ± 4 74 ± 6 39 ± 2 31 ± 3 88 ± 4

NSE 63 ± 3 52 ± 6 54 ± 7 82 ± 3 61 ± 4 49 ± 3 50 ± 4 93 ± 5

PGP9.5 68 ± 4 65 ± 3 66 ± 5 75 ± 5 78 ± 5 62 ± 3 67 ± 6 89 ± 3

GFAP 55 ± 7 56 ± 5 53 ± 4 77 ± 3 53 ± 6 41 ± 5 45 ± 7 87 ± 5

ASCs: Control ASCs cultured in basal DMEM; CM/ASCs: ASCs cultured in serum-free DMEM/F12 conditioned from ARPE-19; F12/ASCs: ASCs cultured 
in serum-free DMEM/F12; sfASCs: ASCs cultured in serum-free DMEM. GFAP: Glial fibrillary acidic protein; NSE: Neuron specific enolase; PGP9.5: 
Protein gene product 9.5; ASCs: Adipose-derived stem cells; sfASCs: Serum-free adipose-derived stem cells; CM: Conditioned medium.

Figure 1 Crystal violet and MTT assays in different samples of adipose-derived stem cells cultures. A: Representative microphotographs of 
crystal violet staining of human adipose-derived stem cells (ASCs) at 1 d and 8 d of culture. ASCs: Control ASCs cultured in basal Dulbecco's Modified Eagle Medium 
(DMEM); sfASCs: ASCs cultured in serum-free DMEM; F12/ASCs: ASCs cultured in serum-free DMEM/F12; CM/ASCs: ASCs cultured in serum-free DMEM/F12 
conditioned from ARPE-19. Scale bar: 100 μm; B and C: Proliferation rate (crystal violet assay, CV) (B) and cell viability (MTT assay) at 1, 4 and 8 d of culture (C). 
Absorbance values were determined at 570 nm. Values are expressed as mean ± SD of three independent experiments. Values are referred to the control ASC 
population, at each corresponding time point. aP < 0.05 vs ASCs at day 1; Two-way ANOVA, followed by Tukey’s multiple comparisons test. sfASCs: Serum-free 
adipose-derived stem cells; CM: Conditioned medium.

values were measured in CM/ASCs. A further increase was found at day 8 for 
CM/ASCs. Quantitative immunofluorescence measurements (Figure 4) and 
percentages of immunopositive cells (Table 1) confirmed that the most evident effects 
were detected for CM/ASCs, showing a marked increase at day 8.

PGP9.5
When compared to control ASCs, all detection methods showed that no evident 
differences were noted between the different samples, except for CM/ASCs at day 8 of 
treatment (Figures 3, 4 and 6 and Table 1)
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Figure 2 Nestin immunoreactivity in different samples of adipose-derived stem cells cultures. Nestin (red fluorescence) detected after 1 d and 8 d 
of culture of human adipose-derived stem cells (ASCs). ASCs: Control ASCs cultured in basal Dulbecco's Modified Eagle Medium (DMEM); sfASCs: ASCs cultured in 
serum-free DMEM; F12/ASCs: ASCs cultured in serum-free DMEM/F12; CM/ASCs: ASCs cultured in serum-free DMEM/F12 conditioned from ARPE-19. Blue 
fluorescence indicates DAPI staining of cell nuclei. Scale bar: 50 μm. sfASCs: Serum-free adipose-derived stem cells; CM: Conditioned medium.

GFAP
Basal GFAP values at day 1 and day 4 were similar in control and serum-free ASCs 
(Figures 3 and 7), whereas a significant increase was observed in CM/ASCs at both 
times. This increase was even more evident at day 8, whereas lower values were 
observed in serum-free cultures (sfASCs and F12/ASCs). These observations largely 
match the quantitative estimates reported in Figure 4 and Table 1.

DISCUSSION
As is well known, native ASCs exhibit a variety of cellular markers, some of them 
belonging to cell lineages quite different from each other. This characteristic is 
probably related to their multipotent differentiation ability, which is evident by the 
different cell types that can be obtained following different induction strategies. In 
fact, a wide range of differentiated cells can be obtained starting from native ASCs; 
from insulin-producing pancreatic cells[16] to neurons or glial cells[6].

The results presented here show that CM obtained from ARPE-19 can trigger differ-
entiation of ASCs towards a neural-like phenotype. This is not unexpected, since RPE 
has tight interactions with the neural retina, secreting factors necessary for its 
homeostasis and function.

RPE derived growth factors include pigment epithelium-derived factor (PEDF), 
ciliary neurotrophic factor (CNTF)[17], basic fibroblast growth factor (FGF-2), 
epidermal growth factor (EGF), and nerve growth factor (NGF)[8,12,18]. Both FGF-2 
and EGF have been shown to generate retinal neurons from human retinal precursor 
cells[19]. Secreted into the interphotoreceptor matrix, the neurotrophic factor PEDF 
induces antiapoptotic, antioxidative, and anti-inflammatory effects. The intraocular 
injection of PEDF delayed photoreceptor cell degeneration and apoptosis. Moreover, it 
also acted in neuronal differentiation and survival. PEDF-related effects may explain 
our observation about the different proliferation rates observed in the various samples 
examined in the present study. In fact, as already reported for human umbilical cord 
MSCs, the addition of PEDF significantly reduced apoptosis when cells were cultured 
in a serum-free medium[20]. In particular, the authors showed that this PEDF-induced 
apoptosis reduction was due to a decreased p53 expression. This is particularly 
important since this method allows for a significant cell expansion even in serum-free 
cultures, thus reducing safety related problems for possible clinical applications. 
ARPE-19 effects, weakly visible at day 1, was more pronounced at day 4 and, partic-
ularly, at day 8.

A panel of neural markers was chosen to verify the differentiating phenotype of 
ASCs under the described culture conditions. Nestin is an intermediate filament 
protein that is expressed in the early development stages of the central/peripheral 
nervous system, muscle and other tissues. During differentiation, it is downregulated 
and replaced by tissue-specific intermediate filament proteins[21]. PGP9.5 was 
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Figure 3 Western blot analysis of neural marker expression in different samples of adipose-derived stem cells cultures. A: Immunoblot 
analysis of whole-cell lysates at day 1, 4 and 8 of culture for NSE, PGP9.5, nestin, GFAP and GAPDH as internal control; B-E: ASCs: Control adipose-derived stem 
cells (ASCs) cultured in basal Dulbecco's Modified Eagle Medium (DMEM); sfASCs: ASCs cultured in serum-free DMEM; F12/ASCs: ASCs cultured in serum-free 
DMEM/F12; CM/ASCs: ASCs cultured in serum-free DMEM/F12 conditioned from ARPE-19. Quantitative data are illustrated in histograms. Values are expressed as 
mean ± SD obtained from three independent experiments. aP < 0.05 vs ASCs of corresponding time point; Two-way ANOVA, followed by Tukey’s multiple 
comparisons test. NSE: Neuron specific enolase; PGP9.5: Protein gene product 9.5; GFAP: Glial fibrillary acidic protein; GAPDH: Glyceraldehyde 3-phosphate 
dehydrogenase; sfASCs: Serum-free adipose-derived stem cells; CM: Conditioned medium.

originally detected as a “brain-specific protein”, accounting for about 5% of total 
neuronal proteins[22,23]. NSE is currently considered a useful marker of neural 
maturation, being highly specific for neurons and peripheral neuroendocrine cells[24]. 
NSE may also induce neurotrophic functions as it controls neuronal survival, differen-
tiation, and neurite regeneration[25,26]. GFAP expression is commonly considered 
specific of astrocytes[27], also present in activated Müller cells of the retina[28] and 
multipotent neural stem cells of the adult mammalian brain[29].

Several studies report the presence of these markers also within the mammalian 
retina, some of them at different stages of development and under different 
conditions. According to Mayer et al[30], nestin-positive cells in the normal retina 
represent a population of progenitor cells that differentiate to protect the structural 
integrity of the retina and RGCs. In the adult retina, they show morphological 
similarities to neural cells, such as RGCs, and Müller cells. Subpopulations of nestin -
positive cells were also positive for GFAP. Nestin-positive cells are probably involved 
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Figure 4 Immunofluorescence quantification for neural markers in each adipose-derived stem cells group at day 1 (white columns) and 
day 8 (dark columns). A: Nestin; B: NSE; C: PGP9.5; D: GFAP. ASCs: Control adipose-derived stem cells (ASCs) cultured in basal Dulbecco's Modified Eagle 
Medium (DMEM); sfASCs: ASCs cultured in serum-free DMEM; F12/ASCs: ASCs cultured in serum-free DMEM/F12; CM/ASCs: ASCs cultured in serum-free 
DMEM/F12 conditioned from ARPE-19. Bars represent CTCF mean values ± SD, obtained from at least three independent experiments. aSignificant differences (P < 
0.01) vs ASCs; bSignificant differences (P < 0.01) between CM/ASCs and DMEM/F12. CTCF: Corrected total cell fluorescence; NSE: Neuron specific enolase; 
PGP9.5: Protein gene product 9.5; GFAP: Glial fibrillary acidic protein; sfASCs: Serum-free adipose-derived stem cells; CM: Conditioned medium.

Figure 5 Neuronal specific enolase immunoreactivity in different samples of adipose-derived stem cells cultures. Neuronal specific enolase 
(red fluorescence) detected after 1 d and 8 d of culture of human adipose-derived stem cells (ASCs). ASCs: Control ASCs cultured in basal Dulbecco's Modified 
Eagle Medium (DMEM); sfASCs: ASCs cultured in serum-free DMEM; F12/ASCs: ASCs cultured in serum-free DMEM/F12; CM/ASCs: ASCs cultured in serum-free 
DMEM/F12 conditioned from ARPE-19. Blue fluorescence indicates DAPI staining of cell nuclei. Scale bar: 50 μm. sfASCs: Serum-free adipose-derived stem cells; 
CM: Conditioned medium; NSE: Neuronal specific enolase.

in regenerative processes, since their number increases following optic nerve 
transection[31]. PGP9.5 immunoreactivity has been detected in the retina of several 
mammalian species, especially in ganglion cells, suggesting that PGP9.5 can be used as 
a specific neuronal marker for these neurons[32]. In fact, PGP9.5 immunoreactivity 
was found in about 80% of ganglion cells retrogradely labeled after injection of 
peroxidase into the optic nerve[33]. Widely distributed in small to medium size 
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Figure 6 Protein gene product 9.5 immunoreactivity in different samples of adipose-derived stem cells cultures. Protein gene product 9.5 
(green fluorescence) detected after 1 d and 8 d of culture of human adipose-derived stem cells (ASCs). ASCs: Control ASCs cultured in basal Dulbecco's Modified 
Eagle Medium (DMEM); sfASCs: ASCs cultured in serum-free DMEM; F12/ASCs: ASCs cultured in serum-free DMEM/F12; CM/ASCs: ASCs cultured in serum-free 
DMEM/F12 conditioned from ARPE-19. Blue fluorescence indicates DAPI staining of cell nuclei. Scale bar: 50 μm. sfASCs: Serum-free adipose-derived stem cells; 
CM: Conditioned medium; PGP: Protein gene product.

Figure 7 Glial fibrillary acid protein immunoreactivity in different samples of adipose-derived stem cells cultures. Glial fibrillary acid protein 
(red fluorescence) detected after 1 d and 8 d of culture of human adipose-derived stem cells (ASCs). ASCs: Control ASCs cultured in basal Dulbecco's Modified 
Eagle Medium (DMEM); sfASCs: ASCs cultured in serum-free DMEM; F12/ASCs: ASCs cultured in serum-free DMEM/F12; CM/ASCs: ASCs cultured in serum-free 
DMEM/F12 conditioned from ARPE-19. Blue fluorescence indicates DAPI staining of cell nuclei. Scale bar: 50 μm. sfASCs: Serum-free adipose-derived stem cells; 
CM: Conditioned medium; GFAP: Glial fibrillary acid protein.

ganglion cells, it is suggested that PGP9.5 modulates the early stages of retina 
development[34]. Experiments in rats show that NSE immunopositive neurons can be 
clearly detected in the retina only during embryonic development and early neonatal 
stages[35]. The first appearance of NSE immunoreactivity was identified in pigment 
epithelium, then in ganglion cells, photoreceptors and amacrine cells. Further retinal 
neurons became NSE immunopositive by postnatal day 14. It is suggested that NSE 
expression occurs in retinal neurons just after their migration to their final location and 
before establishing synaptic contacts. High GFAP levels in the mammalian retina 
during the first neonatal week rapidly decline during animal growth. In fact, in the 
adult organism, only astrocytes are GFAP-positive, while Müller cells only weakly 
express GFAP. However, high levels of GFAP can be detected in Müller cells following 
photoreceptor degeneration or in cases of retinal degeneration/detachment. It is 
possible that GFAP upregulation occurs in activated "dedifferentiating" Müller cells 
because of a disruption of normal neuron-glia interactions[28].

Overall, it can be speculated that, even though some of these markers may be found 
in tissues different from the nervous system, their increased expression in morpholo-
gically changed cells induced by ARPE-19 CM is suggestive of ASC neural differen-
tiation. Vossmerbaeumer et al[14] reported less induction of GFAP and nestin levels in 
ASCs exposed to pig-derived primary RPE-CM, in a study mainly designed to monitor 
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RPE markers, while neural markers were only marginally explored, to exclude neural 
stem cell contamination in their ASC samples. Possible differences could be related to 
a different antibody sensitivity and/or different experimental procedures. In fact, the 
lack of nestin immunostaining in their samples was contradicted by their quantitative 
real-time polymerase chain reaction results that, also in primary ASC cultures, 
revealed a basal nestin level. Moreover, this basal expression was found 
“unexpectedly” increased after porcine RPE CM treatment. In the present study, a 
systematic investigation by immunostaining and western blot analyses showed that an 
increased expression of both GFAP and nestin was consistently observed in a time 
dependent manner. In fact, although some differences could already be noted at day 1, 
they were more clearly appreciable at day 8. It is important to point out that striking 
differences were observed between basal F12/ASCs and CM/ASCS. In fact, since the 
same culture medium was used in both cases, the differences observed must be 
attributed to the release of soluble factors or extracellular vesicles by ARPE-19 during 
their growth. In this respect, it should be pointed out that serum-free cultures were 
also preferred to avoid interferences on ASC differentiation properties between factors 
present in ARPE-19 CM and FBS[36].

Since both neuronal and glial markers were found overexpressed in the same cell 
population, a likely possibility is that neural-like differentiating ASCs might still be at 
early stages of differentiation, similarly to neural progenitor cells, where both types of 
markers normally coexist[37-39]. An alternative explanation is that this might be a 
combined effect of the factors present in the CM and the particular in vitro situation, in 
the absence of a dynamic physiological environment, which would more specifically 
address the cell differentiation fate. It is reasonable to hypothesize that under in vivo 
conditions, on the basis of real microenvironment cues, their fate would be more 
precisely traced. For the same reason, some neural markers such as GFAP and NSE 
might be more expressed in neural-like differentiating ASCs. In fact, high levels of 
these markers, other than in response to retina damage, can be physiologically found 
at early stages of development.

Since different neural elements are present within a functional retina, further invest-
igation will be carried out by using more specific markers to better clarify the type of 
neural cells into which ASCs preferentially differentiate. Moreover, it will be 
interesting to identify which component (growth factors and soluble molecules) might 
be responsible for the effects described in the present work. Finally, the presence of 
extracellular vesicles in ARPE-19 CM cannot be excluded and will be investigated in 
future studies.

CONCLUSION
ASC neural-like differentiation obtained by the protocol used in the present study 
offers some advantages. ASCs can be easily isolated for both autologous and hetero-
logous use. A CM from an RPE cell line may closely mimic the physiologic enviro-
nment of a functional retina. The use of a serum-free medium helps to meet the 
requests of regulatory authorities for the development of safe clinical applications.

ARTICLE HIGHLIGHTS
Research background
Based on their multipotent differentiation ability, mesenchymal stem cells (MSCs) 
have been widely investigated in the last two decades in order to develop cell-based 
therapeutic strategies for a variety of human pathologies including eye disease.

Research motivation
In many cases, available therapeutic approaches are not satisfactory to counteract the 
loss of retinal cells. Thus, administration of pre-differentiated MSCs may produce 
beneficial outcomes and improve the quality of life of patients suffering ocular 
diseases.

Research objectives
The aim of the investigation was to obtain a neural-like differentiation of adipose-
derived stem cells (ASCs) using a serum-free culture medium, resembling the 
physiologic eye microenvironment.
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Research methods
A serum-free conditioned medium (CM) from ARPE-19, a cell line derived from 
human retinal pigment epithelium, has been used to promote ASC neural differen-
tiation. Immunofluorescence and western blot analysis were used to evaluate modific-
ations of typical neural marker expression: Nestin, neuronal specific enolase, protein 
gene product 9.5, and glial fibrillary acidic protein.

Research results
Neural marker expression was increased in a time-dependent manner. In fact, CM 
effects were particularly evident after 8 d of treatment. Moreover, cell proliferation 
and viability were favored by the presence of ARPE-19 CM.

Research conclusions
The method adopted in the present study provided encouraging results to develop 
cell-based strategies for ocular diseases characterized by neural cell loss or 
degeneration.

Research perspectives
At the next stage of the study, neural-like pre-differentiated ASCs would be implanted 
in rodent models of ocular diseases to verify their survival rate and possible beneficial 
effects.
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