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Abstract
AIM: To determine whether use of a precontoured 
olecranon plate provides adequate fixation to withstand 
supraphysiologic force in a comminuted olecranon 
fracture model.

METHODS: Five samples of fourth generation comp
osite bones and five samples of fresh frozen human 
cadaveric left ulnae were utilized for this study. The 
cadaveric specimens underwent dual-energy X-ray 
absorptiometry (DEXA) scanning to quantify the bone 
quality. The composite and cadaveric bones were 
prepared by creating a comminuted olecranon fracture 
and fixed with a pre-contoured olecranon plate with 
locking screws. Construct stiffness and failure load 
were measured by subjecting specimens to cantilever 
bending moments until failure. Fracture site motion 
was measured with differential variable resistance 
transducer spanning the fracture. Statistical analysis 
was performed with two-tailed Mann-Whitney-U test 
with Monte Carlo Exact test.

RESULTS: There was a significant difference in fixation 
stiffness and strength between the composite bones 
and human cadaver bones. Failure modes differed 
in cadaveric and composite specimens. The load to 
failure for the composite bones (n = 5) and human 
cadaver bones (n  = 5) specimens were 10.67 nm (range 
9.40-11.91 nm) and 13.05 nm (range 12.59-15.38 nm) 
respectively. This difference was statistically significant 
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(P  ˂ 0.007, 97% power). Median stiffness for 
composite bones and human cadaver bones specimens 
were 5.69 nm/mm (range 4.69-6.80 nm/mm) and 
7.55 nm/mm (range 6.31-7.72 nm/mm). There was 
a significant difference for stiffness (P  ˂ 0.033, 79% 
power) between composite bones and cadaveric 
bones. No correlation was found between the DEXA 
results and stiffness. All cadaveric specimens withstood 
the physiologic load anticipated postoperatively. 
Catastrophic failure occurred in all composite specimens. 
All failures resulted from composite bone failure at 
the distal screw site and not hardware failure. There 
were no catastrophic fracture failures in the cadaveric 
specimens. Failure of 4/5 cadaveric specimens was 
defined when a fracture gap of 2 mm was observed, 
but 1/5 cadaveric specimens failed due to a failure of 
the triceps mechanism. All failures occurred at forces 
greater than that expected in postoperative period prior 
to healing.

CONCLUSION: The pre-contoured olecranon plate 
provides adequate fixation to withstand physiologic 
force in a composite bone and cadaveric comminuted 
olecranon fracture model.

Key words: Composite bone; Fracture; Biomechanic; 
Cadaveric; Olecranon; Precontoured plate
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Core tip: Comminuted olecranon fractures present a 
clinical and surgical challenge. Fixation with traditional 
tension band constructs is difficult due to comminution 
involving the articular surface. We describe a method 
if achieving fixation using a precountoured olecranon 
plate. In our biomechanical model using composite bones 
as well as cadaveric specimen, this method of fixation 
provides fixation of comminuted olecranon fractures 
capable of withstanding the expected physiologic force in 
the early postoperative period.
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INTRODUCTION
Comminuted olecranon fractures are relatively common 
injuries. Most displaced fractures benefit from surgical 
treatment. These fractures, especially unstable injuries 
involving the coronoid process, are not amenable to 
tension band fixation and benefit from open reduction 
internal fixation with a plate. Zuelzer[1] first reported 
successful application of a hook plate in a comminuted 
olecranon fracture in his 1951 case report. Plate fixa­

tion is increasingly used to treat displaced olecranon 
fractures and therefore considered as the gold standard 
for treatment[2-6]. Reports on application of plate fixation 
for comminuted olecranon fractures have demonstrated 
variable results[2]. Reports of these contoured olecranon 
plating demonstrated to more positive results[5,7-10]. 

Biomechanical features of plate fixation including 
stiffness and strength have previously been reported, for 
comminuted olecranon fractures[11,12]. Despite recognized 
limitations, using bone substitute material makes it easier 
to answer some of the relevant research questions. 
Bone substitute materials are helpful in achieving more 
consistent test data than cadaveric bones due to human 
skeletal variability. Composite bones enable testing of 
several parameters at lower costs when compared to 
cadaveric specimen. Furthermore, the uniformity of 
composite bone specimens allows direct comparison of 
datasets. 

The purpose of this study was twofold: (1) assess 
fixation of a comminuted intra-articular olecranon 
fracture with a locked pre-contoured plate in an in-vitro 
model; and (2) determine whether fourth generation 
composite bones are biomechanically comparable to 
human cadaveric bones under destructive loading 
conditions.

MATERIALS AND METHODS
Five samples of composite bone substitutes (Sawbones 
Cat#3426, large left ulna, fourth generation composite 
bone) per test group and five samples of fresh frozen 
human cadaveric left ulnas per test group were utilized 
for this study. A priori power analysis was performed to 
determine sample size. The five left fresh-frozen human 
cadaveric elbows were thawed prior to testing. These 
were five left male specimens with a mean age of 60.6 
years (range 51-86 years). These specimens were 
subjected to dual-energy X-ray absorptiometry (DEXA) 
scanning to quantify the bone quality.

For the cadaveric bones, soft tissues were completely 
resected, with the exception of the triceps tendon. No 
evidence of previous injury or arthritis was found in any 
of the ulna cadaveric bones. 

Specimens (fresh human, non-preserved) were 
received and stored at -20 ℃ prior to and following 
dissection. After hardware implantation, specimens 
were not refrozen and underwent mechanical testing.

The ulna was positioned in a custom cutting jig and 
locked into position with K-wires, prior to osteotomy 
creation[11], of a simulated comminuted fracture. A pre-
contoured olecranon plate (Stryker Trauma AG, Selzach, 
Switzerland) was fixed onto the posterior aspect of the 
ulna with five VariAx 3.5 mm locking and two VariAx 
3.5 mm non-locking screws (Figures 1 and 2). In each 
ulna (composite and human), the screw application was 
kept consistent with respect to length and configuration 
(Figure 1 and Table 1) with one at the olecranon tip, two 
through the olecranon, and four distal to the fracture 
(Figure 2). Screw length variability was dictated by the 
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anatomical variation of the human specimens. After 
fracture fixation with plate and screws, the K-wires were 
removed. 

Tests were performed in a custom designed test 
apparatus (Figure 3) with the standardized osteotomy 
analogous to that described by Buijze et al[11] and Gordon 
et al[12] in their cadaveric models as well as others[13-15]. 
For cadaveric bones, the triceps tendons were fixed 
with a soft-tissue clamp, and the proximal ulna was 
also fixed with a bolt similar to the composite bones for 
more stability. For composite bones, the proximal ulna 
was fixed with an olecranon tip bolt only, simulating the 
attachment of the triceps tendon. Cantilever bending 

load was applied to the ulna with a lever-arm of 200 
mm (measured from the elbow joint rotational axis 
to the point of load application). The starting position 
was 70° flexion[11], when the cantilever force was not in 
contact with the bone. A differential variable resistance 
transducer (DVRT; MicroStrain, United States), with a ± 
1 μm accuracy, was attached across the bony fracture 
site (Figure 3). Fracture displacement, as determined by 
the DVRT, was recorded from the fracture site before, 
during, at, and after load to failure was achieved.

Force was applied at the rate of 1 mm/s (actuator 
speed) until each specimen failed catastrophically, 
determined both visually and via live data from the 

A

#1

#8 #7 #6 #5 #4 #3

#2

B

Figure 1  Custom osteotomy jig with plate and screw construct. A: Rendered photo of the jig used to create the comminuted olecranon fracture, with an overlay 
of the ulna, demonstrating the positioning of the bone in relation to the saw blade slots; B: A radiograph of the olecranon plate and screw construct in relation to the 
fracture. Screws placed in positions as indicated in Table 1. 

A

C

B

D

Figure 2  Fourth generation composite bone (A) and  human cadaveric bone (C) with a comminuted olecranon fracture, fixed with a pre-contoured plate 
and screw construct, and lateral fluoroscopic radiographs of the composite bones (B) and human cadaveric ulna (D). The fracture is fixed with the olecranon 
plate and fixation screw.

Hamilton Jr DA et al . Precontoured plate for comminuted olecranon fracture
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Instron graphic software. Failure load was recorded for 
each specimen and the mode of failure was noted. The 
load at ≥ 2 mm displacement was obtained from the 
data files. 

Statistical review of the data was performed by a 
biomedical statistician prior to submission and peer 
review. The results were statistically analyzed with two-
tailed Mann-Whitney-U test a nonparametric measure of 
statistical dependence between these 2 variables (10000 
samples) with statistical significance ascribed a value of 
P < 0.05. In addition, power was calculated (2-tailed, 
alpha = 0.05) where 80% was considered as sufficient 
power (IBM SPSS Sample Power 3).

The Kaplan-Meier survival function was estimated 
for load to failure results. The result plot estimated the 
cumulative survival at a certain load value (estimated 
survival rate at certain load application). The correlation 
between stiffness or failure load and bone mineral 

density was analyzed with a two-tailed Spearman’s rank 
correlation coefficient.

RESULTS
Failure was defined as either a 2 mm fracture gap or 
complete failure (Figure 4). The load to failure for the 
composite bones (n = 5) and human cadaver bones (n 
= 5) specimens were 10.67 nm (range 9.40-11.91 nm) 
and 13.05 nm (range 12.59-15.38 nm) respectively 
(Figure 5 and Table 1). This difference was statistically 
significant (P < 0.007, 97% power). Median stiffness for 
composite bones and human cadaver bones specimens 
were 5.69 nm/mm (range 4.69-6.80 nm/mm) and 
7.55 nm/mm (range 6.31-7.72 nm/mm). There was 
a significant difference for stiffness (P < 0.033, 79% 
power) between composite bones and cadaveric bones 
(Figure 5). Displacements for these specimens were 

Plate hole number #1 #2 #3 #4 #5 #6 #7 #8

Screw types used in composite bones
   L/NL/- L L L - L NL L NL
Screw types used in cadaveric bones
   L/NL/- L L L - L NL L NL

Table 1  Screw types used

Figure 3  Custom mounting device. A: Pictorial representation of the test apparatus, demonstrating the ulna mounted on a potted distal humeral mould. The force 
was applied at 200 mm from the joint, and the triceps is clamped and retracted at a 30 degree angle; B: Photograph of the experimental setup, which includes the 
differential variable resistance transducer placed across the fracture site to measure fracture motion. 

Force
(with 200 mm lever arm)

70° flexion
(Start position)

30° triceps
pulling angle

A B

Composite bones Human cadaver bones

1 2 3 4 5 1 2 3 4 5
Load to failure 
criteria (nm)

11.91 9.40 10.97 10.67 9.64 15.10 12.59 13.05 13.02 15.38

Displacement 
(mm)

  1.76 2.00   1.85   2.00 1.70   2.00   2.00   1.71   2.00   2.00

Stiffness 
(nm/mm)

  6.80 4.69   5.95   5.33 5.69   7.55   6.31   7.62   6.52   7.72

Bone density 
(g/cm2)

- - - - -     0.723     0.456     0.658     0.665     0.883

Failure mode Distal 
fracture

Fracture gap Distal fracture Fracture gap Distal fracture Fracture gap Fracture gap Triceps 
failure

Fracture gap Fracture 
gap

Table 2  Load to failure criterion of 2 mm gapping, displacement, stiffness and bone density per specimen

Hamilton Jr DA et al . Precontoured plate for comminuted olecranon fracture

L: Locking; NL: Non-locking; -: None.
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not compared, due to the 2 mm failure criterion. DEXA 
scans were used to assess cadaveric bone mineral 
density (Table 2 and Figure 6). Overall, the DEXA bone 
mineral density (BMD) for human cadaver specimens 
ranged from 0.456 to 0.883 g/cm2, with a mean of 0.677 
g/cm2. BMD correlated with load to failure (P = 0.037), 
but did not correlate with stiffness (P = 0.188). Previous 
studies have shown that BMD significantly correlated 
with fracture loads in isolated human cadaveric pelvis[16] 
and femurs[17-19].

In the plated specimens, catastrophic failure occurred 
in 3/5 fourth generation composite bone specimens 
before the pre-defined 2 mm fracture gap was observed 
and in 2/5 cases when the fracture gap of 2 mm was 
observed. All complete failures (5/5) resulted from 
composite bone failure and not hardware failure. Failure 

occurred at the most distal screw.
There were no catastrophic fracture failures in 

the cadaveric specimens. Failure of 4/5 cadaveric 
specimens was defined when a fracture gap of 2 mm 
was observed, but 1/5 cadaveric specimens failed due 
to a failure of the triceps mechanism (the triceps tendon 
slipped in the soft-tissue clamp, and the augmentative 
trans-olecranon pin bent). 

DISCUSSION
There were 2 primary objectives of this study. Firstly 
to ascertain whether there is acceptable fixation of a 
comminuted olecranon fracture with a pre-contoured 
locking plate and screw construct in an in-vitro model. 
Secondly to directly compare synthetic composite bones 
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Figure 6  Bone mineral density in human cadaver bones (left ulnas), n = 5.

Figure 4  Sample graphs showing the force-displacement curve during 
destructive loading for composite bone and human cadaver bone specimens. 
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to human cadaveric bones under conditions of destructive 
loading to determine the construct strength, representing 
the first time this comparison has been performed. 
Options for fixation of olecranon fractures include casting, 
external fixation, and internal fixation with intramedullary 
nails or plates[20]. Plate-and-screw fixation has proved 
to be the most reliable and successful strategy and is 
widely used. Clinical series have demonstrated excellent 
union rates with few complications[8,21-25]. Successful 
plate fixation of these fractures allows for early return to 
function of the upper extremity. 

Gordon et al[12] reported that load to failure and 
mean stiffness values of olecranon fracture fixation was 
significantly greater with a posterior plate with long 
intramedullary screw than with dual-plated. However, 
no statistically significant increase in load to failure in 
stiffness was demonstrated when compared to posterior 
plates alone. Buijze et al[11] compared the stiffness and 
strength of locking compression plate fixation to one-
third tubular plate fixation in a cadaveric comminuted 
olecranon fracture model with a standardized osteotomy. 
Stiffness and load to failure values from those two 
studies were similar to those found in the current 
investigation (Table 3).

Our study demonstrates that the pre-contoured 
olecranon is adequate when controlling the fracture 
position against physiologically relevant forces. Bone 
mineral density affected load to failure in our model 
and should be considered when evaluating the results 
of cadaveric biomechanical studies. In addition, when 
comparing composite bones to human cadaveric bones, 
with load to failure, stiffness, and fracture gapping of 2 
mm as objective criteria, composite bones were found 
to be inferior in their mechanical properties. This latter 
finding has implications when interpreting studies which 
utilize fourth generation composite bones.

Cantilever forces were 9.40-11.91 nm (for composite 
bones) and 12.59-15.38 nm (for human cadaver bones) 
for the fracture sites which would be considerably 
greater than those experienced in normal activities after 
fracture fixation[11]. We conclude the following: (1) The 
pre-contoured plate and screw construct investigated 
in this model appears to withstand a force greater than 
the expected physiologic load in the postoperative 
prior to fracture consolidation. It appears to be a viable 
option for in vivo treatment of comminuted olecranon 
fractures; (2) Fourth generation composite bones are 
not a suitable model for olecranon fracture and plate 
stiffness testing, in a comminution model, since the 

interface stresses, at the distal extent of the plate was 
the site of failure in 5/5 tests, prior to failure loads seen 
in the cadaveric specimens; (3) Pre-contoured plate 
and screw constructs are more than adequate to control 
fracture displacement, when tested in a small cadaveric 
cohort, with pre-defined failure (fracture gapping of > 
2 mm). None of the cadaveric specimens underwent 
catastrophic failure; and (4) The current study is with 
a pre-contoured plate with locking and non-locking 
screws, to stabilize a comminuted olecranon fracture, 
whereas prior relevant literature studies utilize dual 
plates, one-third tubular plates, and plate/intramedullary 
screw constructs. Hence direct comparisons of these 
study results should be considered carefully.
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