
During the past 10 years, many new ideas have been 
tried, and the goal of making this technology a more 
effective treatment modality through greater safety and 
control is coming within reach. The first clinical trial of 
iPS cells has begun, and cell mediated gene therapy 
products have reached phase Ⅲ in some countries. The 
potential for tumorigenicity and immunogenicity are 
still concerns with these products, so physicians should 
understand the biological aspects of engineered cells in 
the clinic. In this review article, we attempted to provide 
a summary update of the current state of knowledge 
regarding this technology: that is, we reviewed products 
that have finished clinical trials, are still in clinical trials 
and/or are at the research stage. We also focused on the 
challenges, future directions, and strategies for making 
this technology available in the clinic. In addition, the 
available measures for making gene therapy products 
safer are within the scope of this article. It is also 
important to understand the manufacturing process 
for gene therapy products, because cell characteristics 
can change during the cell expansion process. When 
physicians use gene therapy products in the clinic, they 
should be aware of the viability, temperature sensitivity 
and stability of these cells because biologic products are 
different from chemical products. Although we may not 
be able to answer all possible questions and concerns, 
we believe that this is the right time for physicians to 
increase their interest in and understanding of this 
evolving technology.
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Core tip: In this review article, the authors attempted 
to provide an up to date summary of the current know­
ledge regarding cell mediated gene therapy that is, we 
reviewed products that have finished clinical trial, are 
in clinical trial and at the research stage. The authors 
also tried to cover the challenges, future directions, 
and strategies to make this technology available in the 
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Abstract
The recent approval of gene therapy products in Europe 
and Asia and the upsurge of gene therapy products 
in clinical trials signal the rebound of this technology 
not only for many orphan diseases but also for non-life 
threatening diseases. Following the success of induced 
pluripotent stem (iPS) cells in research, other modified 
ex vivo  gene therapies are also knocking on the door 
of the clinic. Historically, gene therapy has experienced 
many ups and downs and still faces many challenges. 
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clinic. This is the right time for the physicians to have 
knowledge of this evolving technology that already 
reached the bedside.
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INTRODUCTION
When the first gene therapy trial of hematopoietic 
cells and lymphocytes was reported[1], it seemed 
that gene therapy might be the answer to treating 
most orphan diseases without major complications. 
However, in early 2000, after the death of a patient 
during a gene therapy clinical trial[2,3], many rese­
archers became very cautious about this new tech­
nology. The subsequent development of cancer 
as a result of ex vivo gene therapy treatment in 
2003[4,5] made the regulatory authorities even more 
conservative. In 2009, after years of progress, 
the return of gene therapy was declared[6], and 
gene therapy was honored as “twenty-first century 
medicine”[7]. Three products hit the market: p53-
expressing GendicineTM and AdvexinTM, conditionally 
replicating adenovirus OncorineTM and thymidine 
kinase + ganciclovir therapy, CereproTM[8]. In 2012, 
it was reported that over 1800 gene therapy clini­
cal trials had been completed in 31 countries[9]. In 
addition, some countries’ governments have dec­
lared their intention to assist in the development of 
gene-related therapies at the federal government 
level. 

More positive news for the field of gene therapy 
came with the award of the Nobel Prize for research 
on iPS cells in ex vivo gene therapy[10]. This tech­
nology has produced a seismic shift in stem cell 
research[11] and resulted in an increase in research 
for disease modeling of iPS cells[12]. The ultimate 
goal of these studies is the treatment of diseases 
that have not been treatable by conventional 
methods. Safety issues, manufacturing issues 
and product quality issues need to be addressed 
before these products become available in the 
clinic. Genetic engineering can make the cells more 
vulnerable to cancer development and therefore 
alternative engineering methods are needed[13]. To 
address these safety concerns, many papers have 
been published and several clinical trials have been 
performed to develop gene therapy technology 
for diseases in which there is no current available 
treatment. 

Recently, the first clinical trial of iPS cells started in 
Japan[14], and ex vivo gene therapy for degenerative 

arthritis has reached phase Ⅲ clinical trials[15]. In this 
review, we will discuss the status of cell mediated 
(ex vivo) gene therapy, including clinical trials, safety 
issues[16,17], and manufacturing issues for clinical 
applications[18,19]. In the clinic, physicians should 
understand the characteristics of the treatments 
that they are using. Cell-related products are new 
to most doctors, and their use presents a challenge 
because these treatments were not available during 
most doctors’ medical school education and resident 
training programs. In the area of regenerative 
medicine, these treatments cannot be confined to 
their own subspecialty. Understanding the mechanism 
of action of each product at the molecular level is 
necessary for doctors. We acknowledge that doctors 
can resist change, but we believe that understanding 
molecular medicine is similar to understanding new 
electronic technologies in everyday life.

ENGINEERED CELLS FOR CLINICAL TRIAL 
AND RESEARCH
The idea of multiple treatment modalities is familiar 
to physicians. For mesenchymal stem cell (MSC) 
differentiation, different combinations and effects 
of growth factors have been reported[20]. For gene 
therapy, the integration of multiple genes into cells 
(transfection) has been studied in many laboratories. 
The observation that cells into which multiple genes 
have been integrated show the characteristics of 
embryonic stem cells (ESCs) was first reported by 
the Yamanaka group in Japan[21]. This group inserted 
four factors, Oct3/4, Sox2, KLF4 and c-Myc, into 
fibroblasts, making them pluripotent. They showed 
that the engineered cells were similar to ESCs in 
terms of morphology, proliferation, surface antigens, 
gene expression, epigenetic status of pluripotent 
cell-specific genes and telomerase activity. Furth­
ermore, these cells could differentiate into all of the 
cell types of the three germ layers in vitro. Other 
researchers showed the regenerative potential of iPS 
cells, with their ability to differentiate into various 
cell types[22-24]. To improve the safety of treatment 
with these cells, other researchers induced the 
differentiation of these cells without viral vectors[25,26] 
and even with recombinant proteins[27]. These strate­
gies were reported to effectively eliminate any risk 
of modifying the target cell genome with exogenous 
genetic sequences. Consequently, the authors 
demonstrated the possibility of generating safer iPS 
cells. However, the stability of these cells has not 
been reported. 

For clinical applications, the manufacturing 
process should produce batches of cells with the 
same characteristics. If the cells’ characteristics 
change in the presence of different concentrations 
of a protein, the manufacturing process is not 
validated for consistency. Safety analysis should also 
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be performed prior to clinical trials. iPS cell-based 
therapies need to be thoroughly evaluated in pre-
clinical animal models before they can be applied 
to human subjects[28,29]. Since 1998, the Food and 
Drug Administration (FDA) has been regulating cell 
therapies, beginning with “Guidance for human 
somatic cell therapy and gene therapy”. In 2008, 
the FDA released the guidelines “Content and 
Review of Chemistry, Manufacturing, and Control 
(CMC) Information for Human Somatic Cell Therapy 
Investigational New Drug Applications (INDs)”. In 
2011, they released the guidelines “Potency tests 
for cellular and gene therapy products”. If cells are 
engineered to generate a product, the harvesting 
method (Good Tissue Practice), engineering method, 
and potency testing protocols should be clearly 
defined. From the beginning of the development 
process, the investigators should clearly understand 
the mechanism of action of the product to develop a 
manufacturing process with a method for harvesting 
cells and for testing them, to consistently produce 
well characterized, high-quality cell-based products. 
For example, Crook et al[30] (2007) reported on the 
activities and requirements for producing cGMP 
hESC lines including the derivation, banking, and 
characterization of these cells.

In 2014, Nature Medicine, in collaboration with 
the Volkswagen Foundation, organized a meeting 
with a panel of experts in regenerative medicine 
to identify the most pressing challenges, as well 
as to formulate the crucial strategies and stem 
cell concepts that could best help advance the 
field of translational regenerative medicine[31]. The 
panel identified four major issues: first, harnessing 
the potential of endogenous stem cells; second, 
deciphering therapeutic reprogramming; third, 
meeting the challenges of cell integration and 
function; and fourth, removing roadblocks to the 
translation of stem cell therapies. We believe that 
these opinions summarize the present and future 
of cell mediated gene therapy. Researchers have 
begun to address these challenges. In particular, 
one patient-specific pluripotent stem cell therapy 
has been reported to be safe with respect to 
immunogenicity and is nearing clinical trials[32]. 
Neurodegenerative disorders are very interesting 
clinical targets for this technology[33]. 

An enormous number of cell therapies have 
been tested worldwide for the treatment of rare 
diseases[34]. Regenerative medicine cannot be 
defined without MSCs and ESCs; however, gene 
therapy is also an important area in regenerative 
medicine. Many regenerative medicine companies 
have started up, and various umbrella organizations 
such as the Alliance for Regenerative Medicine 
have been formed. In 2009 and 2013, three very 
interesting studies were reported[35,36]. These 

studies integrated a lentiviral vector into patient 
hematopoietic stem cells and showed promising 
clinical results for Wiskott-Aldrich syndrome and 
X-linked adrenoleukodystrophy. In 2013, another 
group reported promising clinical results using len­
tiviral ex vivo gene therapy for metachromatic 
leukodystrophy[37]. These serial successes for rare 
diseases are a hallmark of this technology in the 
clinic. It is clear that this technology is the flag bea
rer for the future of treating rare diseases. It was 
a triumphant success to overcome the pessimistic 
environment that existed after leukemia developed 
in X-linked severe combined immunodeficiency 
(X-SCID) patients treated with retroviral gene 
therapy[38]. In contrast to retroviral gene therapy, 
they extracted hematopoietic stem cells from a 
patient and transduced these cells with a lentiviral 
vector carrying specific genes (Wiskott-Aldrich gene, 
ABCD1 and ARSA), producing cell clones that did not 
carry integrations near oncogenes. Consistent with 
this, the authors did not observe evidence of clonal 
expansions in the patients for up to 20 to 32 mo 
after gene therapy treatment[35].

In 2007, induced pluripotent stem cell lines 
derived from human somatic cells were developed[39]. 
In 2008, it was reported that to better understand 
amyotrophic lateral sclerosis (ALS) and to develop 
a treatment, induced pluripotent stem cells were 
generated from a patient with the disease[23]. The 
authors generated iPS cells from an 82-year-old 
woman diagnosed with a familial form of ALS. These 
patient-specific iPS cells possessed properties of 
embryonic stem cells and were successfully directed 
to differentiate into motor neurons, the cell types 
destroyed in ALS. In 2009, an animal study of 
treating hemophilia A with iPS cells was reported[40]. 
The authors inserted the genes encoding 3 tran­
scription factors, Oct4, Sox2 and Klf4, into somatic 
cells. The plasma FVⅢ levels in these mice incre­
ased to 8% to 12% of wild type, the hemophilia 
A phenotype was corrected. This study shows the 
possibility for future expansion of iPS cells into the 
clinic. Furthermore, Zhang et al[24] differentiated 
iPS cells into mature pancreatic insulin-producing 
cells. This work not only provides a new model with 
which to study the mechanism of human pancreatic 
specialization and maturation in vitro but also en­
ables the possibility of utilizing patient-specific iPS 
cells for the treatment of diabetes[24].

Since the iPS cell researchers won the Nobel Prize, 
Japan has pioneered the clinical application of these 
cells in rare diseases. Previous success at treating 
degenerative disorders with gene therapy led rese­
archers to pursue gene therapy for degenerative 
eye disorders[41,42]. In a proof-of-concept study, they 
showed that iPS cells developed a structured outer 
nuclear layer with complete inner and outer segments 
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interesting study reported modeling the genetic risk 
of schizophrenia by using iPS cells[12]. In addition, 
pathways that are disrupted in motor neurons in 
human ALS were also identified through the genetic 
correction of mutant SOD1[53]. The authors combined 
the reprogramming and differentiation of iPS cells 
with genome engineering and RNA sequencing to 
define the transcriptional and functional changes 
that are induced in human motor neurons by mutant 
SOD1[54,55].

Human pluripotent stem cells hold great potential 
for regenerative medicine, but the available cell 
types have limitations[56]. Recently, an international 
cell bank for iPS cells was created. In addition, Ma 
et al[57]’s approach of genome-wide analysis may be 
the future of iPS cell characterization. These authors 
examined the DNA methylation and transcriptome 
profiles of ESCs and somatic nuclear-transferred 
cells. They observed that the DNA methylation and 
transcriptome profiles of iPS cells retained residual 
DNA methylation patterns typical of parental 
somatic cells. Therefore, they concluded that human 
somatic cells can be accurately reprogrammed to 
pluripotency by somatic cell nuclear transfer and 
are therefore ideal for cell replacement therapy. This 
approach has opened an interesting field for the 
characterization of iPS cells in the future. A summary 
of selected clinical and preclinical research programs 
involving cell-mediated gene therapy is presented in 
Table 1.

SAFETY AND EFFICACY ISSUES
The fact that chondrocytes can be induced to differ­
entiate into fibroblasts during cell culture spurs 
questions about potential differentiation issues. The 
continuation of the cell division process relies on 
the interaction of the cells with a microenvironment 
that consists of other cells and the extracellular 

in 3D sheets. The authors also observed host-graft 
synaptic connections by immunohistochemistry. 
Eventually, they characterized and developed a 
human pluripotent stem cell-derived retinal pigment 
epithelium cell sheet for use in clinical trials. A 
clinical trial on macular degeneration is ongoing in 
Japan[43,44]. In their research on retinitis pigmentosa, 
the authors generated patient-derived iPS cells that 
recapitulated the disease phenotype and expressed 
markers of cellular stress. This research created 
the opportunity for understanding the disease by 
creating iPS cell models of degenerative disorders[45].

Recent trends in iPS cell research have allowed 
a shift to using iPS cells to model disease[46]. Degen­
erative disorders have been the main focus of this 
research. iPS cells use the same transcriptional 
network as ESCs to generate neuro-epithelia. iPS cells 
can be differentiated into functionally appropriate 
neuronal cell types over the same developmental 
time course as human ESCs in response to the same 
set of morphogens[47]. Therefore, researchers have 
suggested the possibility of employing human iPS 
cells in pathological studies, therapeutic screening and 
autologous cell transplantation[48]. Glial progenitor 
cells have also been suggested to be useful for 
modeling neurological diseases[49]. Chung et al[50] 
exploited the mutational correction of iPS cells and 
conserved the proteotoxic mechanisms to reverse the 
phenotypic response to α-synuclein, a key protein 
involved in Parkinson’s disease[50,51]. In 2014, iPS cell-
based in vitro modeling of cardiomyopathy was also 
reported[52]. The authors combined patient-derived 
and genetically engineered iPS cells to elucidate the 
pathophysiology underlying the cardiomyopathy of 
Barth syndrome, a mitochondrial disorder caused by 
mutation of the gene encoding taffazzin (TAZ). Using 
Barth syndrome iPS-cell-derived cardiomyocytes, 
they defined metabolic, structural and functional 
abnormalities associated with TAZ mutation. Another 
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  Target disease Stage Gene modification Target cell Ref.

  Hemophilia A Preclinical Oct4, Sox2, Klf4 Fibroblast Xu et al[40]

  ALS Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast Dimos et al[55]

  Alzheimer Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast Israel et al[46]

  ALS Preclinical Oct4, Sox2, Klf4 Fibroblast Chen et al[54]

  Cardiac failure Preclinical Gata4, Mef2c, Tbx4 Fibroblast Ieda et al[22]

  Diabetes Preclinical Oct4, Sox2, Klf4 Fibroblast Zhang et al[24]

  Schizophrenia Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast with 15q11.2 del Yoon et al[12]

  Barth syndrome Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast Wang et al[52]

  Parkinson’s disease Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast Chung et al[50]

  Macular degeneration PhaseⅠ Oct4, Sox2, Klf4, c-Myc Fibroblast Kamao et al[14]

  Degenerative arthritis Phase Ⅱ/Ⅲ TGF-β1 Chondrocyte Ha et al[15]

  X-linked adrenoleukodystrophy In the clinic ABCD1 CD34+ Bone marrow cell Cartier et al[36]

  Wiskott-aldrich syndrome In the clinic WASP CD34+ Bone marrow cell Aiuti et al[35]

  Metachromatic leukodystrophy In the clinic ARSA CD34+ Bone marrow cell Biffi et al[37]

Table 1  Current cell mediated gene therapy protocols in clinical and R and D stages

ALS: Amyotrophic lateral sclerosis; TGF-β: Transforming growth factor-beta.
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matrix[58]. Cells respond to a variety of growth fa­
ctors. The autocrine and paracrine modes of cell 
stimulation are key elements in this process. The 
differentiation of murine C3H10T1/2 mesenchymal cells 
into chondrocytes in response to bone morphogenic 
protein has been observed[59]. Similar papers have 
reported on the differentiation of specific cells 
into cells with different characteristics[60]. Dediffe­
rentiation-associated changes in morphology and 
gene expression have also been reported in primary 
human chondrocytes in culture[61]. These observations 
make the transforming growth factor-beta (TGF-β) 
superfamily proteins possible target modifiers of 
cartilage and bone formation. However, there is 
also a concern with regard to safety and efficacy 
because changes in other characteristics can change 
the properties of a cell therapy and therefore make 
the cells unacceptable as a treatment. With respect 
to efficacy, these findings brought forth the need to 
identify clear biomarkers to identify and characterize 
cells for potential transplantation.

Some researchers previously thought that MSCs 
do not induce immunogenicity. A report showing that 
human stem cells modulate the allogeneic immune 
response made people change their view about this 
concept[62]. In 2005, several papers were published 
relating to the immunogenicity of mesenchymal 
stem cells. At this time, there was some confusion 
regarding the immunogenicity of mesenchymal 
stem cells. The T cell response to allogeneic human 
MSCs was evaluated for immunogenicity, tolerance 
and suppression[63]. The authors concluded that 
MSCs can initiate the activation of T cells but do 
not elicit a T cell proliferative response because 
of an active suppression mechanism. These data 
were in support of Aggarwat and Pittenger’s work 
that was previously cited. However, somewhat 
contradictory data were also reported[64,65], namely 
that MSC immunogenicity was increased upon 
differentiation after transplantation into human 
and murine ischemic myocardium. This paper 
indicated that differentiation of cells after injection 
into organs can cause problems, and the authors 
recommended a requirement for immunosuppressive 
therapy. They also indicated that allogeneic MSCs 
are not intrinsically immune privileged and that 
allogeneic MSCs can induce a T-cell response under 
appropriate conditions. In a pig study, intracardiac 
allogeneic porcine MSCs elicited an immune response 
despite their low immunogenic profile in vitro[66]. 
This suggests that the in vivo characteristics of 
allogeneic MSCs might differ and emphasizes the 
importance of pursuing research both in vitro and in 
vivo. More specifically, allogeneic MSCs have been 
shown to induce immunogenicity, which limited 
their long term benefits for myocardial repair[22]. 
The authors of this study concluded that the long-
term ability of allogeneic MSCs to preserve function 

in the infarcted heart is limited by a biphasic immune 
response whereby these cells transit from an immune 
privileged state to an immunogenic state after 
differentiation. We believe that not only the cell type 
but also the injection site is an important factor for 
immunogenicity. 

To determine the potential for the biodistribution 
of gene-modified cells, the FDA recommends 
intravenous administration in an animal study to 
assess systemic distribution and persistence of 
the cells. Transduced genes can be the target for 
determining the distribution in cell-mediated gene 
therapy. After a single intravenous administration, 
the major organs should be checked to review the 
clearance of the cells for at least 30 d and for up 
to three months after injection. At this stage of 
preclinical development, the maximum tolerated 
dose should be calculable[67]. For safety and efficacy 
tests in animals, it is the standard practice to 
perform testing in two animal species. Clinical and 
histological analyses are included among the safety 
and efficacy tests, and treatment-related and dose-
related toxicities can be assessed.

Single and multiple dose toxicity testing with up 
to a 1-year follow-up period may be required de­
pending on the nature of the disease and the mode 
of treatment. The no-observed-adverse-effect level 
can be evaluated with these studies[68]. This can 
be defined as the highest experimental point that 
is without adverse effects, although it does not 
address risk based on toxicologically relevant effects 
nor does it consider the progression of effects with 
respect to the duration or dose. In characterizing 
cell lines, the FDA may request tumorigenicity 
testing in accordance with the “Points to Consider in 
the Characterization of Cell Lines Used to Produce 
Biologicals” guidelines. Further studies of gene-
modified cells may be recommended to assess the 
potential for these cells to adversely differentiate 
for 6 wk or up to 6 mo. Additional studies can be 
requested depending on the characteristics of the 
treatment modality. For allogeneic cells, studies to 
determine immunogenicity are required and may 
include assessing the HLA antigen expression by the 
cells, anti-HLA antibodies, the T cell response and 
multiple cytokines in animals and/or humans.

TUMORIGENICITY
Karyotype analysis by using chromosome banding 
is the standard method for identifying numerical 
and structural chromosomal aberrations. A novel 
karyotyping technique, termed spectral karyotyping, 
was developed to increase the sensitivity of karyo­
typing[69]. After reports of problems with viral vectors 
in gene therapy[70,71], this karyotyping issue becomes 
important in the cell-mediated gene therapy field. 
The FDA had concerns regarding injecting cells 
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with chromosomal abnormalities in human clinical 
trials[72,73]. This concern arose as a result of the leuk­
emia observed in the clinical trial of X-SCID patients. 
Oncogenesis or tumorigenicity has been considered 
a clinical hurdle for pluripotent stem cell therapies 
by certain authors[74,75]. These authors identified the 
seven risks of iPS cell therapy: integration of the 
gene into the host cell, chromosomal damage, clonal 
selection, incomplete programming, failure to silence 
pluripotent networks, DNA damage during cell culture 
and aberrant regulation of the imprinting process[76]. 
Adeno-associated virus was considered a relatively 
safe vector, but several authors still consider that this 
vector can induce chromosomal abnormalities[77,78]. 
For cells in which there is a karyotyping change after 
transfection[79], the FDA recommends rendering the 
cells replication incompetent (e.g., via irradiation) 
prior to their being used in a clinical setting.

In 2003, one of the most successful, problematic 
and influential cases of gene therapy was reported: 
LMO2-associated clonal T cell proliferation in two 
patients after gene therapy for SCID-X1[4,80]. The 
authors previously showed the correction of X-linked 
severe combined immunodeficiency in 9 out of 10 
patients by using retrovirus-mediated gene transfer 
to autologous CD34+ bone marrow cells. However, 
3 years after this gene therapy, uncontrolled, 
exponential clonal proliferation of mature T cells 
occurred in two patients. This incident was reported 
as an occurrence of leukemia following gene ther­
apy[81]. Although these patients overcame the 
problem, the impact of this incident was sufficient to 
change the arena in terms of regulation, investment 
and research effort. Baum et al[38] (2003) reviewed 
the side effects of this technology that are related to 
target cell manipulation, vector production, transgene 
insertion and expression, selection procedures for 
transgenic cells and immune surveillance. This 
unfortunate leukemic side effect of gene therapy can 
be used as a learning tool for developing safer, more 
effective gene therapies in the future. 

To overcome these potential side effects of gene 
therapy, many possible solutions have been dev­
ised[17,82]. Chromosomal insulators, co-transfection 
of suicide genes under control of an inducible pro­
moter, conditional expression of the transgene only 
in appropriate target cells, targeted transduction, 
cell type specific expression, targeted local admi­
nistration, splitting of the viral genome, and site-
specific insertion of the retroviral vector have all been 
proposed. A global iPS cell library has been proposed 
to preselect the donor genotype for immunological 
matching. This approach was proposed for immune 
compatibility[83], and similar approaches to reducing 
the potential for tumorigenicity can be devised. 
Individual cell lines that have undergone insertion 
site[84] and gene expression analyses and have 

otherwise been evaluated for tumorigenicity and 
determined to be non-tumorigenic can be identified 
and used for other clinical trials. To reach this goal, 
more clinical and in vitro and in vivo non-clinical data 
should be generated.

MECHANISM OF ACTION AND 
BIOMARKER
Some mesenchymal stem cell populations are rela­
tively easy to harvest: for example, bone marrow 
MSCs. However, clinical application of these cells 
without preclinical evidence of efficacy and safety 
is unacceptable and will delay the development of 
clinically useful therapies[16]. In particular, we need to 
better understand the mechanisms of action of stem 
cells after transplantation and learn how to control 
stem cell proliferation, survival, migration, and differ­
entiation in pathological environments[33]. Stem cell-
based approaches have received much hype as poten­
tial treatments for neurodegenerative disorders. 
Indeed, they showed that transplantation of stem 
cells in an animal model of neurodegenerative disease 
can improve function by replacing lost neurons and 
glial cells and by mediating remyelination, trophic 
actions and modulation of inflammation. However, 
a clear understanding of the mechanism of action 
and a description of a biomarker for demonstrating 
efficacy should be devised for use in clinical trials. 

Proposals submitted to the FDA for MSC-based 
products are undergoing a rapid expansion and 
are characterized by increased variability in donor 
and tissue sources, manufacturing processes, 
proposed functional mechanisms and characterization 
methods[85]. Mendicino et al[85] attempted to elucidate 
the FDA’s current perspective on the characterization 
of MSC-based products for clinical trials. The FDA 
proposed to characterize cell surface markers for IND 
applications of MSC-based products. Additionally, 
they found significant heterogeneity in the description 
of MSC bioactivity characterization in situations in 
which a candidate marker for a given assay has been 
defined. It remains unclear which particular set of 
markers will be sufficient to describe this complex 
and heterogeneous product class. Markers that can 
predict potential therapeutic benefit may allow the 
correlation of MSC characterization data with clinical 
data as they become available. For iPS cells, it can 
be more complicated.

iPS cells have been enthusiastically presented as a 
tool for aiding drug discovery by drug discoverers and 
commercial reagent and service providers alike[86]. 
The future trend for research in this area relates 
to the maintenance of pluripotency and cellular 
reprogramming[87]. To bring a product to the clinic, 
licensing, intellectual property and legal issues are 
also important. At this time, there may not be enough 
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information for financial and business development 
professionals to evaluate the marketability of these 
products. Issues with developing cellular products 
and related assay development are only some of the 
challenges that are faced when integrating iPS cells 
into drug discovery. However, the potential for these 
cells to markedly improve the symptoms of patients 
motivates those involved in drug discovery to invest 
time and money to advance this technology.

MANUFACTURING OF CELL PRODUCTS
One of the hurdles limiting the development of 
cellular therapies is the difficulty of cell expansion 
and the mass production required for a commercial 
product. The manufacturing technology for these 
products has developed in parallel with research on 
these products. Since the initial reports of the use 
of disposable bioreactors for cell culture that use 
wave-induced agitation[88,89], many innovations in 
single-use bioreactors have been reported[90]. The 
technology ranges from 175 cm2 tissue culture flasks 
to methods for scalable expansion of the cells[91]. 
Routine commercial and clinical applications of 
human cells and their progeny require increasing cell 
quantities that cannot be provided by conventional 
adherent culture techniques. Straightforward protocols 
for the expansion of undifferentiated ESC and iPS 
cells in suspension culture have been developed and 
reported. For ESCs, different methods for expansion 
to improve the culture conditions have been evalu­
ated[92]. A scalable GMP-compliant suspension system 
for human ESCs was reported by Chen et al[18,93]. 
This suspension culture system provides a powerful 
approach for scaling-up the expansion of hESCs 
under defined, serum-free conditions for clinical and 
research applications[94]. 

Disposable bioreactors are already widely accepted 
and in use for protein manufacturing[92,95]. Disposable 
components and systems are increasingly favored, 
both for improved process reliability and for the 
economic advantage they offer. For this reason, 
many biotech producers of protein molecules are 
moving to disposable bioreactor modules that are 
pre-sterilized and meet the applicable regulatory 
requirements. In 2010, Eibl et al[96] published a 
paper regarding disposable bioreactors, including 
the current state-of-the-art and recommended 
applications in biotechnology. In their paper, they 
provided a summary overview of the disposable 
bioreactors that were commercially available and 
described the domination of wave-mixed, orbitally 
shaken and stirred disposable bench top systems. 
They concluded that these novel systems are a viable 
alternative to traditional cell culture bioreactors at 
the bench top scale.

In 1997, Genzyme gained approval for autolo­
gous chondrocyte transplantation. Although this 
technology was not a commercial success, it fuel­

ed the development of mass culture methods for 
chondrocytes. Not only have chondrocytes been 
used for the regeneration of cartilage in the knee 
of patients[97], but they have also been used for 
intervertebral disc regeneration[98]. To expand these 
cells for commercial usage, chondrocytes have 
been cultured and expanded in a microcarrier sys­
tem[60,99,100]. They investigated human chondrocyte 
expansion in four macroporous gelatin microcarriers 
using two manufacturing processes that differed 
with respect to the amount of emulsifier used during 
the initial preparation and the gelatin cross-linking 
medium. The authors observed a strong chondrocyte 
donor effect during the initial expansion phase. The 
final cell yield differed significantly between the 
microcarriers, and the result indicated that man­
ufacturing differences affected chondrocyte densities.

For iPS cells, large-scale culture relies on the 
combined use of multiple growth components, 
including media containing various growth factors, 
extracellular matrices, 3D environmental cues and 
modes of multicellular association[18]. Chen et al[18] 
describe the criteria, considerations and suggestions 
for achieving optimal iPS cell growth. 

RELEASE TEST AND QUALITY CONTROL
As for chemical drugs, biological drugs should be 
consistent, active, pure, toxin-free and stable. 
Growth, harvesting and distribution into vials of cells 
should be conducted in a controlled GMP environment 
(Table 2). Throughout the manufacturing process, 
in-process and release testing should be performed 
to ensure that each batch of product is safe and 
consistently meets the criteria for identity, purity 
and potency prior to administration to humans. 
The characteristics, viability and potency of the 
cells should be evaluated. The identity of the cells 
can be defined by morphologic examination and 
by markers of specific functions. For example, 
Type II collagen and GAG production are relevant 
criteria for cartilage cells. Techniques such as immu­
nohistochemical staining and RT-PCR are also good 
tools for this purpose. Cell potency can be measured 
by a quantitative analysis such as ELISA for specific 
therapeutic protein production, or by other product 
specific assays depending on the therapeutic me­
chanism. Cell viability and proliferation can be 
determined by specific staining (e.g., tryptophan 
blue), MTT assay and/or by automated methods 
using fluoroscopy. For gene-modified cells generated 
with a viral vector, replication-competent retrovirus 
detection may be required as a safety evaluation 
(Table 3). 

The cells should also be tested for contamination 
by checking sterility, detecting mycoplasma and 
measuring endotoxin levels. The long-term stability 
of cells should also be determined under the con­
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ditions of storage, use and shipping. This may 
require testing under different conditions such as 
room temperature, refrigeration, and frozen (at 
temperature ranges corresponding to dry ice and the 
vapor phase of liquid nitrogen storage).

IN THE CLINIC
One of the first routes of delivery of cellular therapy 
was intra-articular because of some inherent adv­
antages[101,102]. Some of the benefits of local deli­
very over systemic delivery include increased bio­
availability, fewer adverse events, and lower total 
drug costs. Additionally, the intra-articular injection 
of cell therapies has advantages over intravenous 
administration in that systemic exposure is reduced 
and exposure to the antigen surveillance system is 
limited[103]. For these reasons, we have developed 
a cell mediated gene therapy for degenerative joint 
disease[104-106] and are currently conducting clinical 
trials with normal and engineered chondrocytes 
(called TG-C) injected into the knee joint for the 
treatment of osteoarthritis (Figure 1). 

We are currently completing a Phase Ⅱ study 
entitled ‘A Phase Ⅱ Study to Determine the Efficacy 
and Safety of Allogeneic Human Chondrocytes 
Expressing TGF-β1 in Patients with Grade 3 Chronic 

Degenerative Joint Disease of the Knee’ in the United 
States. Phase Ⅲ testing of this product is currently 
ongoing in South Korea. To develop this product for 
clinical use, it was necessary to establish the stability 
of the product under frozen storage conditions and at 
room temperature for injection. The temperature of 
the product as it was transferred from manufacturing 
to storage to the clinic and within the clinic was 
carefully controlled and monitored. To date, more 
than 220 patients have been injected with TG-C. 
A schematic diagram of the manufacturing and 
injection processes is presented in Figure 1. The 
gene-modified cells in TG-C are irradiated to render 
them replication incompetent. These cells therefore 
produce the active TGF-β protein for only two weeks. 
These irradiated cells also produce Type-Ⅱ collagen 
and glycosaminoglycan (GAG) by an autocrine mode 
of action and induce normal chondrocytes to produce 
Type II collagen and GAG by a paracrine mode of 
action in response to the TGF-β protein produced. 
The releasing tests during the manufacturing of TG-C 
are described in Table 4.

As TG-C is an allogeneic product; all patients 
in this study are being monitored for an immune 
response. To date, no immune response or serious 
adverse events attributable to TG-C have been 
observed. The decreased HLA-type antigenicity of 
the cells and the relatively immune privileged nature 
of the intra-articular injection site are thought to be 
contributing factors to the lack of immune response. 

CONCLUSION
Our understanding of the nature of cell-based pro­
ducts and the diseases that they are intended to 
treat is being increased empirically: that is, through 
the scientific process of trial and error. Human clin
ical trials with cutting edge technology and novel 
products are part of that process and accordingly 
have their failures and successes, which are necessary 
if we are to learn and improve our understanding. 
Industry’s perspective of cell-based therapy has 
changed in response to scientific developments and 
discoveries[41]. Although there is a long way to go, 
a tremendous amount of clinical data have already 
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  Category Test Key measurement

  Sterility Sterility Microbiological testing
Mycoplasma After pooling of cultures but before washing

  Identity Identity Cell identity and assess heterogeneity
  Purity Impurity Residuals contaminants

Endotoxin Contaminants during the process
  Potency Specific to 

product 
Relevant function of the cells

  Other 
  testing

General safety Cellular therapy products are exempt
Viability Generally > 70%

Cell number Minimum and maximum cell number
  Title 21 of the code of federal regulations applied to cell therapy products
     The tissue rules: Part 1271
     The biologics requirements: Part 600 and 610
     The investigational new drug requirements: Part 312
     The drug manufacturing requirements: Parts 211 and 212

Table 3  Suggested release tests advised by Food and Drug 
Administration for cell product

Noh MJ et al . Cell mediated gene therapy

  Cells/lot (billions) Cell culture Harvest Filling Freezing

  1 T175 flask or hyperflask, 10 layer cell factory Bucket centrifugation Hand/manual fill Bench top control rate 
freezer

  10 10 layer cell factory, hyperstack-12, Xpansion 
systems

Bucket centrifugation Semi automated fill ma-
chine or hand/manual fill

Bench top control rate 
freezer

  50 Hyperstack or Xpansion, cell cube Tangential flow filtration, 
continuous centrifugation

Automated fill machine Large scale control rate 
freezer

  100 Factory automation of Xpansion or Hyper-
stack technologies 

Tangential flow filtration of 
continuous centrifugation

Automated fill machine Large scale control rate 
freezer

  500 Bioreactors using microcarriers Continuous centrifugation Automated fill machine Scale out large scale con-
trol rate freezer

Table 2  Different types of production methods based on cells needed per batch 



been generated. In this review, we summarized the 
ongoing scientific effort to move cell mediated gene 
therapy into the clinic. While some may still believe 
that such therapy is far from the clinic, it is our belief 
that now is the time for physicians to understand and 

embrace this new technology. 
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