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Abstract
Reactive oxygen species (ROS) take part in diverse 
biological processes like cell growth, programmed cell 
death, cell senescence, and maintenance of the trans-
formed state through regulation of signal transduction. 
Cancer cells adapt to new higher ROS circumstance. 
Sometimes, ROS induce cancer cell proliferation. Mean-
while, elevated ROS render cancer cells vulnerable 
to oxidative stress-induced cell death. However, this 
prominent character of cancer cells allows acquiring 
a resistance to oxidative stress conditions relative to 
normal cells. Activated signaling pathways that increase 
the level of intracellular ROS in cancer cells not only 
render up-regulation of several genes involved in cellu-
lar proliferation and evasion of apoptosis but also cause 
cancer cells and cancer stem cells to develop a high 
metabolic rate. In over the past several decades, many 
studies have indicated that ROS play a critical role as 
the secondary messenger of tumorigenesis and metas-
tasis in cancer from both in vitro  and in vivo . Here we 
summarize the role of ROS and anti-oxidants in contrib-
uting to or preventing cancer. In addition, we review 
the activated signaling pathways that make cancer cells 
susceptible to death.
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Core tip: Reactive oxygen species originally used to 
induce injurious cellular effects are now recognized as 
key physiological molecules for the induction of host 
defense genes, activation of transcription factors, and 
regulation of signal transduction. Tumorigenic cells can 
induce a new redox balance, resulting in cellular adap-
tation and proliferation. Here, we review the role of oxi-
dative stress in cancer cells using a pathophysiological 
view. 
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INTRODUCTION
The high intracellular ROS levels are related to various 
human diseases, including neurodegenerative disease[1-7], 
inflammatory disease[8,9], cardiovascular disease[10,11], im-
mune system dysfunctions[12], obesity[13], and diabetes[14,15]. 
Survival of  tumor cells is greatly dependent on their 
capacity to control expression of  endogenous antioxi-
dants to maintain the upper standard level of  ROS be-
low the threshold that will induce tumor cell death[16,17]. 
ROS could contribute to the initiation of  cancer by 
accelerating tumorigenic signaling pathways, increasing 
DNA mutations and changing the activity of  the tyro-
sine phosphatases superfamily[18-21]. For example, cancer 
inactivates the tumor suppressor phosphatase and ten-
sin homolog (PTEN) by oxidation[22,23] and inhibits the 
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mitogen-activated protein kinase (MAPK) phosphatase 
by ROS, which in turn induces activation of  extracellular 
signal-regulated kinases (ERK). Although greater oxida-
tive stresses activate nuclear factor-kappa B (NF-κB) 
for growth or survival, high intracellular ROS levels also 
lead to activation of  c-Jun N-terminal kinase (JNK) and 
p38 kinases, and their activities often facilitate cell apop-
tosis[24,25]. Normally, the inhibition of  PTEN by ROS 
activates the phosphoinositide-3 kinase (PI3K)/Akt sig-
naling pathway and blocks cell apoptosis[26,27]. In contrast 
to the apoptotic death, necrosis induces via mitochondrial 
production of  ROS after signaling from tumor necrosis 
factor-α (TNF-α) or death receptor[28,29]. Interestingly, 
apoptotic cells inhibit ERK1/2 but induce p38 and JNK 
inside macrophage, while necrotic cells induce macro-
phage ERK1/2[30-32]. ROS-mediated signaling has received 
more attention in oncological studies than ROS-mediated 
cellular stress and damage of  cancer cells. In this article, 
we present and summarize the interaction between redox 
status or redox signaling systems and apoptosis in tumor 
cell death and anti-cancer treatments. 

ROS Cellular sources and 
detoxification 
ROS are mainly generated from mitochondrial electron 
transfer complex (ETC) during the reduction of  oxy-
gen. Superoxide anion (·O2

-) generated by O2 from the 
mitochondrial electron transport chain, which is usu-
ally changed into hydrogen peroxide (H2O2) by several 
cytoprotective enzymes, including superoxide dismutase 
(SOD)[33,34]. Although scientists are now considering the 
consequences of  different levels of  oxidative stress, ROS 
formation in cells can inflict serious hazards and was 
originally known for their ability to induce injurious cel-
lular effects.

Sources of oxidative stress (internal and external)
Reactive oxygen species (ROS) are the most abundantly 
produced oxygen species in mitochondria. Reactive nitro-
gen species (RNS) are also produced during intracellular 
metabolic processes in mitochondrial ETC. Extracellular 
ROS can be also found in a variety of  natural or acquired 
environment. NAD(P)H oxidase (NOX) can be found 
in cell membrane phagosomes in neutrophil. The NOX 
complex is composed of  seven members, NOX1-5, 
and two dual oxidases (Duox), Duox1 and Duox2[35]. 
Although activation mechanisms and tissue distribution 
are significantly different, all these enzymes, including cy-
tochrome c oxidase and cyclo-oxygenase (COX) are able 
to generate superoxide anion[36,37]. Nitric oxide (NO·) is 
produced from arginine catalyzed by a nitric oxide syn-
thase (NOS). Fast reaction between ·O2

- and NO· gives 
rise to peroxynitrite (ONOO-) and ONOO- is oxidizing 
molecule that connected to cancer. NO· is finally con-
verted into a hydroxyl radical and nitrite anion (NO2

-)[38,39]. 
Numerous agents, including anti-cancer drugs, have been 
shown to induce proliferation or apoptosis through ROS 

production in various cancer types. Low sodium arsenite 
induces MCF-7 epithelial breast cancer cell proliferation 
by ROS production, activation of  NF-κB, and increases 
in c-Myc and heme oxygenase-1 (HO-1)[40]. ROS-enhanc-
ing compound, such as piperlongumine, is insufficient to 
induce death of  cancer cell lines including osteosarcoma 
cells, breast, and glioblastoma cancer cells, but not in nor-
mal cells[41-43].

Natural defense mechanisms of antioxidants
Although the ROS levels modestly increases in tumori-
genic cells, intracellular ROS is maintained below a toxic 
level in normal cells by various scavengers and anti-
oxidative enzymes. Besides mitochondrial superoxide dis-
mutases (SODs), catalase, glutathione (GSH), peroxidase 
(GPx), and peroxiredoxin also modulate oxidative sta-
tus[44]. SODs are metalloenzymes which catalyze the dis-
mutation of  ·O2

- to O2 and H2O2. They ubiquitously exist 
in eukaryotes and prokaryotes. SODs also play a critical 
role in inhibiting oxidative inactivation of  NO, thereby 
preventing ONOO- formation and mitochondrial dys-
function[45]. SODs utilize metal ions such as copper (Cu2+), 
zinc (Zn2+), manganese (Mn2+) or iron (Fe2+) as cofactors. 
Ferric ions catalyze hydrogen peroxide, which is the Fen-
ton reaction[46]. Catalase, which is located in peroxisomes, 
facilitates the decomposition of  H2O2 to water and oxy-
gen and protects cells from H2O2 produced within the 
cell[46]. GPx catalyzes the reduction of  hydrogen peroxide 
using cellular GSH as the reducing reagent. GPx converts 
H2O2 to H2O + O2

[47]. Peroxiredoxins are thioredoxin 
peroxidases that catalyze the reduction of  hydrogen per-
oxide, organic hydroperoxides and peroxynitrite[48]. In 
neutrophil, many species of  bacteria are killed readily by 
a myeloperoxidase/hydrogen peroxide/chloride system. 
HOCl, oxidizing chloride ions, is the most bactericidal 
oxidant produced by myeloperoxidase[49].

The role of ROS in cancer cells
Besides, genetic factors have important roles in the 
transforming events that lead to carcinogenesis. The en-
hanced oxidative stress is generally associated with cancer 
promotion and progression. Meanwhile, high levels of  
ROS are less harmful in cancer cells than they would 
be in normal cells because cancer cells have developed 
mechanisms to keep themselves from intrinsic oxidative 
stress through regulation of  antioxidant functions and 
pro-survival molecules[16,17]; however, oxidative stress still 
has a negative impact on various types of  cancer cells as 
well[50,51]. The identification of  specific alterations in criti-
cal cellular components by ROS can provide evidences 
for early detection, prevention of  cancer.

ROS in chronic inflammation associated with cancer
Over the several years’ studies about the cytokine, inflam-
matory cells and cytokines found in neoplastic tissues 
seems to contribute to tumor growth, progression, and 
immunosuppression. ROS induced by these cells and 
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cytokines facilitate cancer growth, invasion, and metasta-
sis through DNA damage or inhibition of  DNA repair. 
Chronic inflammation predisposes cells for an onco-
genic transformation through overproduction of  ROS, 
increased COX-2, and aberrant NF-κB expression[52,53]. 
Defective mitochondria have also been characterized by 
excessive ROS production in several chronic human dis-
eases associated with inflammation. ROS derived from 
mitochondria (mtROS) enhance signaling pathways to 
produce pro-inflammatory cytokine subsets. mtROS acti-
vates NOD-like receptor family, pyrin domain containing 
3 (NLRP3) inflammasome-dependent pro-inflammatory 
cytokine production[18,54]. 

Oxidative stress can activate various transcription fac-
tors including NF-κB, activating protein-1 (AP-1), p53, 
and hypoxia inducible factor-1α (HIF-1α). Activation of  
these transcription factors can result in the expression 
of  numerous different genes, including cytokines and 
chemokines[55,56]. Nuclear factor erythroid-related factor 
2 (Nrf2) is one of  the master transcription regulators 
in controlling antioxidant responses. Nrf2 controls the 
expression of  hundreds of  genes, including NAD(P)H:
quinone oxidoreductase 1 (NQO1), Glutathione S-trans-
ferase (GST), GPx and oxidoreductases for inflammatory 
responses, tissue remodeling and fibrosis, carcinogenesis, 
and metastasis[57-59]. Kelch-like protein 1 (Keap1), a sup-
pressor protein anchored in the cytoplasm that physically 
binds Nrf2, controls the access of  Nrf2 to promoters of  
Antioxidant Response Element (ARE)-regulated antioxi-
dant enzymes[60,61]. MAPK, PI3K, atypical protein kinase 
C (PKC), and other pathways are also found as alternative 
pathways for Nrf2 activation[62,63]. Importantly, somatic 
mutations that disrupt the Nrf2-Keap1 interaction are 
identified in cancer patients. In non-small-cell lung cancer 
(NSCLC) cells with Keap1 gene mutations, Nrf2 is con-
stitutively activated and cells proliferate independently of  
epidermal growth factor receptor (EGFR) signaling[64-66]. 
Although the above-mentioned studies show the effects 
of  ROS-mediated inflammation in carcinogenesis, It is 
contrast with blockade of  NF-κB predisposes murine 
skin to squamous cell carcinoma. RelA subunit of  NF-
κB has tumor suppressing activity under some circum-
stances[67-71]. Because NF-κB is modulated by ROS, the 
effects of  ROS on carcinogenesis may be unfavorable to 
certain type of  cells and conditions. 

Role of ROS in mitochondrial DNA mutations
Although the significance of  ROS and antioxidant sys-
tems in carcinogenesis is still controversial, substantial 
evidence suggests that an increase of  intracellular ROS 
might contribute to carcinogenesis[72-74]. ROS also might 
stimulate the expansion of  initiated cell clones through 
stimulation of  cell proliferation and suppression of  apop-
tosis[72]. The involvement of  mitochondria in disease has 
been largely recognized to their essential role in produc-
tion of  ROS and to the damaging effect of  chemical 
agents or pathological conditions on these organelles[33,52]. 
Recently, several studies have reported that tumorigenic 

mitochondrial DNA (mtDNA) mutations affect respira-
tory chain complexes. Decreased mitochondrial activ-
ity is considered to be tumorigenic, mainly because of  
the enhanced ROS production. H2O2 exported to the 
nucleus enhances the transcription of  selected genes that 
favor tumor progression[75,76]. Depletion of  mtDNA, 
especially encoded OXPHOS genes, plays a key role in 
transformation of  breast epithelial cells. Breast epithelial 
cells results in in vitro tumorigenic phenotype as well as 
breast tumorigenesis in a xenograft model[77]. Claudin-1 
and 7 in p53 network of  breast epithelial cells are down-
regulated in tumorigenesis[77]. In humans, mtDNA muta-
tions coding (ND1, ND4, ND5, and cytochrome b genes) 
or noncoding regions are frequently detected in breast 
cancer tissue[78,79]. However, the pathological relevance of  
mtDNA mutations in cancer cells is still controversial[80]. 
Nonetheless, a clear-cut correlation between the occur-
rence of  pathogenic mtDNA mutations and mitochon-
drial energetic impairment is a well-demonstrated feature 
of  oncocytomas, characterized by disruptive mutations 
of  mtDNA, especially in complex Ⅰ subunits[81]. Initial 
enhanced ROS generation may induce supercomplex dis-
organization, eventually leading to a possible decrease of  
complex Ⅰ assembly[82]. Dissociation of  the supercomplex 
might further induce ROS generation and have harmful 
consequences, such as disassembly of  complex Ⅰ and Ⅲ
[83,84]. However, ROS measurements in tumor biopsies are 
not practicable currently in oncocytoma. Further studies 
are needed to understand whether ROS may influence the 
proliferative potential and accumulation of  mutations in 
oncocytoma. Because elevated ROS have been proposed 
to induce apoptosis, additional studies are required to 
determine the role of  apoptosis in regulating the survival 
and proliferation of  oncocytic cells. It has been reported 
that the cell line carrying the heteroplasmic ND5 mtDNA 
mutation showed progressively decline of  respiratory 
function and significantly enhancement of  dependence on 
glucose in tumor growth, while cells with homoplasmic 
ND5 mutation inhibited tumor formation[85,86]. 

Signaling pathways regulated by 
ROS in cancer
ROS-related pathways are considerably activated in many 
types of  cancers. In particular, transient formation of  
H2O2, as second messengers, participates in growth, pro-
liferation, and metabolism[87]. The level of  intracellular 
ROS has a considerable influence on various signal path-
ways, including MAPK signaling cascades[88,89], PI3K/Akt 
signaling cascades[90,91], and IκB kinase/NF-κB signal-
ing pathway[40,92]. Oxidative stress-mediated signaling 
involves all characters of  cancer cell behaviors, such as 
cell survival, apoptosis, energy metabolism, angiogenesis, 
metastasis, and cancer stem cell generation. Researchers 
have noticed that some cancer cells show death or ar-
rested growth when exposed to increased ROS, whereas 
others are able to eliminate even high levels of  ROS for 
survival[93,94]. Emerging research indicates that modest in-
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generated by exogenous administration of  ROS enhance 
the proliferation of  several cancer types. Akt activity 
and cell growth are significantly stimulated by treating 
hepatoma cells with low concentration of  ROS, which 
could be abolished by adding antioxidants. PI3K inhibi-
tor, wortmannin, inhibits Akt phosphorylation induced 
by ROS[115]. In another study, monomethylarsonous 
acid (MMAIII), ROS inducer, induces proliferation and 
activation of  MAPK pathway as well as up-regulation 
of  COX-2 and EGFR in human urothelium cells[116]. 
Generally, COX-2 expression is induced by NF-κB, not 
CCAAT/enhancer binding protein (C/EBP) in chronic 
gastritis and gastric cancer. Sphingosine kinase 1 and 
Sphingosine-1-phosphate are required for TNF-induced 
COX-2 induction in lung cancer[117,118].

Apoptosis and necroptosis
Elevated intracellular ROS levels in cancer cells render 
these cells more vulnerable to oxidative stress-induced 
cell death. Therefore, cancer cells can be selectively 
killed without harming normal cells. Intracellular ROS 
levels in tumor cells are more likely to reach a threshold 
that triggers death after exposing to exogenous ROS-
producing or -stimulating agents[119-121]. Apoptosis is 
prompted through extrinsic and intrinsic pathways[122]. In 
the extrinsic pathway, ROS are generated by ligation of  
cell surface death receptors [CD95(Fas), TNFR1, death 
receptor 3 (DR3), and DR5]. In turn, death receptor-
ligand interaction leads to the subsequently activation 
of  Fas-associated protein with death domain (FADD) 
and caspase-8[123-126]. In the intrinsic pathway, apoptosis is 
induced by mitochondria membrane disruption without 
involving death receptors. Subsequently, ROS activated 
by Bcl-2 family members, which are located in the outer 
mitochondrial membrane make pore. That results in 
cytochrome c release, apoptosome formation, and activa-
tion of  caspases-3 and -7[127]. Exogenous administration 
of  H2O2 induces apoptosis in various cancer cells, includ-
ing lymphoma cells[128], leukemia cells[129,130], hepatoma 
cells[42,131], and bladder cancer cells[132] through the activa-
tion of  MAPK signaling pathways. 

ROS have been paid little attention in adaptive im-
munity because ROS production by the transformed and 
primary human B cells is very low compared to the levels 
of  ROS are released by phagocytes[133,134]. However, later 
studies showed T cell receptor (TCR) or B cell receptor 
(BCR) engagement elicits ROS production transiently and 
superoxide controls pro-apoptotic and proliferative signal 
transduction, respectively[135,136]. In previous reports, we 
have shown that ROS might regulate apoptosis of  lym-
phocytes directly or indirectly using EBV-transformed 
B cells as lymphoma or using an activated B cell model. 
Engagement of  B7-H4, a negative regulator of  T-cell 
mediated responses, induces the high levels of  intracel-
lular ROS and the expression of  FasL. B7-H4 ligation 
induces Fas/FasL-mediated apoptosis through activa-
tion of  caspase. Subsequently, cytochrome c, apoptosis-
inducing factor (AIF), and endonuclease G (EndoG) are 

creases in ROS are oncogenic, whereas dramatic increases 
in ROS seem to suppress tumors[95]. GTPase Rac1 in the 
cytoplasm activates NF-κB and markedly blocks the ac-
tivity of  caspase-3 and TNF-induced apoptosis, whereas 
mitochondria-derived ROS promote TNF-induced apop-
tosis[96]. ROS generated by the newly described NOX5 are 
essential for prostate cancer growth[97]. NOX4-mediated 
ROS generation in extracellular matrix of  cancer partially 
transfers cell survival signals through the Akt/apoptosis 
signal-regulating kinase 1(ASK1) pathway in pancreatic 
cancer cells[98]. Inhibiting ROS with the antioxidants, 
NOX4 antisense, or MnSOD overexpression efficiently 
stimulates apoptosis in pancreatic cancer cells[99]. ROS 
produced by NADPH oxidase also inhibit protein tyro-
sine phosphatases (PTPs) and sustain the activation of  
Janus kinase 2 (Jak2)[91,100]. 

Proliferation and survival
The high intracellular ROS levels in cancer cells are large-
ly the byproducts of  the highly metabolic nature of  these 
cells. These ROS levels could be protumorigenic, but also 
increase the susceptibility of  cancer cells to cell death. 
High levels of  ROS in cancer cells indicate hyperactive 
PI3K/Akt signaling generated by increased mitochon-
drial metabolism and by the suppression of  antioxidant 
gene expression, through the inhibition of  forkhead box 
O (FOXO) transcription factor[101]. In addition to elevat-
ing SOD2 and catalase, FOXO induces the expression 
of  Sestrin3[102,103]. Sestrin3 is a member of  a family of  
proteins that includes Sestrin1 and Sestrin2, which were 
originally identified as antioxidants induced by the tumor 
suppressor p53[104,105]. Thus, the suppression of  Sestrins 
expression in cancer cells could increase intracellular 
ROS and activate mammalian target of  rapamycin com-
plex 1 (mTORC1). ROS produced by reactive oxygen 
species modulator 1 (Romo1), a mitochondria-localized 
protein[106-108], are necessary to the ERK-dependent pro-
liferation of  lung cancer cells[108]. Similarly, high intracel-
lular ROS levels generated by inactivation of  antioxidant 
mechanisms has been connected with increased prolifera-
tion of  breast[109] and ovarian[110] cancer cells.

Methionine sulfoxide reductase A (MsrA), a ROS 
scavenger, is down-regulated in a number of  breast can-
cers. Moreover, reduction of  MsrA levels results in in-
creased ROS levels, which reduces the PTEN activity and 
activates PI3K pathway and leads to increased cell prolif-
eration and a more aggressive cellular phenotype conse-
quently[109]. Cancer cells adopt alternative mechanisms of  
antioxidation in order to maintain the intracellular level 
of  ROS below a toxic threshold level[109-111]. Forkhead box 
M1 (FOXM1) is expressed at low levels in normal cells, 
but its expression is markedly elevated in cancer cells[111]. 
FOXM1 controls multiple pro-tumorigenic activities, but 
also reduces ROS levels through the transcriptional in-
duction of  SOD2, catalase, and mitochondrial-dependent 
peroxide reductase[112]. In addition, the expression of  de-
toxifying enzymes such as GST and NQO1 are elevated 
in cancer cells[113,114]. The high intracellular ROS levels 
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released from the mitochondria on EBV-transformed B 
cells after stimulation of  B7-H4[137]. B7-H1 stimulation in 
EBV-transformed B cells also induces both transcription 
and translation of  FasL. B7-H1 stimulation activated the 
phosphorylation of  JNK and down-regulated ERK1/2 
and p-Akt. N-acetylcysteine (NAC), ROS scavenger, and 
SP600125 completely blocked the induction of  FasL and 
activation of  JNK. B7-H1-mediated apoptosis on EBV-
transformed B cells may be involved in the induction 
of  FasL, which is evoked by ROS generation and JNK 
activation after cross-linking of  B7-H1[138]. Ligation of  
CD70, the ligand for CD27, expressed on EBV-trans-
formed B cells induced production of  ROS and triggered 
ER stress-mediated apoptosis via ROS generation and 
MAPK pathway activation. These reports suggest that 
ROS-mediated alternate signaling pathways induce apop-
tosis and provide information supporting ROS as a target 
against EBV-related tumors[139,140]. The present paradigm 
of  cell death is caspase-dependent apoptosis, whereas 
necroptosis is a regulated through caspase-independent 
manner[141-143]. TNFα, FasL, and Trail, the same ligands 
that can initiate apoptosis also trigger the necroptosis. 
Receptor-interacting protein-1 (RIP-1) and RIP-3 play a 
critical role in TNF-induced necroptosis[144]. TNF-medi-
ated ROS generation and their lethal action are confined 
to the inner mitochondrial membrane in L929 cells[145,146]. 
ROS scavenger butylated hydroxyanisole (BHA) efficient-
ly blocks TNF-induced necroptosis. Interestingly, inhibi-
tors of  NF-κB facilitate TNF-induced necrotic cell death, 
suggesting that NF-κB suppresses the necrotic cell death 
pathway[147]. However, antioxidant treatment against ROS 
is unable to protect all cell lines from necroptosis[141,148]. 
Recent work revealed the critical role of  RIP-3 kinase ac-
tivity in linking TNFR1/RIP-1-associated events. RIP-3 
binds RIP-1 through this unique C-terminal segment to 
inhibit RIP- and TNF receptor-1-mediated NF-κB acti-
vation and necrostatin-1, RIP-1 kinase inhibitor, prevents 
RIP-1/RIP-3 interaction from necroptosis[149,150].  

Role of ROS in tumor cell dissemination
ROS mediate induction of  matrix metalloproteinases 
(MMPs) involved in cancer invasion and metastasis. ROS 
have been reported to cause a significant increase in the 
production and expression of  MMP-7. MMP-7 expres-
sion after H2O2 exposure is mediated by AP-1-dependent 
MAPKs in colorectal cancer cells[151]. ROS also up-reg-
ulate Akt and CXCR4 expression as well as inactivating 
PTEN. ROS mediate CXCR4-dependent cell migration 
cancer progression in prostate cancer cells[152]. Mean-
while, Hydrogen peroxide and hydroxyl radical prevent 
migration of  non-small cell lung cancer cell from inhib-
iting Caveolin-1 down-regulation[153]. TNF or ROS can 
induce p38 MAPK- and MMP-9-dependent angiogenesis 
of  endothelial cells[154,155]. Furthermore, oxidative stress 
induced by H2O2 stimulates angiogenesis and tumor pro-
gression by altering the gene expression of  CXC chemo-
kine ligand 14 (CXCL14) and IL-8 through the EGFR/
MAPK signaling pathway[156]. EGF treatment induces 

H2O2 production, leading to activation of  the Akt and 
vascular endothelial growth factor (VEGF) expression 
for angiogenesis in ovarian cancer cells[90]. Stimulation of  
tumor angiogenesis is connected with intracellular level 
of  ROS. ROS regulate HIF-1α and VEGF expression[157]. 
Antioxidant N-acetyl-l-aspartate (NAC) decreased vessels 
number via suppressing HIF-1α expression in colon[158], 
liver[159] cancer cells. Conditions of  energetic stress could 
lead to oxidative stress. Cancer cells that consume high 
levels of  glucose create energetic stress during the forma-
tion of  solid tumors. Higher levels of  stress may occur 
when cells detach from the matrix and translocate to the 
lumen or during metastasis[160]. Decreased glucose uptake 
during these processes suppresses ATP production and 
activates AMP-activated protein kinase (AMPK), but 
also inhibits the generation of  NADPH via the pentose 
phosphate pathway. Reduced levels of  NADPH result in 
increased intracellular ROS, which could eventually cause 
cell death[161,162]. However, the concomitant activation of  
AMPK elicits alternative mechanisms that maintain intra-
cellular NADPH levels. 

Several studies have reported that cancer-associated 
fibroblasts (CAFs) play a critical role in the metastatic 
spread of  cancer cells[163,164]. ROS-controlled signaling 
mechanisms involved in myofibroblast differentiation 
have diverse cellular effects. Recent data from human 
breast cancers and animal models established that myo-
fibroblasts are derived from bone marrow derived cells 
such as fibrocytes or mesenchymal stem cells[165,166]. More-
over, various mesenchymal cell types including endotheli-
al cells, pericytes, or pre-adipocytes can also be converted 
into myofibroblasts in breast carcinomas as well as local 
resident fibroblasts[167-169]. Mitochondrial ROS genera-
tion results in expression of  NOX4, an enzyme that is 
required for TGF-β-driven conversion of  fibroblasts into 
myofibroblasts[170]. In addition, fibroblasts suffering from 
chronic oxidative stress exhibit properties normally found 
in myofibroblasts[171]. Indeed, fibroblasts derived from 
mouse models exhibiting chronic oxidative stress (such as 
JunD−/− or NRF-2−/− mice, depleted for key anti-oxidant 
transcription factors) are converted into myofibro-
blasts[172]. Cancer cells themselves produce H2O2, which 
is a highly diffusible species. NOX enzymes, located at 
the plasma membrane in various carcinomas, might con-
tribute to the production of  H2O2 and the conversion 
of  surrounding fibroblasts into myofibroblasts[173]. The 
increase of  ROS in the stromal fibroblasts results in the 
promotion of  tumor cell motility and neo-angiogenesis, 
further increasing metastatic dissemination[174,175]. CAFs, 
similar to fibroblasts exposed to chronic oxidative stress, 
express genes that encode for proteases involved in ex-
tracellular matrix (ECM) remodeling, including collagens, 
cell adhesion molecules, and MMPs[171,173]. ROS remodel 
the ECM and create tracks for collective migration of  
tumor cells through the activation of  Rho-dependent 
pathways[176]. Improved understanding of  ROS functions 
in cancer progression or metastasis could therefore help 
pave the way for new concepts in therapy.
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ROS in hypoxia and tumor metabolism
As a cancerous tumor grows, the cancer cells repeatedly 
face limited oxygen supply due to the imbalance between 
growth rate and neovascularization. Cancer cells are 
able to adapt to oxidative stress and switch to glycolysis. 
Tumors utilize the Warburg effect, relying on glycolysis 
to supply energy for cancer cell survival[177]. The ROS 
released from mitochondria during the hypoxia act as sig-
naling molecules that initiate diverse functional respons-
es[178]. The increased ROS under low oxygen conditions, 
HIF-1α becomes transcriptionally active and accumulates 
at low levels of  manganese (Mn)-containing SOD (Mn-
SOD) activity. However, at moderate levels of  MnSOD 
activity, hypoxic induction of  VEGF and HIF-1α protein 
are suppressed in human breast carcinoma cells. This 
suggests that superoxide may contribute to accumulation 
of  HIF-1α[179]. 

HIF-1α expression has been correlated with poor 
prognosis and increased cancer cell invasiveness and 
recent studies have also shown that the antitumorigenic 
effect of  antioxidants is HIF-dependent[180]. HIF-1α 
regulates glycolysis-related genes in response to hypoxia 
and leads to glycolytic ATP generation[181,182]. However, it 
is not yet clear why tumor cells rely on glycolysis in the 
presence of  oxygen and whether cellular ROS involved 
in regulation of  glucose metabolism. ROS Accumulation 
and HIF-1 stabilization in CAFs results from the down-
regulation of  sirtuin-3 (SIRT3), a mitochondrial NAD-
dependent deacetylase. HIF-1α can work with SIRT3 to 
regulate CAF metabolism, driving to metabolic repro-
gramming towards glycolysis[183]. In addition, hydrogen 
peroxide stabilizes HIF-1α thus leading to transcription 
of  genes that code for signaling stromal cells such as 
macrophages and fibroblasts to support an invasive tu-
mor cell phenotype. ROS-mediated HIF-1α helps the 
tumor cell convert energy production from OXPHOS 
to glycolysis, a metabolic switch that has been associated 
with increased metastatic potential[184].

Generation of cancer stem cells using ROS
Stem cells can be difficult to obtain, which makes it chal-
lenging to directly evaluate the role of  ROS and the regu-
latory mechanism in stem cells[185]. However, interesting 
research has been conducted using Hematopoietic stem 
cells (HSCs) in the bone marrow. HSCs are principally 
located in a low-oxygen environment, which allows long-
term protection from ROS-related oxidative stress. The 
ROSlow population has a higher self-renewal potential. In 
contrast, ROShigh population expresses high levels of  the 
activated p38 MAPK and mammalian target of  rapamy-
cin (mTOR)[186]. ROS production and NF-κB activation 
triggered by GTPase Rac 1 are critical events for facilitat-
ing tumorigenesis after APC loss[187]. In comparison with 
cancer cells, cancer stem cells (CSCs) also have a lower 
intracellular ROS content than non-CSCs, which is simi-
lar to HSCs and may be caused by the increased expres-
sion of  antioxidant systems[38,188]. 

ROSlow breast cancer cells are predominantly in qui-

escent phase of  the cell cycle compared with ROShigh 

cells. The expression of  ESR1 or MYC, which are both 
necessary for MCF7 proliferation in ROSlow breast cancer 
cells do not change[189]. Since ROS are critical mediators 
of  ionizing radiation induced-therapy and chemotherapy, 
the expression of  antioxidants in CSCs prevented DNA 
damage and protected cells from irradiation- or drug-
induced cell death[38]. Due to high levels of  antioxidant 
signaling, cancer stem cells also may not be responsive 
to other (chemotherapeutic) treatments that target can-
cer cells by increasing intracellular ROS levels[52]. Ni-
closamide, antihelminthic agent, increases induces apop-
tosis through up-regulation of  ROS in progenitor/stem 
cells from acute myelogenous leukemia (AML) patients as 
well as Niclosamide inhibits the transcription and DNA 
binding of  NF-κB[190]. Niclosamide is synergistic with the 
frontline chemotherapeutic agents, such as cytarabine, 
etoposide, and daunorubicin[190]. The peroxisome prolif-
erator-activated receptor γ (PPARγ) is a ligand-dependent 
transcription factor belonging to the nuclear hormone 
receptor superfamily[191]. PPARγ agonists inhibit the stem 
cell-like features and repress tumor growth of  human 
hepatocellular carcinoma (HCC) cells through NOX2-
mediated ROS generation[192]. To date, it is unclear how 
ROS kill CSCs, although it does appear that ROS levels 
in normal or cancer environment may influence develop-
ment and differentiation of  stem cells[193]. 

ROS in autophagy
Autophagy is activated under stress conditions as pro-
tective process for the cell and in various pathological 
conditions, including cancer and neurodegenerative 
diseases[194-196]. One major breakthrough in both the un-
derstanding of  autophagy regulation and its implication 
in cancer was the discovery of  Beclin-1. Mutation of  
Beclin-1 is detected in human breast, ovarian, and pros-
tate cancer[197]. Beclin-1(-/-) mutant mice die in early em-
bryonic stage and Beclin-1(+/-) mutant mice have shown 
the decreased autophagy formation and suffer from a 
high incidence of  spontaneous tumors[198]. Beclin-1 is the 
first identified tumor suppressor protein that functions in 
the lysosomal degradation pathway of  autophagy. Bcl-2, 
a specific inhibitor for apoptosis, inhibits starvation-
induced autophagy in cancer cells and mice through in-
teracting with Beclin-1[199,200]. In addition, oncogenic sig-
naling molecules, including class I PI3K, Akt, and mTOR 
suppress the macroautophagic pathway. However, PTEN 
and p53 stimulate autophagy[201-203]. Autophagy-related 
genes (Atg) 4, a direct target for oxidation by Intracellular 
H2O2 generated during starvation, is regulated by con-
jugating Atg8 at the site of  autophagosome formation 
via the lipidation of  Atg8[204]. Low levels of  ROS modify 
Atg4 and HMGB1 proteins, which activate AMPK and 
ASK1/JNK pathways or transactivate various proteins 
that could up-regulate autophagy, leading to reductions in 
apoptosis[205]. MAPKs, such as JNK and p38 MAPK, play 
a critical role in ROS-mediated autophagy events[206,207]. 
Meanwhile, activated ERK and JNK are also upstream 
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effectors controlling both autophagy and apoptosis in 
response to elevated intracellular ROS[208]. Antioxidant, 
N-acetyl-l-cysteine (NAC), clearly reduces K-Ras-induced 
Atg5 and Atg7 induction, autophagy, and malignant cell 
transformation[209]. Starvation-induced production of  
·O2

- induces autophagy and cell death. Exogenous H2O2 

is effectively converted to intracellular ·O2
- leading to 

autophagy-induced cell death. Overexpression of  SOD2 
and 3-methyladenine, autophagy inhibitor, attenuate star-
vation-induced autophagy[210]. 2-Methoxyestradiol inhibits 
SODs and induces autophagy-mediated cell death in the 
transformed or cancer cell lines, but not in astrocytes[210]. 
From these results, understanding the mechanisms that 
regulate the crosstalk between ROS and autophagy regu-
lation is important for various disorders, including neuro-
degenerative diseases and cancer.

ROS as A therapeutic target for 
cancer treatment and prevention 
Many chemotherapeutic drugs are designed to increase 
cellular ROS levels with the goal of  inducing irreversible 
damage, consequently resulting in tumor cell apoptosis. 
For example, intracellular ROS levels increase in a dose-
dependent manner in A549 human lung cancer cells after 

treatment with paclitaxel. Addition of  NAC or GSH, two 
H2O2 scavengers, induces a four-times increase in pacli-
taxel IC50

[211]. Combined treatment with trichostatin A and 
gemcitabine synergistically inhibits growth of  pancreatic 
adenocarcinoma cell lines and induces apoptosis through 
the induction of  ROS by gemcitabine[212]. Wogonin, a 
flavonoid isolated from Scutellaria baicalensis, synergistically 
sensitizes cancer cells to TNF-induced apoptosis through 
inhibition of  catalase activity and an increase of  cellu-
lar H2O2. Wogonin-induced ROS inhibit TNF-induced 
phosphorylation on the NF-κB p65 subunit[213]. Muta-
tions in mitochondrial genes (mtDNA), such as the gene 
encoding cytochrome c oxidase II, are associated with in-
creased ROS generation and involved in cancer initiation 
and progression[74-76]. However, the susceptibility of  mi-
tochondrial DNA to ROS-induced mutation may also be 
utilized for therapy[214]. Low levels of  exogenous H2O2 or 
H2O2 produced by mitochondria induce a modest drop in 
ATP level, delayed toxicity, and G2/M arrest without af-
fecting cell viability. Concomitant inhibition of  glycolysis 
was found to markedly sensitize cells to death in the pres-
ence of  nontoxic concentrations of  H2O2

[215]. Another 
approach to regulating intracellular ROS levels is the use 
of  antioxidants to prevent tumor cells from entering the 
ROS-mediated survival signaling pathway. ROS, as sec-
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Figure 1  The role of reactive oxygen species on cancer cells to explain the different effects at each condition. Reactive oxygen species (ROS) level inside 
cancer cell appears varied even within a given type of cancer cells. A so-called “double-edged sword strategy” uses to manipulate the opposite role of ROS sequen-
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1α: Hypoxia inducible factor-1α; JNK: C-Jun N-terminal kinase; AMPK: AMP-activated protein kinase; SOD: superoxide dismutase; NOX: NAD(P)H oxidase.



165 November 27, 2014|Volume 4|Issue 3|WJI|www.wjgnet.com

ond messengers in signaling pathways, regulate not only 
kinase phosphorylation (MAPK, Rho kinase) but also 
transcription factors (NF-κB, AP-1, and HIF-1). ROS 
also up-regulate proto-oncogene and pro-inflammatory 
gene expression and activity[216,217]. The protective effects 
of  antioxidants have generated significant interest in de-
veloping synthetic and natural antioxidants as therapeutic 
agents to prevent and/or treat patients with cancer. 

Several clinical trials have been published regarding 
the effects of  antioxidant vitamins on the risk of  car-
diovascular disease. However, clinical trial data has been 
inconsistent and inconclusive, until now[218]. Although ox-
idative stress against cancer cells induces apoptosis, sever-
al exogenous antioxidants also produce favorable effects 
in various cancer patients[219]. The major antioxidant vita-
min systems include vitamin E, vitamin C, and GSH[220]. 
Vitamin C (ascorbic acid) is a water-soluble antioxidant 
involved in the reduction of  radicals by recycling radicals 
produced by oxidation of  vitamin E. A 20 μmol/L rise 
in plasma ascorbic acid concentration is associated with 
an approximately 20% reduction in the risk of  all-cause 
mortality. Ascorbic acid was inversely related to cancer 
mortality in men but not women[221]. In a study con-
ducted in Japan, Vitamin C was found to reduce oxidative 
stress among subjects with atrophic gastritis[222]. However, 
Vitamins E and C, at high concentrations, also function 
as pro-oxidants causing cell damage[223]. Unfortunately, 
one report showed Vitamin E supplement significantly 
increased the risk of  prostate cancer compared with pla-
cebo group and selenium combination group[224]. There 
is possibility that the bioavailability of  anti-oxidants may 
be insufficient after oral administration, or that they may 
be inaccessible to the source of  free radicals, particularly 
if  ROS are generated in specific cellular compartments 
and organelles[225]. In addition, antioxidants do not in-
hibit the production of  ROS; rather, they scavenge ROS 
after ROS has been generated. Selenium supplementa-
tion has been shown to reduce total and prostate cancer 
incidence but was not significantly associated with lung 
and colorectal cancer incidence[226]. In addition, selenium 
shows the most prominent protective effect on former 
male smokers[226]. However, the benefits of  selenium were 
only observed in those patients with the lowest baseline 
blood selenium levels[226]. A phase Ⅱ clinical trial about 
the effect of  pomegranate for men reveals that prostate-
specific antigen (PSA) doubling time is significantly ex-
tended after treatment with pomegranate juice in patients 
received surgery or radiotherapy. Further, a decrease in 
cell proliferation and an increase in apoptosis is observed 
in patients who consumed pomegranate[227]. Green tea 
is popular because it contains epigallocatechin gallate, a 
polyphenolic compound that provides potential benefits 
for prostate cancer control[228,229]. 

Lycopene in tomato decreases serum prostate-specific 
antigen levels and oxidative DNA damage and increases 
apoptotic cells in carcinomas[230]. In another study, to-
mato sauce consumption suppresses the progression of  
prostate carcinoma[231]. Curcumin is also demonstrated 

the inhibitory effects in colon carcinogenesis[232].

CONCLUSION
Daily fruits and vegetables intake has been inversely cor-
related to the risk of  the development of  chronic dis-
eases, including cancer. Cancer is caused by both internal 
factors and environmental factors[233]. The link between 
diet and cancer indicates that cancer is a disease which 
can be prevented largely by lifestyle changes. In addition, 
ROS have plenty roles in carcinogenesis or anti-tumor 
effects though numerous pathways (Figure 1). Since ROS 
are involved in the transformation of  nonmalignant cells 
to malignant cells, regulation of  ROS can be a critical 
approach to prevent cancer development. ROS act as 
the second messenger for generating further intracellular 
events. ROS play a crucial role in tumorigenesis and can-
cer cell survival as well as apoptotic signaling in cancer 
cells. In biological systems, enzymatic and nonenzymatic 
systems have evolved to protect against oxidative damage. 
The potential of  pro-oxidants or antioxidants in treating 
cancer associated with oxidative stress is reinforced by 
experimental researches, several clinical studies, and epi-
demiological data. Therefore, future studies should con-
tinue to clarify the different roles of  ROS in cancer cells. 
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