
Sleeve Gastrectomy, and other bariatric procedures are 
therefore under intense investigation. In this review, 
however, we will focus on obesity treatment, highlight-
ing new insights and future trends of gut hormone re-
search, the relation of obesity and cancer development 
via  the obesity induced chronic state of inflammation, 
and new potential concepts of interventional and con-
servative obesity treatment. 
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Core tip: This review focuses on the latest obesity re-
search breakthroughs, current therapy options, future 
outlooks, also from a view of a surgeon as well as re-
cently identified molecules that promote obesity and its 
comorbidities, outlining their great potential as new tar-
get molecules in the fight against the global pandemic, 
called “obesity”.
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INTRODUCTION
Obesity is a multifactorial disease caused by an energy 
sparing lifestyle on a predisposed polygenetic back-
ground. An obese person is defined as having a body 
mass index (BMI) greater than 30 kg/m2. Within the last 
decades, there has been an extraordinary increase in the 
worldwide prevalence of  obesity becoming a major hu-
man health threat especially in developing and developed 
countries with a tendency to rise. Being referred to as a 
global pandemic[1], the number of  overweight or obese 
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Abstract
Obesity is a multifactorial disease showing a pandemic 
increase within the last decades in developing, and de-
veloped countries. It is associated with several severe 
comorbidities such as type Ⅱ diabetes, hypertension, 
sleep apnea, non-alcoholic steatosis hepatis and cancer. 
Due to the increasing number of overweight individuals 
worldwide, research in the field of obesity has become 
more vital than ever. Currently, great efforts are spend 
to understand this complex disease from a biological, 
psychological and sociological angle. Further insights 
of obesity research come from bariatric surgery that 
provides new information regarding hormonal changes 
during weight loss. The initiation of programs for obe-
sity treatment, both interventional and pharmaceutical, 
are being pursued with the fullest intensity. Currently, 
bariatric surgery is the most effective therapy for 
weight loss and resolution of comorbidities in morbid 
obese patients. Reasons for weight loss and remission 
of comorbidities following Roux-en-Y-Gastric Bypass, 
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individuals increased up to 2.1 billion worldwide. Unfor-
tunately, no single country announced decreasing num-
bers of  obese individuals during the last three decades[2]. 
Obesity is associated with several severe comorbidities 
(Figure 1) such as type Ⅱ diabetes mellitus (T2DM), hy-
pertension, sleep apnea, non-alcoholic steatosis hepatis 
(NASH) and cancer. Obesity-related diabetes can lead to 
coronary heart disease, apoplex or kidney failure. Over 
80% of  all patients with type Ⅱ diabetes in the United 
States are overweight and up to 20% of  United States 
health expenditures are estimated to be spent on treating 
obesity-related diseases[3]. 

It is expected that NASH will be the leading cause of  
liver transplantation within the next years[4]. Additionally, 
obesity is associated with an increased risk of  developing 
various cancer entities such as colorectal-, esophageal-, 
liver- and breast cancer[5]. Visceral-, orthopedic or cardiac 
surgical treatment of  obese patients is associated with 
higher complication rates[6-9]. Subsequently, obesity is the 
origin of  a wide spectrum of  diseases and a cofounding 
factor hindering adequate treatment. Due to this reasons, 
obesity and overweight are associated with an increased 
risk of  death. Thus, therapy for obesity should be individu-
ally tailored and various factors such as sex, obesity degree, 
individual health risks should be taken into account[10,11].

Secondary causes for obesity like endocrine disorders 
(e.g., hypothyroidism, cushing disease), drug-induced 
obesity (e.g., glucocorticoids, psychoactive drugs), inher-
ited syndromes (e.g., Prader-Willi syndrome, Bardet-Biedl 
syndrome) or monogenetic disorders (leptin receptor, 
melanocortin receptor) play a minor role or are cofactors 
in causation of  obesity in daily practice. Therefore, iden-
tifying single reasons for obesity is a complex task. Inter-
vention strategies for weight loss and maintenance at the 
individual and community level are strongly needed to 
reduce general health risks as well as health expenditures.

STATUS QUO
Due to the increasing number of  overweight individuals 
worldwide, research in the field of  obesity has become 
more vital than ever. As a multifactorial disease, research 
is conducted at a wide variety of  areas. Currently, great 
efforts are spend to understand this complex disease 
from a biological, psychological and sociological angle. 
Further insights of  obesity research come from bariatric 
surgery, which display new information regarding the 
hormonal changes during weight loss. The initiation of  
programs aiming to treat obesity, both interventional and 
pharmaceutical, are being pursued with the fullest inten-
sity. There are various scopes of  possible research activi-
ties. In this review, however, we will focus on obesity 
treatment, highlighting new insights into gut hormones 
and the relation of  obesity and cancer development.

Multidisciplinary Treatment Modalities-or, how to lock 
the stable door after the horse had bolted
Among physicians there is consensus, to treat obese 
patients multidisciplinary. After diagnosis, the patient 

should undergo a multimodal therapy concept based on 
individualized dietary education focusing on reducing en-
ergy intake, physical exercising, pharmacological therapy 
and psychological attendance with behavioral therapy. For 
the latter, many efforts to modify the behavior of  obese 
individuals through encouragement of  changes in dietary 
intake along with physical activity have not declined the 
obesity epidemic, unfortunately. The primary causes are 
high rates of  therapy abandonment and poor patient 
compliance. 

Patients who completed a comprehensive program 
including a low-calorie diet are able to lose approximately 
15%-25% of  their initial body weight during 3 to 6 mo 
of  treatment. After therapy, most patients maintain a 
weight loss of  8% one year after treatment, 7% three 
years after treatment, and 5% four years after treat-
ment[12]. These results represent the best-case scenario, 
excluding patients who dropped out of  their programs. 
It was already shown that patients who have completed 
structured weight loss programs, maintained their weight 
loss of  less than 3 kg on average after 5 years; patients 
who accomplished more radical low-calorie diets had 
significantly higher weight loss of  up to 20 kg and main-
tained more weight loss over time[13]. In a randomized 
study, Jeffery et al[14] evaluated the efficacy of  long-term 
weight loss comparing one group with behavior therapy 
and an energy expenditure goal of  1000 kcal per week to 
a group of  patients with high physical activity treatment 
and an energy expenditure goal of  2500 kcal per week. 
The high activity group showed significant higher weight 
loss and long term weight loss maintenance, reflecting 
that mobility is of  high importance[14].

Is bariatric surgery the best choice for long-term weight 
loss accompanied by remission of comorbidities in 
severe obese (BMI > 40 kg/m²) patients?
Bariatric surgery is more effective for weight loss and 
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Figure 1  Obesity related diseases. T2DM: Type 2 diabetes mellitus; NASH: 
Non-alcoholic steatosis hepatis.



resolution of  comorbidities than conventional medical 
treatment modalities[15,16]. A variety of  procedures are 
described in the literature but only Roux-Y gastric bypass 
(RYGB) (46.6% of  all bariatric procedures worldwide), 
sleeve gastrectomy (SG) (27.8%), adjustable gastric band-
ing (GB) (17.8%) and in a smaller proportion biliopan-
creatic diversion with duodenal switch (BPD/DS) (2.2%) 
are performed in a notable quantity[17]. 

Gastric bypass was first performed in the 1960s by 
Mason et al[18]. It was modified to a RYGB in the 1970s[19]. 
It is still the most common bariatric surgical procedure. 
The combination of  food-intake restriction by a small 
pouch and malabsorption through the smaller common 
channel (Figure 2A) leads to long-term weight loss[15]. 
Also, hormonal changes after surgery may have a great 
impact on weight loss and diabetes remission. 

SG (Figure 2B), includes the resection of  the greater 
curve of  the stomach. It is the first step of  the BPD/DS 
(Figure 2C). BPD/DS can be performed by a two step 
procedure; a minority of  patients do not need the second 
surgical step for weight loss[20]. While SG is described as a 
primary restrictive procedure, including minor hormonal 
changes, BPD/DS causes malabsorption and leads to a 
higher rate of  deficiencies[21]. GB, which was developed 
in the 1970s, restricts food-intake by an inflatable, adjust-
able gastric band resulting in a small gastric pouch (Figure 
2D). Since it is based on restriction only, it is the most 
insufficient bariatric surgical procedure regarding long-
term weight loss[22].

Overall, a preoperative multidisciplinary program is 
recommended. Our own clinical experiences and a review 
of  the literature revealed that bariatric surgery for severe 
obese patients results in extensive weight loss and long-
term comorbidity remission in a very short time frame.

There is no evidence for conventional treatment lead-
ing to sufficient excess weight loss in severe obese pa-
tients.

Padwal et al[23] performed an observational study of  
500 patients with a two years follow-up. Three patient 
cohorts were included in which 200 patients received 
medical treatment, 150 patients received bariatric surgical 
treatment, and 200 patients received no therapy and were 
grouped as being waitlisted. Medically treated patients 

received individualized and intensive medical manage-
ment consisting of  a 24-36 wk life style counseling (diet 
education, physical exercise, and behavioral therapy) and 
were observed by a multidisciplinary staff  which is man-
datory before bariatric surgery. Mean weight loss in the 
waitlisted group was 0.9%, 1.8% in the medically treated 
group and 22% in the surgery group. The proportion of  
patients who achieved at least 5% weight loss was 17% in 
the waitlisted group, 32% in the medically treated group 
and 75% in the surgery group. The prevalence of  hyper-
tension, diabetes and dyslipidemia was reduced in the 
surgical group, but remained unchanged or increased in 
the medically treated and waitlisted group[23].

A large meta-analysis included 164 studies (37 ran-
domized controlled trials and 127 observational studies). 
A total of  161756 patients were analyzed regarding effec-
tiveness and outcome after bariatric surgery.

One year after surgery the patients showed 60% 
excess weight loss (EWL), and 57% EWL after 3 years. 
T2DM remission after surgery was 92%, hypertension 
remission was 75%, dyslipidemia remission was 76%, car-
diovascular diseases remission was 58% and remission of  
sleep apnea was 96%, reflecting that surgical intervention 
may increase the long-term quality of  life[24].

Interestingly, 75.3% of  patients that received bariat-
ric surgery showed excess weight loss, whereas patients 
that had received conventional therapy showed only 
11.3% excess weight loss. Moreover, remission of  T2DM 
was reported in 63.5% of  cases in surgery group, com-
pared to 15.6% of  patients in the conventional therapy 
group[25]. Subsequently, there is no evidence for conven-
tional treatment leading to sufficient EWL in obese pa-
tients with a BMI greater 40 kg/m². In fact, the only ef-
ficient treatment showing results in EWL and release of  
obesity associated diseases results from bariatric surgery. 
However, there is a strong recommendation to include 
the patients to a perioperative multidisciplinary medical 
treatment consisting of  dietary changes, exercising and 
behavioral therapies. There is evidence that preoperative 
multidisciplinary preparation and education may lead to 
better long-term effects of  bariatric surgery. 

In sum, bariatric surgery is currently the only effective 
treatment for morbid obesity[26]. Reasons for weight loss 
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Figure 2  Bariatric surgical procedures. A: Roux-Y gastric bypass; B: Sleeve gastrectomy; C: Biliopancreatic diversion with duodenal switch; D: Gastric band.
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more, OXM has been shown to increase energy expendi-
ture[39]. The combination of  decreasing energy intake and 
increasing energy consumption qualifies OXM to be a 
potential agent for bariatric treatment. Moreover, a pleth-
ora of  other gut hormones and peptides are currently un-
der intense investigation regarding weight loss. Interest-
ingly, there is also evidence that various gut hormones are 
related to cancer growth and cancer development making 
their physiological understanding even more alluring[40].

Obesity and cancer
Morbid obesity is associated with various types of  
cancer: Epidemiological studies identified an associa-
tion of  morbid obesity and several types of  cancer dis-
ease, such as colorectal cancer, endometrium carcinoma, 
postmenopausal breast cancer, kidney cancer, esophageal 
cancer, pancreatic cancer, gallbladder cancer, liver cancer, 
and hematological malignancies[41,42]. Obese patients have 
a tendency for worse prognosis and outcome after cancer 
treatment and an increased risk of  cancer related morbid-
ity[43]. Calle et al[5] conducted a prospective study to exam-
ine the association of  obesity and cancer related mortality. 
They concluded that increased body weight is associated 
with increased death rates for all cancers combined.

The link between obesity and cancer is still poorly 
understood. Several adipokines, growth factors, signaling 
pathways, inflammatory processes as well as the general 
demodulation of  energy-balance and the lack of  calorie 
restriction are being intensively discussed.

Adipokines are involved in cancer development: Tra-
ditionally, the adipose tissue was considered to be an ener-
gy storage organ. In recent years, however, it became evi-
dent that it also functions as an endocrine organ. Besides 
estrogen, it produces and secretes various adipokines and 
cytokines. Leptin and adiponectin, two well characterized 
adipokines, are associated with cancer development[44].

and remission of  comorbidities following RYGB, SG, 
and other bariatric procedures are therefore in a strong 
research focus. 

Gut hormones and their impact on weight loss
Alterations of  gut hormone serum levels after RYGB in-
fluence appetite, satiety, energy expenditure, and glucose 
homeostasis[27-29]. Several hormones and peptides are con-
sidered to be involved in weight loss in bariatric patients 
(Table 1). 

Incretins are gut-derived peptides that increase pan-
creatic insulin secretion. The Glucagon-like peptide 
(GLP-1) and Glucose-dependent insulinotropic polypep-
tide (GIP) are well explored. GLP-1 and its analogues are 
used to treat diabetes. Beside its stimulating effects on 
β-cells of  pancreatic Langerhans’ islets, GLP-1 also sup-
presses glucagon secretion, delays gastric emptying and 
suppresses appetite[30,31]. Therefore, GLP-1 is currently 
under intense discussion to become a potential therapeu-
tic drug for obesity treatment[32]. 

Ghrelin is mainly produced in the fundus of  the 
stomach and plays an important role in satiety. When 
administered to humans, it increases food intake. Several 
studies showed that postprandial reduction of  Ghrelin af-
ter bariatric surgery led to weight loss and T2DM remis-
sion[33,34]. Therefore, lowering of  Ghrelin plasma levels by 
non-surgical interventions might be a useful approach for 
obesity treatment. Different approaches already exist in 
the development of  anti-obesity drugs. Pharmacological 
molecules like Ghrelin antagonists or Ghrelin receptor 
antagonists showed heterogeneous results in food intake 
reduction[35]. Other strategies are the inhibition of  Ghre-
lin O-acyltransferase (GOAT) that is required for activa-
tion of  Ghrelin[36] or lowering body weight by a vaccina-
tion targeting Ghrelin[37].

Administration of  Oxyntomodulin (OXM) decreases 
food intake and reduces body weight in rats[38]. Further-

Table 1  Gut hormones and their clinical relevance

Peptide Production site Effect After bariatric surgery Potential pharmaceutical intervention

Ghrelin Stomach, mainly fundus Appetite stimulating ↓ Receptor antagonists
Growth hormone releasing GOAT inhibition

Vaccination
GLP-1 L-cells of the distal small bowel Postprandialinsuline secretion ↑ Weight loss in patients with diabetes

Suppresses glucagon secretion Off-label use in obese patients
Delays gastric emptying 

Suppresses appetite
GIP Duodenum, jejunum Postprandial insulin secretion ↓ GIP receptor antagonist

Energy expenditure
CCK Duodenum, jejunum Delays gastric emptying ↑ CCK analogue substance

Suppresses appetite
PYY Distal small bowel Delays gastric emptying ↑ Long-acting analogue substance

Suppresses appetite
PP Distal small bowel Suppresses appetite ↔ PP analogue substance
OXM L-cells of the distal small bowel Delays gastric emptying ↑ Receptor agonist

Suppresses appetite
Increase energy expenditure

Modified according to Kim et al[135]. GLP-1: Glucagon-like peptide-1; GIP: Glucose-dependent insulinotropic polypeptide; CCK: Cholecystokinin; PYY: Pep-
tide YY; PP: Pancreatic polypeptide; OXM: Oxyntomodulin; GOAT: Ghrelin O-acyltransferase.
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Leptin concentration in serum correlates positively 
with the patients’ adipose tissue reserves and their nu-
tritional condition. Moreover, leptin has been identified 
to be a potential mediator of  cancer development[45], 
which is able to activate various key players of  different 
signaling cascades like phosphatidylinositol-4,5-bisphos-
phate 3-kinase (PI3K), mitogen-activated proteinkinase 
(MAPK) and signal transducer and activator of  transcrip-
tion 3 (STAT3). More interestingly, leptin signaling pro-
motes the progression of  different cancers[46-48].

Adiponectin is mainly secreted by visceral fat cells 
and acts adversary to leptin. It is inversely associated with 
obesity, hyperinsulinemia, and inflammation and may 
have anti-cancer effects by decreasing insulin-growth 
factor-1 (IGF-1) and mechanistic target of  rapamycin 
(mTOR) signaling by activation of  5’AMP-activated pro-
tein kinase (AMPK). Also anti-inflammatory actions of  
adiponectin are described through inhibition of  nuclear-
factor-kappa-light-chain-enhancer activated B cells signal-
ing (NF-κB)[49]. 

Increased carcinogenesis in obese patients might be 
due to chronic inflammation 
Recent studies suggest a causal link of  obesity related 

diseases (Figure 3) and low-grade/chronic inflammation 
(Figure 3)[50-52]. 

In humans, the immune system is of  major relevance, 
which in turn, is able to form a defence shield against 
bacteria, viruses, or injured cells. A hallmark of  the 
immune system is its most powerful weapon, the “in-
flammatory response” which was already noticed by a 
German pathologist called Rudolf  Virchow in 1863. De-
spite the fact that humans without a functional immune 
system are not able to survive, too much inflammation 
can have a great impact and may cause serious damage to 
the healthy individual. Well-known chronic inflammatory 
diseases occur in patients that suffer from psoriasis or 
rheumatoid arthritis. A possible link between infections 
and cancer already exists, since stomach cancer may result 
from Helicobacter pylori infections or liver cancer from hep-
atitis (B-, C-) virus infections. A unique feature of  these 
infections is the chronic inflammation response, which 
is primarily mediated by specific immune cells, such as 
macrophages and granulocytes that infiltrate the tumor. 
The latter is known to be recruited by tumor-released at-
tractants. Once leucocytes infiltrate the tumor, they start 
to secrete chemokines and thereby initiate blood vessel 
growth/angiogenesis to allocate oxygen and nutrients, 

Figure 3  Endocrine, inflammatory, and cancer promoting effects of adipose tissue. IL-8: Interleukin 8; PGE2: Prostaglandin E2; TNF-α: Tumor necrosis factor-α; 
MCP-1: Monocyte chemoattractant protein-1; STAT3: Signal transducer and activator of transcription 3; PI3K: Phosphatidylinositol-4,5-bisphosphate 3-kinase; MAPK: 
Mitogen-activated proteinkinase; NF-κB: Nuclear-factor-kappa-light-chain-enhancer activated B cells; IGF-1: Insulin-growth factor-1; AMPK: 5’AMP-activated protein 
kinase; mTOR: Mechanistic target of rapamycin.
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which are relevant for tumor growth.

Circulating immune cell recruitment is a crucial feature 
of immune response
Macrophages: In obese individuals, macrophages infil-
trate and expand in adipose tissue. Quantitative and func-
tional changes of  these cells affect adipose tissue inflam-
mation. Exposure of  macrophages to cytokines promotes 
two different activation states inducing to divergent 
polarizations. M1 macrophages are activated by tumor 
necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), and 
bacterial endotoxins such as lipopolysaccharides. They 
are characterized by high levels of  interleukin (IL)-12 and 
IL-23, and low levels of  IL-10 as well as inflammatory 
cytokines[53]. Contrarily, M2 macrophages are attracted by 
IL-4, IL-13, IL-10, and glucocorticoid hormones. Both 
types are part of  innate immune response. M1 macro-
phages may induce chronic inflammation, whereas M2 
macrophages tend to act anti-inflammatory[54]. It has 
been suggested, that a phenotypic switch from M2 to M1 
occurs in fat tissue[55], however, this model is discussed 
controversially. 

Eosinophiles: Eosinophiles levels are negatively cor-
related with obesity and adipose tissue in mice. Wu et al[54] 
could show, that eosinophiles promote an M2-polariza-
tion of  macrophages by secreting IL-4 and IL-13 and a 
down regulation of  M1 macrophages in adipose tissue.

Mast cells: Mast cell levels in adipose tissue are elevated 
in obese animals[56]. Mast cell ablation reduces body fat 
and benefits glucose homeostasis in mice. This effect is 
induced by IL-6 and IFN-γ. Also, pro-angiogenic factors 
such as Cathepsins may influence mast cell levels[56]. 

Myeloid-derived suppressor cells: In adipose tissue, 
Myeloid-derived suppressor cells (MDSCs) have an in-
hibitory effect on inflammation by suppressing CD8+-T 
cells and promoting M1 to M2 macrophage switch in 
favour for M2 macrophages[57]. The state of  chronic in-
flammation in adipose tissue leads to an accumulation 
of  MDSCs[58]. Being part of  immune autoregulation by 
MDSCs suppress overt inflammatory immune response 
in chronic inflammation[59].

CD4+-T cells: CD4+-T cell activation is mediated by 
class Ⅱ major histocompability complex (MHC Ⅱ) 
molecules presented by macrophages and dendritic cells. 
When activated, CD4+-T cells secrete cytokines, which 
attract pro-inflammatory cells. Three groups of  T cells 
can be distinguished, namely TH1, TH2, and TH17. 

The ratio of  TH1/TH2 cells is significantly enhanced 
in high fat diet induced obesity, since TH2 cells are under-
mined by IFN-γ producing TH1 cells[60]. CD4+-T cell sub-
stitution in immunodeficient mice eventuates in reduction 
of  weight gain, adipocyte cell size, and improvement of  
glucose homeostasis[60]. The STAT6 pathway is essential 
for TH2 differentiation, thus STAT6 deficient CD4+-T 
cells do not show any effect of  reconstitution on glucose 

homeostasis and body weight gain[60].

Regulatory T cells: CD4+-T cells can transdifferentiate 
into immunosuppressive CD4+CD25+-regulatory T cells 
(Treg)[61]. Obesity is associated with reduced levels of  Treg 
cells in visceral adipose tissue in mice and humans[62,63]. 
Treg cell depletion enhances circulating insulin levels and 
levels of  pro-inflammatory cytokines in adipose tissue of  
lean mice[62]. Up regulation of  Treg on the other hand im-
proves insulin sensitivity and enhances anti-inflammatory 
cytokine IL-10 levels[62]. Also, Treg function to suppress 
pro-inflammatory immune response and promote mac-
rophage M1 to M2 switch by secreting IL-4, IL-10, and 
IL-13[64]. 

CD8+-T cells: CD8+-T cell activation is mediated by 
MHC Ⅰ. Activated CD8+-T cells induce lysis of  target 
cells by producing various cytokines and chemokines.

Adipose tissue of  obese animals[65] and humans[60] 
show a significant increase of  CD8+-T cell levels. CD8+-T 
cells lead to elevation of  macrophages in adipose tis-
sue and promote polarization into M1 macrophages[63]. 
CD8+-T cell deficient mice have fewer levels of  macro-
phages in adipose tissue and less levels of  TNF-α and 
IL-6[63]. 

Natural killer T cells: When activated by lipids, natural 
killer T (NKT) cells produce a significant amount of  
TH1- and TH2-responsive cytokines, such as IFN-γ and 
IL-4[66]. NKT cells can either promote or supress inflam-
matory response by promoting either TH1 or TH2 cell 
activation[67,68]. Interestingly, NKT cell levels are reduced 
in human omental adipose tissue[69]. The role of  NKTs in 
obesity still remains unclear. 

B cells: After high fat diet, accumulation of  B cells can 
be detected in adipose tissue of  mice. This accumulation 
is associated with high levels of  pro-inflammatory im-
munoglobulin G2c[70]. B cells promote T cell modulation 
and macrophage polarization by producing pathogenic 
Ig-G antibodies. Ig-G, however, increases inflamma-
tory response[70]. The specific role of  B-cells and Ig-G in 
inflammatory response in obesity has yet to be further 
investigated.

Mediators of  inflammatory response: Preadipocytes 
can transdifferentiate into macrophages[71]. Also they tend 
to enlarge due to oxygen diffusion resulting in hypoxia, 
inflammation and increased macrophage infiltration. 
Enlarged adipocytes produce a variety of  inflamma-
tory cytokines and show greater insulin resistance than 
normal sized ones. Levels of  prostaglandin E2, TNF-α, 
IL-2, IL-8, IL-10, and monocyte chemoattractant pro-
tein-1 (MCP-1) are elevated in the microenvironment of  
enlarged adipocytes. The inflammatory environment at-
tracts macrophages and induces production of  additional 
pro-inflammatory mediators[71].

NF-κB is a central transcription factor that is acti-
vated upon bacterial and viral stimuli. It activates gene 
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expression associated with apoptosis, cell proliferation, 
inflammation, tumorigenesis, metastasis, and angiogen-
esis[72]. In addition, increased NF-κB expression and acti-
vation is associated with insulin resistance.

The frequent up-regulation of  NF-κB in many can-
cers is already known[73]. The increased expres-sion and 
“uncontrolled” activation of  NF-κB may induce can-
cerogenesis[74,75]. Interestingly, NF-κB gets activated upon 
leptin stimulation in preneoplastic and neoplastic human 
colonic epithelial cells in vitro[76,77].

Inflammasomes, by definition cytosolic multiprotein 
complexes, activate IL-1β and IL-18 during infection or 
tissue damage[78]. They can be sub-divided into different 
inflammasome sub-groups such as nucleotide-binding 
oligomerization domain-like receptors (NLR), NLR pyrin 
domain-containing 1 and 3 (NLRP1 and NLRP3), absent 
in melanoma 2, and caspase activation and recruitment 
domains domain containing 4 (NLRC4/IPAF)[78]. In-
flammasomes secrete caspase 1, which cleaves cytokine 
preforms, such as IL-1β[79,80]. The activity of  NLR is 
associated with autoimmune diseases, malignancies, in-
flammation, infection, and metabolic disorders[59]. Inflam-
masome components expression levels are elevated in ad-
ipose tissue of  obese mice[81-83]. Conversely, NLRP3 and 
IL-1β are decreased in low calorie dietary restriction[83]. It 
seems therefore, that NLRP3 integrates multiple signals, 
causing pathogenic inflammation in obese subjects[84]. 
Also NLPR6 has a critical role in gut homeostasis[85,86]. 
Mice with non-functional NLRP6 develop an altered 
commensal system, preventing normal glycaemic control 
on a high fat diet and promoting NASH[87].

In summary, there are at least two inflammasome 
types and substrates that can imbalance metabolism and 
inflammation in obesity[85].

Linking obesity to cancer-inflammation is a double-
edged sword
The role of  chronic inflammation as a precursor of  tu-
morigenesis can be observed in various cancers. A gas-
tritis can give rise to gastric cancer, inflammatory bowel 
disease may promote colorectal cancer and patients 
suffering from a chronic pancreatitis may have a higher 
risk to develop pancreatic cancer[88]. The inflammatory 
effect of  adipose fat tissue might therefore be a general 
precursor of  cancerogenesis. Like adipose tissue, tumor 
microenvironment is composed of  multiple cell types like 
fibroblasts, epithelial cells, mast cells, and cells of  innate 
and adaptive immune system that favor a pro-inflamma-
tory, pro-tumorigenic environment[89-91].

Contribution to the pro-inflammatory environment 
is the presence of  macrophages that are attracted by 
MCP-1. Tumor tissue classically contains a high amount 
of  M2 polarized macrophages[92]. Macrophages activated 
by obese states, infiltrate tumors and amplify the inflam-
matory tumor environment through NF-κB dependent 
cytokine production and angiogenic factors[88]. Malignan-
cies may be initiated or exacerbate by inflammation, and 
increased levels of  inflammation may be a cause and/or a 

consequence of  malignancy[88,93]. 

Steroid hormones
Production of  steroid hormones in the adipose tis-
sue are also relevant for various cancers: Steroid hor-
mones such as progesterone, estrogen, androgens and 
adrenal steroids are associated with energy balance level 
and obesity associated development of  several cancer 
types[94]. In women, the BMI correlates with the incidence 
of  breast cancer, endometrium cancer and other cancer 
entities that are associated to sexual hormone levels. The 
relative contribution of  adipose tissue steroid hormone 
production to the whole steroid metabolism is about 
100% in postmenopausal women[44]. The risk of  develop-
ing breast cancer in post-menopausal women enhances 
with an increase of  circulating levels of  steroid hormones 
such as dehydroepiandrosterone, testosterone, estradiol 
and estrogen, and low levels of  sex hormone binding 
globuline. There is evidence that estrogens are mitogenic, 
regulating the expression of  insulin, and inducing DNA 
damage by free radicals, genetic instability and gene mu-
tations in cells[95]. Increased estradiol levels can induce 
endometrial cell proliferation rates while inhibiting apop-
tosis and activating the IGF-1 synthesis in endometrial 
tissue[5]. 

In men, testosterone has been the focus of  most 
studies on sex hormones, obesity and metabolic compli-
cations. Evidence indicates that most tissues, including 
adipose tissue, express steroid converting enzymes neces-
sary for the local production of  androgens and/or estro-
gens[96]. Up to 40% of  the active androgen production 
(dihydrotestosterone) is accounted for by tissue conver-
sion of  adrenal precursors[96]. In men, obesity has gener-
ally been associated with reduction of  testosterone levels 
in plasma and elevated estrogen concentrations[97-99]. It 
has also been reported, that men with visceral adiposity 
have decreased levels of  testosterone[100,101]. A growing 
body of  interest suggests, that obese men are more likely 
to be diagnosed with aggressive prostate cancer and high 
tumor volumes[102]. Furthermore, obese patients show a 
higher risk of  cancer recurrence, as well as an increase in 
disease related deaths compared to lean patients[103,104]. 

Hyperinsulinemia and insulin growth factors
Increased insulin levels and insulin growth factor-1 sig-
naling enhance cancer development[105]. Other observa-
tional studies reported an increased mortality of  obese 
cancer patients with T2DM due to hyperinsulinemia and 
elevated IGF-1 serum levels. In contrast, patients with 
lower insulin, IGF-1, and IGF-2 levels showed a lower 
risk to develop cancer[105-107]. 

Patients treated with insulin or drugs stimulating in-
sulin secretion showed a significantly higher incidence of  
developing malignancies than those patients treated with 
anti-diabetic drugs like metformin. Therefore, metformin 
might be a potential anticancer agent[108]. 

Caloric restriction, which causes down-regulation of  
circulating insulin and IGF-1 levels is a potent suppressor 
in carcinogenesis[74]. Insulin and IGF-1 can trigger cell 
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growth and proliferation, while inhibiting cell survival 
via proteinkinase B (Akt)/PI3K/mTOR (Akt/PI3K/
mTOR) pathway[73]. This signaling pathway is not only 
the most frequently mutated pathway in human cancers, 
it is also a signal mediator of  leptin, adiponectin and pro-
inflammatory cytokines[46,109,110].

Caloric restriction reduces cancer incidence by inhib-
iting the Akt/PI3K/mTOR pathway via AMPK activa-
tion[111-113]. In contrast, Kalaany et al[110] could show that 
tumors with PI3K activation do not respond to the anti-
cancerous effects of  caloric restriction.

Interestingly, mTOR activity is increased in obese 
patients. It plays a central role in obesity related inflam-
mation. Multiple risk factors for cancer development in 
obesity have been identified, such as the insulin-IGF-1 
axis, leptin/adiponectin, and pro-inflammatory cytokines 
like IL-6, IL-7 and TNF-α. These factors can activate 
multiple pathways including PI3K/Akt, MAPK and 
STAT3, resulting in increased mTOR activity. mTOR, 
however, inhibits the insulin-PI3K pathway by stimulat-
ing the STAT3 pathway[46]. 

IL-6 and TNF-α play a major role in obesity associ-
ated hepatocellular carcinoma by activating the STAT3 
pathway[114]. The STAT3 pathway is involved in the regu-
lation of  various gene expressions including IL-17, IL-23, 
B-cell lymphoma 2, and vascular epithelial growth factor 
to promote cell survival, proliferation, invasion, angiogen-
esis, and metastasis[115]. Consistent activation of  STAT3 
increases tumor cell proliferation, survival and invasion in 
suppressing anti-tumor immunity. STAT3 activation also 
leads to activation of  further pro-oncogenic pathways, 
such as NF-κB and the IL-6/Janus kinase pathways[115].

FUTURE OUTLOOKS
As time passes, advancement of technologies proceeds
In 2003, the Human Genome Project was accomplished. 
After 13 years and estimated costs of  2.7 billion USD, 
the first human genome was sequenced. In contrast, the 
human genome of  an individual was sequenced over a 5 
mo period of  time at costs of  1.5 million United States-
Dollars in 2008[116]. 

An overall trend in the public health sector is the ten-
dency towards “individualized therapy” in order to tailor 
specific therapy options that are currently available for a 
given patient which is further supported by usage of  so-
phisticated mouse models.

Without doubt, mouse models have helped to under-
stand relevant pathways that are important in the regu-
lation of  human body fat on the molecular level[117-123]. 
Initial insights into molecules that are important in 
regulating body fat, resulted primarily from genetic 
mouse screenings[117,124-126]. The identification of  specific 
inactivating gene mutations accompanied by an obese 
phenotype, have revealed that leptin, leptin receptor and 
melanocortin-4 receptor play central roles in the regula-
tion of  body fat[127-132]. Interestingly, these three obesity 
phenotypes as a result of  inactivating mutations, are also 

relevant in humans, suggesting that knockout mouse 
models are a powerful tool to gain new insights into obe-
sity relevant human genes and proteins.

A clinical approach might further support the in vivo 
findings that resulted from former obesity mouse models. 
Extensive tissue banking combined with collected clinical 
data may open up new perspectives in translational medi-
cine as well. 

There already exist several methods for screening 
large patient cohorts such as next generation sequencing. 
Also, established methods (e.g., Fluorescence in situ hy-
bridization or immunohistochemistry) became powerful 
tools when featured with high-throughput methods such 
as tissue microarrays to gain knowledge in the distribu-
tion of  potential obesity relevant proteins. Tools such 
as laser mass spectrometry combined with a large tissue 
database in a microarray format might enable the initia-
tion of  virtual protein expression profiling of  cells in 
their natural tissue environment. Further development 
in this field and others will open up new possibilities to 
identify causal links between gene expression levels, RNA 
modification, protein expression levels, post translational 
modification of  proteins, intrinsic enzyme activity, and 
initiation and progression of  diseases on a molecular 
level.

Automated chip technologies for detection of  struc-
tural variation discoveries on a DNA- and RNA-level 
may decrease sequencing time, streamline sample prepa-
rations and reduce costs in future studies. 

Acquiring great amounts of  patient cohorts’ data in 
large databases combined with blood and tissue sampling 
will move clinical applicability of  new gained knowledge 
into focus. New potential risk factors and/or therapy 
targets will be identified by high throughput tissue and 
blood screenings. Especially the combination of  organ-
tissue samples with respective blood samples, body fluids, 
and visceral/subcutaneous fat samples will help to under-
stand complex causal connections between obesity and 
organ function failure and carcinogenesis on a molecular 
basis. The novel knowledge will be centralized and digi-
tally organized, accompanied by its’ access that will be 
provided to health care units and hospitals for data rec-
onciliation.

Preclinical and clinical patient screening will provide 
the basis for individualized digital patient DNA-, RNA-, 
protein-, post translational modification-, and enzyme 
activity profiles that automatically may be compared to 
already identified risk factors or therapy targets in central-
ized data bases. 

In the present, there already exist research projects 
that might serve as landmarks for individualized obesity 
research in the future.

Interestingly, the TG and HDL Working Group were 
able to identify rare mutations that disrupt apolipoprotein 
C3 function by sequencing the protein-coding regions 
of  18666 genes in each of  3734 participants. By correlat-
ing loss of  function studies with clinical data, carriers of  
these mutations were found to have a reduced risk of  
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coronary heart disease[133].
In the future, these mutations might serve as clinical 

risk-markers for coronary heart disease in obese patients. 
Blood samples of  obese patients could be easily tested 
for gene mutations and the presence of  a mutation might 
then be interpreted as a protective factor in favor of  the 
patients’ health. 

Another study conducted an association analysis of  
single nucleotide polymorphisms, identifying genetic vari-
ants that predispose to T2DM[134]. Testing blood or tissue 
samples right after birth for these genetic variants might 
probably change the way of  clinical diagnostics entirely.

In the future, patients with genetic predisposition for 
e.g., diabetes might be diagnosed before the onset of  dis-
ease. This knowledge could then lead to an individualized 
treatment in terms of  dietary intake, physical exercise, or 
to earlier elective surgical intervention in obese patients. 

Also, gut hormone and adipokine serum levels could 
be screened on regular basis in obese individuals. When 
out of  balance, pharmaceutical intervention with suitable 
drugs such as GOAT- inhibitors, GIP-Receptor antago-
nists, inhibitors of  the mTOR-, STAT3- and MAPK-, 
PI3K-pathways or even Metformin might be applicable 
in the future to prevent relevant comorbidities such as 
cancer. 

Morbid obesity is already a widespread problem not 
only in first-, but also in second world countries. It causes 
various major chronic diseases such as coronary heart 
disease, diabetes, hypertension, and cancer. As living 
standards in second and third world countries enhance, 
morbid obesity will proceed to be a huge challenge for 
health institutions and national health systems. Obesity 
is a potential human health threat and is likely to become 
even more present in the future. The relevance and pos-
sible long-terms effects of  maternal obesity to the health 
of  the offspring are not fully understood. Studies that 
deal with this issue are of  high relevance to precisely un-
derstand the long-term adverse health outcomes for the 
upcoming new generations. 

In conclusion, there is an urgent need for obesity 
research with a straightforward concentration on new 
studies that aim to identify and interpret the complex, 
multifactorial variables in order to develop new therapy 
approaches and prevention programs for patients suffer-
ing from this disease. 
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