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Abstract

Sepsis is a clinical syndrome caused by a deregulated
host response to an infection. Sepsis is the most
frequent cause of death in hospitalized patients.
Although knowledge of the pathogenesis of sepsis
has increased substantially during the last decades,
attempts to design effective and specific therapies
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targeting components of the derailed host response
have failed. Therefore, there is a dramatic need for
new and mechanistically alternative therapies to treat
this syndrome. Based on their immunomodulatory
properties, adult mesenchymal stem or stromal cells
(MSCs) can be a novel therapeutic tool to treat sepsis.
Indeed, MSCs reduce mortality in experimental models
of sepsis by modulating the deregulated inflammatory
response against bacteria through the regulation of
multiple inflammatory networks, the reprogramming
of macrophages and neutrophils towards a more anti-
inflammatory phenotype and the release of anti-
microbial peptides. This report will review the current
knowledge on the effects of MSC treatment in preclinical
experimental small animal models of sepsis.

Key words: Adult mesenchymal stem cells; Therapy;
Sepsis
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Core tip: Sepsis remains as the most frequent cause
of death in hospitalized patients and, therefore, new
therapeutic alternatives are needed. Adult mesenchymal
stem cells reduce mortality in experimental models of
sepsis by modulating the deregulated inflammatory
response against bacteria through the regulation of
multiple inflammatory networks, the reprogramming
of macrophages and neutrophils towards a more anti-
inflammatory phenotype and the release of anti-
microbial peptides. In this report we aim to provide a
comprehensive snapshot of the potential clinical use of
cell therapy with mesenchymal stem cells for sepsis.
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INTRODUCTION

Sepsis is a clinical syndrome caused by a deregulated
host response to an infection. Sepsis is the most frequent
cause of death in hospitalized patients. Although
knowledge of the pathogenesis of sepsis has increased
substantially during the last decades, attempts to design
effective and specific therapies targeting components
of the derailed host response have failed. Sepsis will
remain an important clinical problem in the future,
especially in light of the ageing population and emerging
antibiotic resistance. Therefore, there is a dramatic need
for new and mechanistically alternative therapies to
treat this syndrome. Based on their immunomodulatory
properties, adult mesenchymal stem or stromal cells
(MSCs) can be a novel therapeutic tool to treat sepsis.
This report will review the current knowledge on the
effects of MSC treatment in preclinical experimental
small animal models of sepsis.

SEPSIS

Epidemiology

The incidence of sepsis varies between different reports,
largely due to the use of different case definitions and
diagnosis codes'"?. Nevertheless, sepsis clearly is a
leading cause of death, and the most frequent cause
of death in non-coronary intensive care units (ICUs) in
the developed world®. In the United States the yearly
incidence of severe sepsis is estimated at 300 cases per
100000 person-years population, which accounts for
10% of all ICU admissions™. The incidence of severe
sepsis was recently reported to increase, although
it is uncertain whether this signifies a true increase or
altered coding and registration practices™™*. Mayr et
al” have recently reported that the mortality of severe
sepsis and septic shock lies between 25%-50%,
with the extent and number of organ failures as the
strongest predictors of an adverse outcome. Notably,
the case fatality rate for sepsis has declined in the past
decade, most likely due to improved general care in
the ICU™,

The most common sources of sepsis are in descending
order pneumonia, intra-abdominal-, urinary tract- and
soft tissue infections™. Blood cultures are positive in only
one third of cases, and up to a third of cases are culture
negative from all body sites. The most commonly isolated
Gram-positive bacterial pathogens are Staphylococcus
aureus and Streptococcus pneumoniae, and the most
common Gram-negative pathogens are Escherichia coli,
Klebsiella spp, and Pseudomonas aeruginosa'. While
Gram-positive infections had been reported as surpassing
Gram-negative infections in recent years®, a recent study
encompassing 14000 ICU patients in 75 countries found
that 62% of positive isolates were Gram-negative bacteria,
vs 47% Gram-positive and 19% fungal®..

Pathophysiology and host response
Sepsis occurs when the body’s response to infection
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injures the host’s tissues and organs. The deregulated
host response during sepsis entails both excessive
proinflammatory and immune suppressive anti-
inflammatory components”*?.,

Immune cells can sense pathogens via so-called
pattern-recognition receptors (PRRs), which recognize
conserved motifs expressed by microorganisms called
pathogen-associated molecular patterns or PAMPs!"'!,
Four classes of PRRs have been identified: Toll-like
receptors (TLRs), C-type lectin receptors, RIG-I-like
receptors and NOD-like receptors'!!. Activation of
PRRs by PAMPs causes upregulation of inflammatory
gene transcription and initiation of innate immunity, a
response aimed at eliminating the invading pathogen.
However, when bacteria overcome the ability of the
innate immune system to clear the infection, resulting
in progression to sepsis, the interactions between
pathogens and PRRs advances into a deregulated
response that no longer benefits the host. During
such injurious host response inflammation can be
perpetuated by stimulation of PRRs by so-called
danger-associated molecular patterns (DAMPs or
alarmins), which are endogenous molecules released
by injured or dying cells"™?. Alarmins are also released
during sterile injury such as after trauma or severe
pancreatitis, which contributes to the concept that
the pathogenesis of multiple organ failure in sepsis
and non-infectious critical illness is not fundamentally
different™*?,

Cytokines are an important component of the
“hyperinflammatory” response to severe infection.
Experimental sepsis induced by systemic challenge
with high bacterial doses is associated with enhanced
release of multiple cytokines, and elimination or
inhibition of several of these proinflammatory mediators
[including tumor necrosis factor (TNF)-a, interleukin
(IL)-1B, IL-12, IL-17, IL-18, interferon-y, and
macrophage migration inhibitory factor] improves
survival in these models™*. However and importantly,
these systemic challenge models do not adequately
mimic the clinical syndrome of sepsis. Many trials
evaluating the efficacy of proinflammatory cytokine
inhibition, especially targeting TNF-o and IL-1, or
other anti-inflammatory strategies have failed!.
Other proinflammatory mediators implicated in sepsis
pathogenesis include high mobility group box 1
(HMGB1) and S100 proteins.

Activation of the complement systems forms a
fundamental part of the innate immune response to
infection™®. Sepsis is associated with systemic activation
of the complement system, which can be harmful in
the setting of fulminant sepsis. Indeed, neutralization
or genetic absence of complement factor C5a and its
receptors results in increased survival during abdominal
sepsis or endotoxemia in mice. Other hallmark features
of the sepsis host response include activation of the
coagulation system and vascular dysfunction. The most
severe manifestation of coagulopathy is the syndrome
of disseminated intravascular coagulation, with an
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estimated incidence between 30%-50% in severe
sepsis, caused by tissue factor-driven activation of
coagulation with concurrent impairment of anticoagulant
and fibrinolytic mechanisms"”). Organ dysfunction in
sepsis is at least in part caused by tissue hypoperfusion,
secondary to hypotension, microvascular thrombosis
and/or dysfunction of the vascular endothelium with
loss of barrier function'®. Mitochondrial dysfunction
and altered cellular bioenergetics have been implicated
in sepsis-induced organ dysfunction, although
further research is warranted to establish a causal
relationship™®..

While proinflammatory responses definitely contribute
to sepsis pathogenesis, immune suppression is also a
common feature in patients with sepsis”*®, Autopsy
studies have revealed strong deficiencies of splenocytes
harvested from patients who had died of sepsis to
produce cytokines upon stimulation*®!, The mechanisms
that underlie this phenomenon have not been fully
elucidated, although likely anti-inflammatory cytokines,
particularly IL-10 and transforming growth factor
(TGF)-B, and inhibition of signalling by PRRs, partially
due to epigenetic modifications of essential promoter
regions, are involved. Moreover, apoptosis of immune
cells has been implicated in immune dysfunction and
mortality in sepsis™. Most cells that undergo enhanced
apoptosis in sepsis are of lymphoid origin (B cells, CD4
T cells), but also dendritic cells are affected. Preclinical
studies have suggested that enhanced apoptosis of
lymphocytes contributes to sepsis lethality!'?..

MSC

MSCs have emerged in recent years as therapeutic tools
based on four important features: (1) differentiation
potential; (2) capacity to modulate immune responses;
(3) pro-angiogenic and repair promoting capacities;
and (4) low immunogenicity; the latter feature may
allow allogeneic treatments. MSCs have been found in
a variety of adult tissues of mesodermal origin, such
as bone marrow, adipose tissue, placenta, umbilical
cord, dental pulp or synovium™®?, Although sharing
the main characteristics, differences between MSCs
from different sources can be found, for instance at
the RNA and protein expression profiles levels!?5-2%,
MSCs are considered a promising tool for cell therapy,
in particular for inflammatory diseases, based on their
immunomodulatory properties and paracrine effects
through trophic factors with anti-fibrotic, anti-apoptotic
or pro-angiogenic propertiesi*>%, MSCs regulate the
function of a broad range of immune cells’®*>”!, and
are activated by inflammatory mediators released from
activated immune cells (i.e., IFNy, IL18 and TNFq)=%37),
The mechanisms involved in the immunoregulatory
activity of MSCs are still under investigation but rely on
both cell contact-dependent mechanisms (i.e., Jagged1-
Notch1 interaction, Fas-Fas-L interaction)®*! and
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paracrine effects through the release of soluble factors
including hepatocyte growth factor, prostaglandin-E2
(PGE2), TGF-B1, nitric oxide (NO), IL-10, IL-6, heme
oxygenase-1 (HO-1), HLA-G5 or the enzymatic
activity of indoleamine 2,3-dioxygenase™*?. In addition
to the direct effect of these soluble factors, MSCs
may also modulate immune responses through the
generation of immune cells with regulatory phenotype,
including regulatory T cells or anti-inflammatory
macrophagest***.

MSCs have also been reported to show antimicrobial
activities against different pathogens upon activation
with inflammatory cytokines'*®!. Noteworthy in the
context of sepsis, the functionality of MSCs can
also be modulated by activators of TLRs!*). It has
been described that MSCs can be polarized in vitro
towards either anti-inflammatory or pro-inflammatory
phenotypes, depending on the TLR ligand time/
concentration used for activation®!. Furthermore,
it has been recently described that interaction of
gastrointestinal bacteria (Salmonella typhimurium or
Lactobacillus acidophilus) with MSCs increased their
capacity to inhibit T lymphocyte proliferation in vitro
through a PGE2-dependent mechanism, indicating that
bacteria may also enhance the immunomodulating
properties of MSCs!*?!.

MSCs can sense inflammatory signals through
the expression of cytokine/chemokine receptors
and integrins, and subsequently migrate to sites of
inflammation®®). Moreover, homing of systemically
administered MSCs to lymphoid organs (draining lymph
nodes and spleen) and the subsequent generation of
functional Tregs have also been reported™!>*!. MSCs
do not long-term engraft at the inflammation site and
cells seem to be cleared shortly after administration.
This suggests that transient effects through soluble
factors and cell-to-cell contacts play a main role in
MSC-mediated initial controlling and balancing of local
inflammation.

Allogeneic MSCs are regarded as a preferred source
for treatment as they would allow treatment with a
ready to use, off-the-shelf product, available for a large
number of patients, specially, in acute life threatening
indications like sepsis in which isolation and expansion
of autologous MSCs is not an option. In that context,
MSCs are considered immune privileged as they
express constitutively only low levels of cell-surface
HLA class I molecules and lack expression of HLA
class 1, CD40, CD80 and CD86 which would lead to
reduced activation of the innate and adaptive immune
responses®*. This immune privilege of MSCs therefore
supports the feasibility of allogeneic treatments without
the requirement of suppression of host immunity!>>°®,
However the immunogenic features of MSCs are
currently under review as there is some evidence of
immunogenicity in experimental animal models that
coincides with immunomodulary effects by MSCs™”.
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MSC IN EXPERIMENTAL MODELS OF
SEPSIS

Sepsis being a disease that results as a consequence
of deregulated inflammatory and immune responses
against an infection can lead to tissue damage,
multiorgan failure and death. Interest in investigating
the therapeutic effect of MSCs on experimental models
of sepsis emerged recently, and is based on their
immunomodulatory propertiest®®!. A description of
the therapeutic effects of MSCs in experimental small
animal models of sepsis and the mechanisms involved
are described in the following sections. A summary of
the data is provided in Table 1.

Experimental models of sepsis
In order to study sepsis pathophysiology, animal
models of sepsis have been established. These models
are normally used to preliminarily test potential
therapeutic treatments prior to human clinical trials.
On the basis of the initiating agent, sepsis models can
be divided into three categories: toxaemia models
(exogenous administration of a bacterial toxin, such
as lipopolysaccharide), bacterial infection models
(exogenous administration of a bacteria) and host barrier
disruption models (alteration of the animal’s endogenous
colonic protective barrier allowing bacterial leakage)™?.
These experimental models have in common high
inflammatory responses against endotoxins or
bacteria, subsequent organ injury and failure and, as a
consequence, high mortality rates within few hours or
days. All models have contributed significantly to our
understanding of sepsis pathophysiology, although no
single one fully mimics the course of human disease.
Two limitations of sepsis models compared to human
disease are the timing of disease progression (the
progression to multiorgan failure and death occurs
in hours to days in most animal models, whereas in
human sepsis this occurs in days to weeks) and lack
of supportive therapeutic intervention (i.e., intubation
and mechanical ventilation, fluid therapy), in particular
in small animal models. Therefore, extrapolation of
efficacy results obtained in small sepsis animal models
to the human disease has to be made with caution™®>?,
The toxemia models involve the administration by
intraperitoneal or intravenous injection of a bacterial
toxin. Thus, a single injection of high dose LPS
(normally 10-20 mg/kg) is the most commonly used
toxaemia model (LPS model). LPS administration
induces a very rapid and transient increase in systemic
cytokine levels, hypodynamic cardiovascular activity
and a shock-like state. The injection of LPS may result
within hours in high mortality rates that may vary with
the dose, type of LPS, age and strain of animal. The
bacterial infection models consist on an exogenous
bacterial infection and the severity of the model may
vary depending on the bacterial strain (i.e., Escherichia
coli, Pseudomonas aeruginosa) and route of infection
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(intravenous, intraperitoneal, intratracheal) used.
The clinical progression of the disease is rapid with
hypodynamic cardiovascular state, high cytokine
levels and progression towards death within hours.
The host-barrier disruption models require the surgical
disruption of the shielding barrier that protects sterile
compartments from pathogens, allowing bacteria to
spread. These models have become the most relevant
sepsis models because they create a focus of infection
that can disseminate throughout the body, mimicking
the human situation. The caecal ligation and puncture
model (CLP) is considered to be one of the most
clinically relevant models for sepsis research. The
model involves surgical ligation of the distal cecum with
suture followed by one or two small punctures distal
to the ligation. This allows the leakage of intestinal
content into the peritoneal cavity, which results in
polymicrobial sepsis (several bacterial species can be
found in the blood and other organs of CLP animals).
Technical variations (needle size and number of
punctures) can influence the severity of the CLP model
(mortality within hours or several days)®*®.

Effect of MSC treatment on mortality and organ injury
induced by sepsis

The therapeutic effect of MSC treatment has been
tested using different sepsis animal models, MSC
types, dosing, timing and routes of administration.
These studies have consistently reported improvement
on survival rates of animals treated with MSCs (Table
1). In mice, one single dose of between 3 x 10° and
10° MSCs administered by intraperitoneal, intravenous
or intratracheal route was able to significantly reduce
sepsis-related mortality in LPS, CLP, P. aeruginosa
peritonitis and E.coli pneumonia mouse models>2¢1¢%,
Similar therapeutic effects have been observed using
autologous, allogeneic or xenogeneic MSCs!®%5,
Noteworthy, treatment with fibroblasts has not been
reported to increase survival of septic mice, despite
the shared immunomodulating properties of fibroblasts
with MSCs®"#¢4],

The effects on survival might depend on the
dose (low/high, one/multiple) and the timing of
administration (early/late after insult). Gonzalez-
Rey et al®®! reported that one dose of 10° human
ASCs administered intraperitoneally 30 min after
LPS injection in mice had a higher protective effect
on mortality than one dose of 3 x 10° cells. Mei et
al®¥ found that intravenous administration of one
dose of 2.5 x 10° mouse BM-MSCs after 6 h of CLP
did not significantly protect mice, unless MSCs were
administered concomitantly with antibiotics. These
results might be related to different experimental
settings because, compared to other studies carried
out in CLP mouse models, Mei et al'®® administered
a lower dose of MSCs (2.5 x 10°vs 10° cells) and at
a later time point (6 h after CLP vs a range between
24 h before and 4 h after CLP)°%6%6%8] QOn the
other hand, Hall et al reported that three intravenous
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intramuscularly, cells were only detected in the muscle
up to 24 h after administration!”®.

Effects of MSCs on inflammation induced by sepsis

The pathogenesis of sepsis is characterized by massive
infiltration of immune cells in target organs and
high pro-inflammatory cytokine levels systemically
and locally, that can lead to tissue damage, multiple
organ failure and death. Treatment with MSCs
reduces the infiltration of neutrophils and monocyte/
macrophages to target organs, including liver, lung,
intestine and kidney!%616264:66:68.70.76] ' £\ thermore,
MSC treatment has also been reported to reduce the
levels of proinflammatory cytokines (i.e., IFNy, TNFa,
IL1B or IL6) in several organs including serum, liver,
lung, intestine and myocardijum®26+/66-68,70-72,74,76]
These anti-inflammatory effects can be enhanced by
preactivation of UC-MSCs with Poly I:C which results in
the inhibition of miR-143 expression by MSCs®®, The
reduction on the levels of anti-inflammatory cytokines
was accompanied by the increase on the levels of the
anti-inflammatory cytokine IL1Q!°%61/66768,70-72,74,76]
although other authors have reported either no effect
on IL10 levels or even a reduction!®%*¢”73] These
differences might be related to differences in the
experimental settings, such as the use of different
animal models, MSCs, dosing and time of sample
collection. Nevertheless, there is evidence that IL10
plays an important role in the therapeutic effects
of MSCs in sepsis. Thus, injection of a neutralizing
antibody against IL10 or IL10 receptor prior to CLP
abrogated the therapeutic effects of mouse BM-
MSCs!®Y, In vitro studies showed that IL10 was not
directly produced by MSC, but by macrophages
through a mechanism that required MSC-secretion of
PGE2[%*771, Moreover, a role of IL10 in inhibiting the
migration of neutrophils into the infected tissues has
also been suggested®. In addition to IL10, other
mediators of the therapeutic effect of MSCs have been
identified. Thus, Yagi et al”*! observed that blockade
of sTNFR1, which is released by MSCs in response to
inflammation, partially impaired the anti-inflammatory
effects of MSC treatment.

The MSC-mediated reprogramming of macrophages
towards a regulatory and anti-inflammatory M2
phenotype has also been reported in sepsis models by
other authors. Krasnodemskaya et a/®®* observed a
larger population of monocytes expressing CD206 (a
marker of alternative activated M2 macrophages) in the
spleen of MSC-treated mice and a higher phagocytic
capacity of blood monocytes. Furthermore, Anderson
et al’”! provided strong evidence of the important role
that MSC-induced regulatory macrophages play in
the therapeutic effects of ASCs in sepsis. The authors
generated “"ASC-mediated regulatory macrophages”
(ASC-Mph) by in vitro culture of mouse bone marrow
macrophages and ASCs (either mouse or human) and
injected 10° ASC-Mph intraperitoneally in septic mice
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at different time points after CLP. These treatments
resulted in reduced mortality rates when ASC-Mph were
administered between 4 h and 12 h (but not at 24 h)
after CLP by a mechanism that required the production
of IL10 by ASC-Mph!"”1, Moreover, these regulatory
ASC-Mph also reduced levels of pro-inflammatory
cytokines in serum and infiltration of inflammatory cells
in the peritoneum, lung, liver and intestine. Finally,
the relevance of monocytes/macrophages, but also
neutrophils, in mediating the therapeutic effects of MSCs
is highlighted by the fact that depletion of monocyte/
macrophages (by using clodronate-filled liposomes) or
neutrophils (by using anti-Ly6G antibody) completely
abrogated the protective effects of MSCs in vivo'®®*.

The effects of MSC treatment on transcriptional
inflammatory pathways in target organs of CLP septic
mice treated with MSCs have been investigated by
microarray analysis of total RNA expression. The results
show that MSC treatment affects an ample range of
transcriptional networks (it was estimated that up to
a 13% of total murine genome was transcriptionally
reprogrammed after MSC treatment compared to
control septic mice including: (1) downregulation of
TLR, NF-xB or IL6 signaling pathways; (2) upregulation
of NF-AT-related genes; (3) upregulation of genes
involved in phagocytosis, antigen presentation, bacterial
killing, coagulation, complement regulation and platelet
activation; and (4) upregulation of genes involved
in cell-to-cell interaction and endothelial/vascular
integrity'®%”%],

Effect of MSCs on bacterial burden in sepsis

The mechanism by which MSCs protect from sepsis
is not only limited to reducing the production of
inflammatory cytokines and migration of inflammatory
cells to infected organs, but also includes direct anti-
microbial properties, as well as the improvement of
the phagocytic properties of monocyte/macrophages
and neutrophils. Gonzalez-Rey et a/®*! and Németh
et al® first reported a reduction on bacterial load in
target organs (i.e., peritoneal cavity, blood, spleen or
liver) in MSC-treated septic mice, despite the MSC-
mediated reduction of the inflammatory response.
Krasnodembskaya et a’” determined that MSC have
intrinsic anti-microbial activity because they secrete
the anti-microbial peptide LL-37 in response to the
stimulation with Escherichia coli or Pseudomonas
aeruginosa. Intratracheal administration of human
BM-MSCs in a mouse pneumonia model highly
reduced bacterial counts in bronchoalveolar lavage
(BAL). However, when a LL-37 neutralizing antibody
was also administered to mice, the anti-microbial
effects of MSCs were only partially lost, suggesting
that additional anti-microbial mechanisms might be
involved. This potential direct killing of bacteria by
MSCs needs to be further confirmed as Gonzalez-Rey
et al®* did not observe direct killing of Escherichia coli
by MSCs in vitro in the absence of other cells.
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In addition, the enhancement of the phagocytic
properties of monocyte/macrophages and neutrophils
have also been reported to improve bacterial clearance
by MSCs. Noteworthy, MSCs seem not to have the
capacity to phagocyte bacteria in vitro'®*®*, Mei
et al®¥ found that MSC treatment in a mouse CLP
model increased the phagocytic capacity of peritoneal
and spleen CD11b positive cells (mainly monocyte/
macrophages and neutrophils) in MSC treated mice.
Krasnodembskaya et al'®*! observed a reduction
on bacterial counts in several organs, but more
significantly in peripheral blood of MSC treated mice
infected with Pseudomonas aeruginosa, which was
also associated to an increased capacity of peripheral
blood monocytes to phagocyte bacteria. Hall et a/**
determined that MSCs, but not fibroblasts, also
enhanced the phagocytic properties of neutrophils in
vitro and in a CLP mouse model. In fact, depletion of
neutrophils in vivo abrogated the ability of MSCs to
promote bacterial clearance®!. Notably, Németh et
al'®'! noticed that while infiltration of neutrophils to
target organs was inhibited in MSC treated mice, their
presence in circulation was concomitantly increased
and suggested that this mechanism might help to
clear bacteria from circulation and minimize organ
injury due to leukocyte infiltration. Interestingly,
preactivation with Poly I:C increased the in vivo anti-
microbial effects of UC-MSCs in a CLP mouse model
through a mechanism that requires the inhibition of
the expression of miR-143#,

CONCLUSION

Sepsis is a leading cause of death and the most frequent
cause of death in non-coronary ICUs in the developed
world and, despite improvement in treatments, the
mortality of severe sepsis and septic shock remains
very high, showing that current treatments are not
sufficient to combat this syndrome. The use of MSCs
in experimental animal models of sepsis has reported
strong evidence of the therapeutic potential of MSC
therapy in this indication. These studies have been
mainly focused on the effects of MSCs on the pro-
inflammatory phase of sepsis, while the effects of
MSCs on the subsequent anti-inflammatory/immune
exhaustion phase of the disease has not been
elucidated so far and will need further investigation.
The mechanisms by which MSCs improve survival in
sepsis models rely on the collective effects of their
immunomodulatory and anti-microbial properties:
MSC treatment modulates inflammation in septic mice
by a mechanism that requires the reprogramming
of macrophages towards a more anti-inflammatory
phenotype (release of anti-inflammatory IL10), resulting
in reduced levels of pro-inflammatory cytokines in
blood and organs and attenuated infiltration of immune
cells in infected tissues (monocytes and neutrophils).
Moreover, MSCs show direct (release of LL-37 peptide)
and indirect (increase of phagocytic properties of

Raishidenge ~ WJSC | www.wjgnet.com

monocyte/macrophages and neutrophils) anti-microbial
effects. The combined effect of reducing both the
inflammatory response and the bacterial burden results
in an improvement of organ function and higher survival
rates. The promising results obtained in these, small
animal, preclinical efficacy studies are encouraging
and suggest that MSCs might be a therapeutic option
to treat sepsis in patients. Importantly, efficacy of
MSCs in large animal models that better replicate the
inflammatory response, organ failure and disease
in humans (e.g., sheep models) will be additionally
relevant to support further testing of the therapeutic
potential of allogeneic MSC treatment in humans. Such
clinical trials should be prospective, controlled, and
randomized so to guarantee a clear outcome of the MSC
treatment effect. Moreover, taking into consideration
the complexity and heterogeneity of sepsis and the
poor results up to now in sepsis clinical trials, we believe
that such trials should first be done in well defined and
homogeneous sepsis patient populations.
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