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Abstract
Posttraumatic stress disorder (PTSD) is a common 

anxiety disorder characterised by its persistence of 
symptoms after a traumatic experience. Although some 
patients can be cured, many do not benefit enough from 
the psychological therapies or medication strategies 
used. Many researchers use animal models to learn more 
about the disorder and several models are available. The 
most-used physical stressor models are single-prolonged 
stress, restraint stress, foot shock, stress-enhanced 
fear learning, and underwater trauma. Common social 
stressors are housing instability, social instability, early-
life stress, and social defeat. Psychological models are 
not as diverse and rely on controlled exposure to the 
test animal’s natural predator. While validation of these 
models has been resolved with replicated symptoms 
using analogous stressors, translating new findings to 
human patients remains essential for their impact on 
the field. Choosing a model to experiment with can 
be challenging; this overview of what is possible with 
individual models may aid in making a decision.
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Core tip: There are currently several widely accepted 
animal models being used in fundamental posttraumatic 
stress disorder (PTSD) research, and many publications 
using them have made valuable contributions to the 
collective knowledge on the subject. Still, the difference 
between models indicates that their suitability dep
ends on the situation; each model has shown different 
amounts of success in replicating individual criteria or 
aspects of PTSD. Accordingly, the selection of the most 
suitable model for each experiment is important for 
optimally reliable results. This review offers relevant 
information to aid in that decision.
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INTRODUCTION
Anxiety disorders are a common problem world-wide. 
One of them is posttraumatic stress disorder (PTSD), 
characterised by hyper-arousal, disturbing flashbacks 
and numbing or avoidance of memories of an event[1]. 
Ultimately only a subset of people experiencing trauma 
will develop PTSD, signifying the importance of indivi
dual variation. Treatment exists, but the psychological 
behavioural therapy lacks efficacy in many patients 
and medication is often no more than a temporary 
suppression of symptoms. PTSD is listed in the DSM-5 
manual for mental disorders as a trauma or stressor-
related trauma. The 8 criteria of PTSD according to 
DSM-5, labelled A through H, are: (1) A stressor must 
initiate the syndrome and symptoms; (2) Intrusive 
symptoms must be present; (3) Subjects must display 
increased avoidance; (4) Negative changes in cognition 
and mood must be present; (5) Changes in arousal and 
reactivity must occur; (6) Displayed symptoms must be 
persistent over time; (7) Symptoms must significantly 
affect the individual’s functioning; and (8) Other factors 
that may cause the symptoms must be excluded.

Neurobiology
Despite the wide variety of symptoms found in PTSD, 
essentially all important hallmarks can be traced 
back to changes in the brain. Systematic reviews 
have analysed individual publications over the years, 
yet the causative process of PTSD remains far from 
understood. A literature study comparing findings regar­
ding the brain volumes of patients and controls found 
several significant differences: PTSD was associated 
with reduced hippocampal and bilateral anterior 
cingulate cortex (ACC) volume, and a medium effect 
size reduction. However, no significant difference in 
amygdala volume was found[2]. From these results it 
was proposed that the volume reductions in ACC under
lie the attention and emotion modulation deficits found 
in PTSD. Another study found a volume reduction in 
the cornu ammonis 3 and dentate gyrus hippocampus 
subfields[3]. Examining brain connectivity using resting 
state fMRI in PTSD patients and controls after an 
earthquake found decreased path length and increased 
clustering coefficient, global efficiency and local effi
ciency in patients. They displayed increased centrality 
in nodes involved in the default-mode and salience 
networks including posterior cingulate gyrus, precuneus, 
insular cortex, putamen, pallidum, and temporal 
regions. The study suggested that patients exhibit a 
shift towards a small-world network rather than towards 
randomisation[4].

When children with PTSD caused by sexual assault 
and controls were tested for cortisol levels [output of 
the hypothalamus-pituitary-adrenal (HPA)-axis], it 
was found that cortisol levels increased with time after 
trauma[5]. Blunted circadian cortisol oscillations are 
common in PTSD, and associated with hippocampal 
volume loss[6]. The disrupted oscillations are thought 
to be driven by reduced circadian peaks and decreased 
overall cortisol secretion[7]. This is consistent with 
animal models indicating that circadian cortisol cycling 
is needed for proper synaptic formation and pruning[8]. 
PTSD patients having experienced the 2001 World Trade 
Center attack were found to have reduced circulating 
levels of endocannabinoid 2-arachidonoylglycerol (2-AG) 
than controls. Moreover, it was found that anandamide 
(AEA), another endocannabinoid, positively correla
ted with circulating cortisol content in PTSD patients. 
These findings support the hypothesis that deficient 
endocannabinoid signalling forms a component of PTSD’s 
glucocorticoid dysregulation[9]. While it is generally ac
cepted that HPA function is altered, often assessed as 
increased cortisol suppression with the dexamethasone 
challenge, the exact relationship between PTSD and 
HPA function remains under discussion[10]. Hyper-respon
siveness of glucocorticoid receptors is also suggested 
by the increased circulating and cerebrospinal fluid 
concentrations of corticotropin releasing factor (CRF) 
neurotransmitter in PTSD patients, as well as depression 
and other mood disorders[11].

Also neurotransmitter system functions are altered 
in PTSD. For instance PTSD patients exhibit increased 
dopamine transporter density[12] and an association 
with serotonin transporter-linked polymorphic region 
(5-HTTLPR) genotype has been reported in cases of 
severe trauma exposure[13]. Furthermore, the levels of 
chief inhibitory neurotransmitter gamma-aminobutyric 
acid (GABA) are decreased significantly in the right 
anterior insula of PTSD patients, and associated with 
increased state-trait anxiety inventory psychological 
classification[14]. Glutamic acid decarboxylase (GAD65) 
is involved in memory consolidation, and consequently 
important for fear memory development[15] as an enzy
me essential for the production of GABA. Adrenergic 
receptors play an important role in stress response, 
and alpha-2B (ADR2B) receptor gene polymorphism 
was found to interact with childhood trauma in pr
edicting adult symptoms of PTSD[16]. The deletion 
variant selectively predicts enhancement of long-term 
memories induced by stress, in females at least[17]. As a 
result, (Liberzon, 2014, Interaction of the ADRB2 gene 
polymorphism with childhood trauma in predicting adult 
symptoms of PTSD) adrenergic receptors are popular 
targets for drug development. For instance, prazosin 
has been suggested to improve PFC function PTSD 
patients by blocking alpha-1 adrenoceptors[18]. Similarly, 
alpha-2 adrenergic agonist guanfacine (extended 
release, GXR) has been shown to significantly alleviate 
symptoms of PTSD in children and adolescents[19]. 
Yohimbine, another alpha-2 adrenergic agonist, is being 
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used successfully in clinical trials as an enhancer of 
exposure therapy[20]. However, a clear consensus about 
the role of neurotransmitters in PTSD does not seem to 
be available yet. 

An extremely extensive list of risk factors for PTSD 
has been found over the years, of which many fall 
within the genetics category. More recently the influ
ence on epigenetics has been established as well. Given 
that epigenetic mechanisms are considered as an 
important channel by which the environment influences 
gene expression, and PTSD is a gene × environment 
disorder, epigenetics may be even more interesting than 
genetic factors in understanding PTSD’s neurobiological 
underpinnings[21]. 

In sum, stress-based disorders obviously affect 
many different mechanisms in the brain, and more 
examples can be found whenever the effect of a new 
pathway on PTSD risk and treatment is observed. 
This forms a gradually improving model by which the 
workings and severity of the disorder can be assessed, 
as well as providing new targets for the development of 
pharmaceutical therapies.

MODELLING PTSD
PTSD-related research is performed on many levels, 
and many groups focus on fundamental aspects of the 
disorder. Using human patients to research human 
diseases is an effective way to learn. However, the 
acquisition of PTSD in humans is incidental thus rarely 
observed in real-time. Also the nature of the trauma 
is highly variable. Furthermore, inducing PTSD in heal
thy volunteers is not ethically viable. Because of these 
reasons using human subjects is less suitable to identify 
the factors that are related to brain mechanisms 
involved in (failure of) recovery after trauma exposure. 

With the human hallmarks of PTSD in mind, multiple 
research groups set out to find more practical ways 
to learn about this complex disorder. With laboratory 
animals already in use within many branches of 
science, it did not take long before several PTSD 
models were being used. Now several animal models, 
usually involving rats or mice, are used ubiquitously 
and successfully instead. What makes animal models 
for psychological disorders like PTSD useful is disease 
symptoms and the underlying cause can be introduced 
- with individual differences - to animal populations 
large enough to grant statistical reliability. Relevant 
fundamental understanding can be generated in animals 
and be translated to human subjects for validation and 
implementation in treatment design. The consensus of 
what is known in humans has to be linked to animal 
studies continuously, in order to make sense of findings 
in animal models. Before animal models can be used 
for this, however, there must be convincing evidence for 
the model’s validity.

Face, construct and predictive validity
As the high number of separate symptoms that PTSD 

can cause indicates, the disorder is extremely variable 
among patients. Since it originates in the brain, 
arguably the most complex part of the (human) body, 
the diversity of aspects found in PTSD is far from easy 
to recreate in models. This is an important reason for 
many scientists to look for a select group of symptoms. 
All models are expected to display phenomenological 
resemblance, critical aspects of PTSD symptoms (face 
validity), causality or theoretical explanatory basis 
(construct validity) and a response to treatment similar 
to what is seen in humans (predictive validity). Since 
the human response to trauma is strongly dependent 
on a variety of risk factors and interpersonal variation, 
models that focus too much on exposure alone tend to 
miss an important part of the disorder. Good models 
should inherently display similar variation in response in 
a predictable way, not only depending on the strength 
of the inflicted stress. Determining the vital criteria 
and what is clinically relevant for a valid model is what 
makes this process so challenging. 

Face validity is often tested using a variety of 
classical behavioural experiments. These include the 
plus maze, open field and startle response tests mainly 
for the assessment of anxiety. Construct and predictive 
validity are usually judged by following up on stress 
with measurements of hormone or drug responses, 
(endocrine) stress response, neurological changes 
and comorbidity[22]. Several animal models have been 
developed to meet these requirements and mimic 
PTSD over the years, hoping to cover all the symptoms 
with face, construct and predictive validity. While it is 
practically impossible to recreate all features of a human 
psychiatric disorder in small animals with limited mental 
capacity, numerous models have been successful in 
reproducing key features. These validated models for 
PTSD are now being used to extrapolate knowledge to 
aid in finding a personalised treatment for humans.

Yehuda and Antelman’s criteria for rationally evaluating 
PTSD animal models
Before the current availability of several valid animal 
models, there were no systematic approaches for 
evaluating stress models for their relevance to PTSD. 
Yehuda and Antelman[23] devised a list for this purpose 
in 1993, which remains a useful way to compare diffe
rent stressors. According to this list, at least 5 different 
criteria can be used to grade how comparable a model 
is to PTSD: (1) Even very brief stressors should induce 
biological or behavioural symptoms of PTSD; (2) The 
stressor should be capable of producing symptoms in 
a dose-dependent manner; (3) Produced biological 
alterations should persist or become more pronounced 
over time; (4) Alterations should have potential for 
bidirectional expression of biobehavioural changes; and 
(5) Interindividual variability in response is present as 
function of experience and/or genetics.

While this list was originally created to assess stress 
models for the use in PTSD research, it may now be 
equally useful for the comparison of existing models for 
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rods[35]. This shock-based strategy usually couples the 
aversive electrical stimulus to non-harmful factors, 
according to the classical fear conditioning procedure. 
Auditory cues are often used together with shocks in 
order to elicit post-shock fear recall using only sound[36]. 
The environment in which the shocks are delivered 
also tends to get associated with a fear response, by 
using a contextual difference between this setup and 
a place considered safe such as the animal’s home 
cage[37]. Models based on this principle regularly in
clude tests for fear extinction, which is impaired in 
PTSD[38] and of a large part of non-pharmaceutical 
PTSD treatment such as exposure therapy[39]. Rodents 
exposed to this procedure display reduced locomotion 
in new environments and reliable conditioned fear 
responses when confronted with cues associated with 
the shocks[40]. Repeated footshock exposure increases 
anxiety-like behaviour in the elevated plus maze test[41]. 
Returning the animals to the shock context weekly 
was found to increase their acoustic startle response, 
indicative of hyperarousal[42]. Reduced baseline cortisol 
levels and enhanced negative HPA feedback are PTSD 
hallmarks[43] not reflected reliably in inescapable 
shock models, where the expected HPA change was 
only found in female rats[44]. The FS model remains 
useful in researching individual differences in recovery 
from traumatic fear, modelling the variation in human 
susceptibility to PTSD[45]. Other risk factors such as 
variation in 5-HTTLPR in humans, that affects the preva
lence of several anxiety disorders including PTSD, can 
be assessed in this model as well[46-48]. 5-HTT knock-
out rats, displaying increased freezing and impaired fear 
extinction[49-51] or fear extinction recall[52-54], have been 
used as model for the more PTSD-susceptible 5-HTTLPR 
genotype. The polymorphism results in differences 
in serotonin regulation that play an important role in 
anxiety disorders. 

Stress-enhanced fear learning: Stress-enhanced 
fear learning (SEFL) relies on electrical shocks as well, 
utilising a single shock in a second environment (day 2) 
24 h after unpredictable shocks on day 1, vs a control 
group that did not receive shocks on either day. Before 
any shocks are given in the second context on day 2, the 
animals’ freezing is assessed as a measure of learned 
fear. On day 3 this is repeated once more in context 
2 to evaluate fear memory[55]. Subsequent shocks 
were shown to improve the resulting fear response 
lasting several months[56]. Even mild stressors can be 
used to generate learned fear, and the strength of the 
sensitising shock affects the extent of sensitisation[57]. 
Mice subjected to the SEFL model show several PTSD-
like symptoms including hypervigilance, insomnia, 
impaired attention and risk assessment and attenuated 
corticosterone levels. This behaviour is mediated by CRF 
receptors in the stria terminalis, where upregulation of 
CRF receptor type 2 mRNA corresponded with PTSD-
like behaviour, and lentiviral knockdown reduced su
sceptibility to the symptoms[58]. Overexpression of 

replicating specific aspects of PTSD.

STRESSORS IN ANIMAL MODELS
Several animal models have been developed over the 
years. Due to the variety of methods used in these 
models to mimic PTSD-inducing trauma, it is useful 
to divide them into physical, psychological and social 
stressors.

Physical stressors
Physical stressors are relatively basic strategies that use 
aversive stimuli to directly stress subjects, comparable 
to the near-death experiences or accidents such as 
those experienced by the soldiers that make up a large 
part of PTSD patients. 

Single-prolonged stress: The single-prolonged stress 
(SPS) model is mainly rat-based, and set up around 
the development of PTSD resulting from one traumatic 
experience. The standard paradigm restrains rats for 2 h, 
subsequently subjecting them to 20 min forced swim 
and 15 min later to ether until unconsciousness. Failure 
to retain extinction memory, which is often observed in 
PTSD[24] has been reproduced with the SPS model[25]. 
The model also found increased fast negative feedback 
of the HPA-axis[26,27], mimicking the neuroendocrine 
indicator of PTSD[28]. SPS animals display reduced hip
pocampal synaptic plasticity which may be linked to 
decreased hippocampal function in PTSD, as well as 
increased acoustic startle[29], which may signify the 
psychological hyperarousal that is considered to be 
an important attribute of PTSD as one of the DSM-5 
criteria[30]. Fear extinction was found to be linked to 
increased expression of glucocorticoid receptors in the 
hippocampus and prefrontal cortex[31].

Restraint stress: Besides the restraint stress (RS) 
often used as part of the SPS procedure, restraint by 
itself is also used to generate PTSD-like anxiety in the 
RS model. Animals generally either have their head 
and limbs attached to a wooden board or are placed 
in a plastic restraint device, for a duration between 15 
min and 2 h at a time[32]. Afterwards immobility is often 
assessed using the forced swim test[26], a combination 
that has shown sensitisation to the latter forced swim 
stressor following the time-dependent sensitisation 
or stress-restress model. Studies using this model 
demonstrated increased negative HPA feedback similar 
to that observed in PTSD[23]. Acute and chronic restraint 
both generate significantly increased behavioural 
anxiety and nociception[33], but the effects of chronic 
restraint stress can be protected against by stimulating 
alpha-2A adrenoceptors with guanfacine[34]. 

Foot shock: Some groups use electrical shocks as a 
stressor. Although shocks can be given through the 
animal’s tail, the most common choice in the footshock 
stress (FS) model is by the use of a floor of metal 

390 December 22, 2015|Volume 5|Issue 4|WJP|www.wjgnet.com

Borghans B et al . Animal models for PTSD



this receptor improves PTSD-like symptoms in rats as 
well[59]. 

Underwater trauma: Underwater trauma (UT), not 
to be confused with the forced swim test, induces trau
matic stress by placing animals in water that is too deep 
to stand, leading to 30 s of forced swimming before 
submerging the subjects for 30 s[60]. The procedure 
has been proven to significantly increase anxiety-like 
behaviour in rats[61], and reminders of UT trigger several 
memory-related changes in rats’ dentate gyrus[62] as 
well as the amygdala and hippocampus[63].

Social stressors
Instead of relying on direct aversive stimuli, social 
stressors make use of the natural social behaviour of 
animals. Since humans are responsive to traumatic 
social experiences and have been known to develop 
PTSD in instances such as rape and (childhood) abuse, 
it makes sense that the same is true for other species. 

Housing instability: The housing instability (HI) model 
pairs individual animals with different cage cohorts 
frequently, for instance each day[64]. This model makes 
sense considering PTSD is affected by HI of patients[65,66]. 
Animals subjected to this model are often first exposed 
to cats, following the predator-based psychosocial stress 
(PPS) model. After this combined procedure, mice 
displayed impaired acclimation to new environments[67]. 
Effects found in rats are increased corticosterone 
suppression and lowered baseline levels (as assessed 
by dexamethasone suppression test) indicative of HPA 
dysfunction, as well as increased freezing to stressor 
context and heightened elevated plus maze anxiety[68]. 

Social instability: Just like the random cage cohort HI 
model, PTSD-like symptoms can be created using social 
isolation (SI). Isolation for at least 1 d in adult mice 
leads to more contextual freezing and impaired fear 
extinction during FS-like fear conditioning[69]. Overlap 
with the prior HI model was found in the form of incr
eased anxiety and HPA changes, although the latter is 
formed by impaired suppression and higher baseline 
levels of corticosterone in the SI model[70]. GAD65 
haplodeficiency was found to grant stress resilience to 
mice, most likely through the maturation of GABAergic 
transmission[71].

Early life stress: Early life stress (ELS) plays an impo
rtant role in the development of PTSD during adulthood. 
Inducing social instability through maternal isolation 
of rats generates similar results as the SI model on 
adult animals[72]. Traumatising events experienced by 
children were found to influence the chance to develop 
PTSD-like symptoms later in life, as well as their 
complexity[73]. Maternal separation of animals mimics 
childhood trauma by separating mother and pups for 
1 or several hours, usually from postnatal day 2 to 14. 

Studies using this strategy found sex dependency in 
acoustic startle response, anxiety-like behaviour and 
HPA function[74]. Both male and female adults display 
increased anxiety[75], but studies regarding hyperarousal 
find conflicting evidence, possibly due to the use of 
different ways to test arousal[76]. When ELS is followed 
by other stress models once subjected animals are 
adult, it increases the response to another stressor. SPS 
after ELS through maternal separation leads to increased 
contextual freezing and anxiety-like behaviour[72].

Social defeat: In the social defeat (SD) model, 
subjects are exposed to and suppressed by a single 
aggressor animal[77,78]. Suppressed animals can be 
categorised as either susceptible or resilient, and while 
both express anxiety-like behaviour, only the susceptible 
population shows increased avoidance[79]. Susceptible 
animals display blunted corticosterone levels, while 
the resilient group increased concentrations 39 d after 
the stressor[80]. SD is regularly used for bidirectional 
behavioural symptoms, and suitable for examining the 
neurobiological mechanisms of PTSD[76].

Psychological stressors
While both physical and social stressors generate 
PTSD-like responses by using potent stimuli, most of 
the involved models that rely on population averages 
do not take into account that humans display varied 
vulnerability to trauma, individuals being susceptible 
or resilient to the development of PTSD. This aspect is 
better reproduced with psychological stressors, which 
generally make use of the instinctual response to natural 
predators.

PPS: PPS model relies on a lack of control during 
threats, disruptive reminders of stressful experiences 
and limited social interaction that are also features 
of human PTSD[81-83]. The PPS model periodically 
immobilises rodents, followed by confrontations with 
a predator they naturally fear, and chronic social 
instability over an extended period of time[84]. This 
procedure causes increased anxiety, impaired cognition, 
cardiovascular reactivity and startle response, as well 
as an exaggerated response to yohimbine similar to 
that of human PTSD patients[64]. The idea that epig
enetic DNA modification plays a fundamental role in 
anxiety disorders such as PTSD has been around for 
a while, and long-term traumatic memory expression 
is considered to be important in this process[85]. The 
brain-derived neurotrophic factor gene has been found 
to be selectively methylated in the hippocampus of 
rats that underwent the PPS paradigm, which supports 
the theory that traumatic stress causes (epigenetic) 
changes in brain regions regulating cognition and stress 
regulation. The PPS model also mimics the reduction of 
basal glucocorticoids found in humans[68,86]. PPS models 
are also used to predict responsiveness to new drugs 
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for PTSD. A study found that post-trauma treatment, 
with several therapeutics, prevented the development of 
PTSD-like symptoms in PPS rats[87]. 

Predator scent stress: Predator scent stress (PSS) is a 
model suitable for recreating the variation that humans 
display in responding to trauma, inducing a stressor by 
confronting animals with the scent of one of their natural 
predators. It is more practical than the previously 
mentioned PPS in that it removes the need for actual 
predator exposure, and instead suffices with functional 
cues. For instance, rats can be brought into contact 
with used cat litter for 10 min, with the control group 
exposed to clean cat litter only[88]. Just like the part of 
humans that are susceptible to permanent psychological 
trauma, rats in the PSS model can be grouped in 
ranks of sensitivity. Using elevated plus maze, acoustic 
startle and freezing to cues it was determined that 
only 25% of subjected animals developed PTSD-like 
behavioural changes, 25% responding minimally and 
50% intermediately[89]. The results found using the 
PSS model show a genotype dependency also seen in 
human PTSD[90]. The involvement of cytoarchitectural 
changes in rats’ amygdala and hippocampus has also 
been demonstrated on behavioural disruption following 
PSS[91].

CONCLUSION
Animal models are a widely used method to research 
PTSD without the need for actual victims. Any finding 
in a model provides a prediction for humans, giving 
scientists a valuable idea of what to expect mechanis
tically and in treatment response. When looking at the 
validity of the listed animal models, one finds that they 
all display enough symptoms of PTSD to have face 
validity. Since all stressors work at least roughly via the 
same fear pathways as PTSD-inducing traumas, it is not 
hard for them to meet the construct validity criterion. 
Predictive validity, however, is best considered for each 
individual discovery, because the symptoms of PTSD and 
individual human responses are too diverse to be judged 
for each model as a whole. Accordingly, the DSM-5 
criteria for PTSD can be used to list the (behavioural) 
effect of the symptoms that individual animal models 
reproduce (Table 1). 

The fact that all of the listed models are currently 
being used already indicates they display a decent 
amount of validity, their relevance for PTSD determined 
by replication of symptoms via comparable stress mech
anisms. A number of DSM-5 criteria for PTSD have to 
be met for any animal model in order to qualify, criterion 
A, B, G and H. The remaining criteria show that not all 
models have been proven to mimic all symptoms of 
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Animal model for PTSD DSM-5 criteria1

Single-prolonged stress A, B, C, D, E, F, G, H
Restraint stress A, B, C, D, E, F, G, H
Foot shock A, B, C, E, F, G, H
Stress-enhanced fear learning A, B, C, E, F, G, H
Underwater trauma A, B, E, F, G, H
Predator-based psychosocial stress/predator scent stress A, B, C, D, E, F, G, H
Housing instability A, B, E, G, H
Social instability A, B, E, F, G, H
Early life stress A, B, C, D, E, F, G, H
Social defeat A, B, C, E, F, G, H

Table 1  A list of posttraumatic stress disorder animal models and the separate criteria according to 
DSM-5 that each model has been reported to meet (according to PubMed literature search, individual 
references not listed)

1The listed criteria are: Presence of a stressor (A), intrusive symptoms (B), avoidance (C), negative changes in cognition and 
mood (D), changes in arousal and reactivity (E), persistence of symptoms (F), functional significance (G) and exclusion of 
other factors that may cause the displayed symptoms (H). PTSD: Posttraumatic stress disorder.

Criterion Most suitable models per criterion1

Even brief stressors induce biological/behavioural effects All models are comparably suitable
Intensity-dependent responses FS, SEFL, RS, PPS/PSS
Persistence of alterations over time All except HI
Bi-directional expression of behavioural changes SPS, SD
Reliable production of interindividual variability FS, PPS/PSS, SD

Table 2  A comparison of animal models based on Yehuda and Antelman’s criteria and available 
publications

1The animal models listed here are: Foot shock (FS), stress-enhanced fear learning (SEFL), restraint stress (RS), predator-based 
psychosocial stress (PPS)/predator scent stress (PSS), housing instability (HI), single-prolonged stress (SPS) and social defeat 
(SD).
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PTSD. However, since different animal models are not 
only used to experiment with all or the same symptoms, 
it remains useful to judge individual models based on 
what they excel at. While individual symptoms are 
effectively assessed using DSM-5 criteria, Yehuda and 
Antelman provide a more suitable way to compare 
different stressors (Table 2).

The amount of publications of each model is mainly 
a measure for its popularity among researchers but also 
implies reliability, offering further proof that the model 
grants viable results. This does not automatically mean 
that less ubiquitous ones are worse, and new models 
can still prove better than the current ones. A model not 
meeting one of the DSM-5 criteria for PTSD does not 
necessarily mean it cannot be met, but rather has not 
yet been proven sufficiently. It should not be forgotten 
that new experiments and knowledge may work best 
with new models instead of those that are known now, 
and obtaining the optimal reflection of the human 
disorder is only achieved when the findings of all models 
are combined. Consequently, translation of individual 
discoveries in animal models to human patients must 
be fulfilled in order to maximise the practical impact on 
the field.
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