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Abstract
Liver transplantation has become the treatment of 

choice for acute or chronic liver disease. Because the 
liver acts as an innate immunity-dominant organ, there 
are immunological differences between the liver and 
other organs. The specific features of hepatic natural 
killer (NK), NKT and Kupffer cells and their role in the 
mechanism of liver transplant rejection, tolerance and 
hepatic ischemia-reperfusion injury are discussed in this 
review.
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Core tip: Liver transplantation has become the treatment 
of choice for acute or chronic liver disease. There are 
immunological differences between the liver and other 
organs. The specific features of selected hepatic immune 
cells, such as natural killer (NK), NKT and Kupffer cells, 
and their role in the mechanism of liver transplant 
rejection, tolerance and hepatic ischemia-reperfusion 
injury are discussed in this review.
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INTRODUCTION
Previous studies have intensively investigated immuno­
logical processes after liver transplantation. Ischemia-
reperfusion injury and graft rejection are two major 
causes for poor outcomes following liver transplantation. 
Both processes are triggered and maintained by 
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immune cells. The specific features of hepatic natural 
killer (NK), NKT and Kupffer cells and their role in the 
mechanism of liver transplant rejection and hepatic 
ischemia-reperfusion injury based on the current 
literature are discussed in this review.

LIVER TRANSPLANTATION AND 
IMMUNOLOGICAL PROCESSES
During the last 50 years liver transplantation has 
become the treatment of choice for acute or chronic 
liver disease[1]. The main indications for liver trans­
plantations are primary liver tumors, chronic viral 
hepatitis, alcohol-related cirrhosis, chronic cholestatic 
liver disease, autoimmune hepatitis, vascular and 
metabolic disorders[2,3]. With an overall 5-year sur­
vival of approximately 70%, the life expectancy of 
liver transplant recipients is lower than the general 
population[4,5]. In addition to de novo malignancies, 
infections, cardiovascular or renal disease, ischemia-
reperfusion-injury of the liver graft and graft rejection 
are important immunological processes responsible 
for long-term graft and patient survival after liver 
transplantation.

The liver acts as an innate immunity-dominant 
organ, therefore, hepatic immune cells provide the 
first line of defense against pathogens, infections or 
tumors[6]. In addition to NK cells, macrophages (Kupffer 
cells), NKT cells and γδT cells, there are a large number 
of innate immune cells within the liver[7,8]. In humans, 
NK cells are the most abundant lymphocyte population 
in the liver[9]. 

Two specific and immunologically important pro­
cesses occur after liver transplantation: (1) donor liver-
resident cells enter the blood flow of the recipient; and 
(2) recipient immune cells invade the donor graft. This 
phenomenon occurs early after transplantation[10-12]. 
It has been shown, that after liver transplantation, 
donor specific liver NK cells are detectable in the 
recipients’ circulation up to two weeks after liver 
transplantation[1,12]. The liver has been described as 
an immunotolerant organ[6,13]. This immunotolerance 
is believed to be responsible for the lower levels of 
immunosuppressive drugs needed and the lower 
rate of allograft rejection after liver transplantation 
compared to other solid organ transplantations[1,14]. This 
is reflected by the withdrawal of immunosuppression, 
in some cases, after liver transplantation, and the aim 
to wean patients from immunosuppressive drugs as 
soon as possible[1,15]. In addition, it has been shown that 
hepatic grafts might facilitate the acceptance or reverse 
the rejection of other transplanted grafts, e.g., heart or 
kidney after liver transplantation[16]. 

MECHANISM OF GRAFT REJECTION
Acute graft rejection is a combined response of the 

adaptive (cellular immunity) and humoral immune 
system (secreted antibodies by activated B cells) 
in combination with the innate immune system 
(phagocytosis). Furthermore, early organ rejection can 
be distinguished from late organ rejection. Wiesner et 
al[17] suggested the following risk factors: lower recipient 
age, cold ischemia duration longer than 15 h, donor 
age and fewer human leukocyte antigen (HLA)-DR 
matches. T cells were believed to be solely responsible 
for graft rejection. However, there is increasing evidence 
that other cells of the adaptive immune system, such 
as NK cells, are also responsible and interact with T 
cells during graft rejection[1,18,19]. In contrast to other 
solid organ transplantations, HLA cross-matching is 
not routinely performed prior to liver transplantation 
despite recent studies suggesting HLA markers, such as 
killer cell immunoglobulin-like receptors, influence the 
outcome of liver grafts[20-22]. To date, clinical experience, 
analysis of immunosuppressive drug levels, serum liver 
enzymes and histological assessment have been used 
as markers to diagnose graft rejection[23]. During acute 
graft rejection, mononuclear cells infiltrate the portal 
tract and the accumulation of activated lymphocytes 
leads to the secretion of chemokines and cytokines and 
subsequently, liver tissue injury[24]. Furthermore, bile 
duct injuries and venous endotheliitis are histological 
features for the diagnosis of graft rejection[25]. 
Although the exact chemotactic triggers are still under 
investigation, it is postulated that for NK cells, CCL3 
leads to NK cell migration to the site of liver injury[26-28]. 

MECHANISMS OF HEPATIC ISCHEMIA-
REPERFUSION INJURY
During organ donation and transplantation, the liver 
undergoes trauma due to cold and non-perfused 
storage, warm ischemia and finally, engraftment. 
During ischemia-reperfusion liver injury, one important 
issue is organ preservation, which is initially trig­
gered by endothelial cell injury and causes an acute 
inflammatory response that involves Kupffer cells, 
hepatocytes and hepatic stellate cells[29]. Furthermore, 
cell death is caused by oxidative stress, which leads to 
increased microcirculatory disturbances, cell dysfunction 
and inflammation[30,31]. To avoid organ damage due to 
organ preservation, several modifications have been 
investigated, such as perfusion solutions[32-34], use of 
antioxidants[35], vasodilators[36,37], hydrogen gas[38], 
or ex-vivo liver perfusion systems[39-41]. Ischemia-
reperfusion injury is crucial for initial and long-term 
organ function[42]. Hepatic ischemia-reperfusion injury 
is associated with an inflammatory response, which 
leads to liver tissue injury, the release of reactive 
oxygen species (ROS), the induction of adhesion 
molecules, the secretion of cytokines and the activation 
of leukocytes[43]. In addition, several immune cells, such 
as T cells, B cells, NK cells, NKT cells, and Kupffer cells, 
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are involved in hepatic ischemia-reperfusion injury[44-51], 
which affect liver-specific cells, such as sinusoidal 
endothelial cells and hepatocytes[52]. During cell injury 
and necrosis, danger-associated molecular patterns 
(DAMP) and, subsequently, pathogen-associated 
molecular patterns (PAMP) are released and trigger 
an immune response[53,54]. Tissue ischemia leads to 
mitochondrial dysfunction, ATP depletion, and ionic 
changes within the cells, which promotes further cell 
damage and organ dysfunction (Figure 1)[52].

HEPATIC NK CELLS
There is growing evidence that peripheral NK cells 
differ from hepatic NK cells with regard to function and 
differentiation; however, the exact mechanism of NK 
cell differentiation and maturation in the liver is not 
completely understood.

NK cells are the major lymphocyte population 
in the human liver and make up to 50% of the lym­
phocyte population. During liver disease, the number 
of NK cells in the liver changes possibly due to in­
creased recruitment of NK cells to the liver[9,55]. A 
diverse range of receptors expressed on the surface of 
NK cells allows them to recognize and rapidly respond 
to damaged or stressed cells. Furthermore, NK cells 
coordinate early events in the innate immune response 
to injury by rapidly producing cytokines and controlling 
cytotoxic activity.

Human NK cells in the blood can be distinguished 
from other T cells by the absence of CD3 and the 
presence of CD56[56,57]. Furthermore, NK cells in the 
blood can be further differentiated into two major 
subsets: CD3-CD56dimCD16+CD27- (cytotoxic activity) 

and CD3-CD56brightCD16-CD27+ (cytokine producing)[6]. 
Bone marrow-derived NK precursor cells undergo a 
complex maturation process, which determines their 
function and the expression of chemokine receptors 
and adhesion molecules[6,58-60]. This determination 
is organ specific[6,61]. Because NK cells recirculate 
between different organs, the maturation process is 
dynamic and not stationary[58]. Adoptively transferred 
splenic NK cells change their phenotypic and func­
tional markers after migrating to the liver, which 
suggests a modification of NK cells due to the hepatic 
microenvironment[62]. In contrast to peripheral NK 
cells, hepatic NK cells lack CD16[63,64], express higher 
numbers of granules, and express higher levels of 
TRAIL, perforin, and granzyme B[65]. 

NK cells can potentially lyse dividing hepatocytes 
and/or other immune cells within the liver that contribute 
to the cytokine and chemokine microenvironment during 
regeneration and liver injury[66,67]. NK cells actively 
eliminate susceptible targets through multiple, non-
redundant mechanisms and recruit and amplify the 
inflammatory response[68]. Because NK cells are closely 
linked to other immune cells, they are associated with 
Kupffer cells in the liver sinusoids, which suggests a 
complex interaction between these two cell types that 
involves cytokine and chemokine secretion[69,70].

HEPATIC NATURAL KILLER T CELLS
Natural killer T (NKT) cells are a subset of regulatory 
T lymphocytes[71]. In contrast to NK cells, NKT cells 
are found less frequently in the liver[60], and their 
ultrastructure contains a low nuclear:cytoplasmic 
ratio and dense granules compared to NK cells[72]. 
Therefore, NKT cells are less mature and have only 
a few organelles and mitochondria and short profiles 
of the rough endoplasmic reticulum[72]. Compared to 
NK cells, the granules of NKT contain perforin, but 
are smaller in size and less frequently observed using 
electron microscopy[73,74]. Interestingly, NKT cells have 
comparable functions with T cells, and NK cells and 
are able to secrete large amounts of cytokines[72]. 
Similar to other immune cells, NKT cells are located 
within the liver sinusoids and are responsible for killing 
tumor cells, secretion of cytokines and elimination 
of toxins and pathogens[60,75]. In addition, activated 
NKT cells are important for inducing liver injury[76-78]. 
In contrast to NK cells, the number of NKT cells 
decreases during various experimental models, such 
as in leptin-deficient mice[79], bacterial liver injury[80], 
hepatotoxic liver injury[81,82], liver steatosis[83,84], and 
Concanavalin A-induced liver injury[85]. However, 
following liver transplantation[24], hepatic ischemia-
reperfusion injury[43,44], liver resection[86-89] or stress[90], 
the number of hepatic NKT cells increase. This 
change in cell number has been postulated to be 
due to activation-induced cell death, loss of specific 
NKT cell surface markers[26,76,91,92], apoptosis[93] or 
sympathetic activation[89]. Flow cytometry analysis 
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Figure 1  Simplified overview of the role of Kupffer cells, natural killer and 
natural killer T cells, including the humoral and cellular factors, involved 
in hepatocyte dysfunction and injury during hepatic ischemia-reperfusion 
injury. DAMPs: Damage associated molecular pattern; PAMPs: Pathogen-
associated molecular pattern; ROS: Reactive oxygen species; TNF: Tumor 
necrosis factor; IFN: Interferon; iNOS: Inducible nitric oxide synthase; SEC: 
Sinusoidal endothelial cells.
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RAG2/common gamma null mice (lacking T, B and NK 
cells) revealed the specific role of NK cells during IRI 
and showed that the expression of TRAIL on NK cells 
is protective in a murine model of hepatic IRI[47]. In 
another study, the effect of CD39, an ectonucleotidase 
hydrolyzing extracellular nucleotides, on NK cells 
was investigated and revealed that NK cells have an 
important influence on the extent of hepatic IRI. This 
effect was based on the modulation in IFN secretion, 
which was regulated by pericellular ATP levels and 
purinergic responses[48]. Furthermore, it is postulated 
that liver resident NK cells are responsible for the 
innate immune response in the early phase of IRI 
through self/non-self-recognition[49]. 

There are two types of NKT cells that have opposing 
roles during IRI to promote or protect against liver 
injury[50]. During the early phase of IRI, NKT cells are 
promptly activated and release IFN[50]. This activation 
is mediated by the interaction of CD1d antigen-
presenting molecules, which are expressed on antigen-
presenting cells in the liver and on hepatocytes 
containing self or foreign glycolipid antigens[43,111]. NKT 
cells are then able to damage hepatocytes directly or 
through the secretion of IFN, which in turn activates 
Kupffer cells, neutrophils and hepatocytes[43,111]. 
Knockout models with reduced NKT activity result 
in significantly reduced IRI[43,44,111]. In addition, the 
recruitment of NK cells into the liver during IRI is 
dependent on the presence and activation of NKT 
cells[50]. 

Hepatic hypoxia electron microscopy analysis 
revealed morphological changes in Kupffer cells that 
reflected cell activation[112] and a release of cytokines 
and inflammatory mediators to attract neutrophils and 
produce reactive oxygen species[113,114]. This activation 
is triggered by endogenous damage-associated and/or 
pathogen-associated molecular pattern (DAMP/PAMP) 
molecules, which are generated during cellular stress 
or cellular injury[42]. During IRI, TLR4 on Kupffer cells is 
activated, which leads to hepatic injury[115]. Activation 
of TLR4 enhances TNF secretion probably through 
an antigen independent pathway[115,116] and is further 
associated with hepatocyte apoptosis[117,118], CD4+ 
T cell recruitment to the liver[119], and the release of 
endothelin-1, which results in circulatory disturbance 
and increased liver injury[120,121]. Activation of the 
complement system is present during IRI[122] and 
responsible for Kupffer cell-induced oxidant stress, the 
formation of reactive oxygen species and continuous 
neutrophil recruitment to the ischemic liver[123]. 
Furthermore, inducible nitric oxide synthase (iNOS), 
which is produced by Kupffer cells and neutrophils 
early during hepatic IRI, leads to reduced capillary 
perfusion, increased liver injury and mortality[124,125]. 
Activated Kupffer cells enhance alterations in hepatic 
microcirculation during IRI through the activation and 
production of oxygen free radicals[126], TNF, MIP-2 and 
keratinocyte chemoattractant chemokine, which leads 
to increased liver injury[127,128].

of hepatic NKT cells shows that they are mostly CD4-

CD8- or CD4+CD8-[94] and express the NK cell receptor-
CD161 and the invariant TCR-alpha chain[95]. NKT 
cells express IL-12 receptors and secret and produce 
perforin and interferon (IFN)[96] after stimulation, 
which are key mediators of cytotoxicity, inhibition of 
tumor angiogenesis and immune cell activation[97,98]. 
Furthermore, NKT cells produce anti-inflammatory 
and anti-tumorigenic cytokines such as IL-13 and 
IL-4[99-101].

KUPFFER CELLS
In 1876, von Kupffer first identified liver resident 
macrophages[102]. These macrophages are colocalized 
with sinusoidal endothelial cells, Ito cells, and pit 
cells in the hepatic sinusoids[103]. Kupffer cells are 
abundant in the liver and make up more than 50% 
of all resident macrophages in the human body and 
15% of all hepatic cells[104,105]. Depending on their 
location within the liver, the function, morphology 
and number of Kupffer cells changes[103,106,107]. 
Interestingly, the intensity of immunohistochemical 
markers for Kupffer cells is heterogeneous. In general, 
the intensity of these markers decreases as the size 
of Kupffer cells decreases, which reflects a more 
immature phenotype that involves more scavenging 
and less inflammatory functions[103,107]. The main 
function of hepatic macrophages is to clear the portal 
circulation from foreign materials and pathogens using 
phagocytosis[103,108]. During this process, Kupffer cells 
release pro-inflammatory cytokines such as IL-1, IL-6, 
IL-12, IL-18, TNF and IFN[109].

SPECIFIC FUNCTION OF IMMUNE CELLS 
IN HEPATIC ISCHEMIA-REPERFUSION
Ischemia-reperfusion injury (IRI) significantly contri­
butes to graft dysfunction after liver transplantation[110]. 
Ischemia during the early phase of IRI leads to cell 
necrosis, which is associated with a release of danger 
signals that activate innate immune cells through 
signaling of TLR4, RAGE and TLR9 on Kupffer cells 
and through signaling of the CD154-CD40 pathway on 
neutrophils and CD4 Th1 effector T cells[42]. This immune 
activation is further increased through the release of IFN 
from T cells, NKT and NK cells, which are stimulated by 
CD1d and CD39. Pro- and anti-inflammatory mediators 
further activate and recruit immune cells, which 
promotes or inhibits local inflammation[42]. 

NK cells express tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL), which is a potent 
inducer of hepatocyte cell death. In an experimental 
study, the effect of TRAIL expression on NK cells 
during hepatic IRI was investigated and showed that 
mice lacking TRAIL exhibited significantly higher liver 
injury, signs of necrosis, and neutrophil infiltration[47]. 
The adoptive transfer of NK cells into immunodeficient 
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NK CELLS, NKT CELLS AND KUPFFER 
CELLS DURING GRAFT REJECTION AND 
TOLERANCE INDUCTION
It is postulated that the rejection of solid organ grafts is 
mainly mediated by allospecific T lymphocytes. These 
T lymphocytes recognize foreign MHC molecules that 
are located on donor tissue cells[18,19]. However, it has 
been shown, that the depletion of CD8+ T cells does 
not prevent graft rejection and an alternative pathway 
of organ rejection has been postulated[129,130]. Several 
studies using different experimental transplantation 
models have investigated the role of NK cells dur­
ing graft rejection and demonstrated NK cell graft 
infiltration[131-135]. Additionally, it has been shown 
that recipient-derived NK cells are located in the liver 
graft and produce IFN after liver transplantation[24]. 
The depletion of NK cells or the decrease in IFN 
production leads to increased graft survival, therefore, 
NK cells are for graft rejection and survival[24]. IFN, 
an immunoregulatory cytokine that is one of the 
main cytokines secreted of NK cells, has been shown 
to be important during both allograft rejection[136-138] 
and tolerance induction[139]. Studies investigating 
immunosuppression withdrawal demonstrated that NK 
cells play a role in tolerance induction[140]. In addition, 
13 genes that are highly expressed in NK cells, were 
found to be present in liver transplant recipients with 
graft tolerance, which further confirms that NK cells 
are involved in tolerance induction[141]. Although this 
conflicting role of NK cells is still not fully understood, 
it might explain why donor NK cells are responsible 
for tolerance and recipient NK cells are responsible 
for rejection[1]. In addition to cytokines, chemokines, 
such as CCL2, CCL3, CX3CL1 or CXCL10, attract and 
activate NK cells. Some of these chemokines are 
already present in the transplanted graft before NK 
cell infiltration is detectable[142]. Specific analysis of NK 
cells in the rejected liver graft revealed that these NK 
cells produce high amounts of cytokines, granzyme B 
and highly express FasL[135]. 

NKT cells are believed to be responsible for 
tolerance induction[71]. Because activated NKT cells 
release pro- and anti-inflammatory cytokines, they 
have different functions in immune response[143-145]. 
It has been further shown, that specific Vα14 NKT 
cells are responsible for the development of tolerance 
towards transplanted antigens[145]. 

As stated above, the main function of Kupffer cells 
is to kill and engulf microorganisms and pathogens, 
secrete cytokines and effect antigen presentation[146,147]. 
Additionally, it has been shown, that Kupffer cells are 
able to induce T cell apoptosis and therefore play an 
important role during graft tolerance[148]. After liver 
transplantation Kupffer cells act as antigen-presenting 
cells by increasing the expression of MHC class II[149,150] 
and identifying and interacting with recipient T cells 
migrating to the liver, which leads to T cell apoptosis 

through the Fas/FasL pathway[109]. In a study in rats, 
pretreatment of the recipients with Kupffer cells 
before liver transplantation lead to decreased liver 
injury, reduced cytokine levels and reduced apoptosis. 
The authors concluded that this lead to increased 
immune tolerance and improved graft survival[148]. As 
mentioned above, Kupffer cells secret varying amounts 
of cytokines, such as TNF, which in high levels can 
lead to hepatocyte apoptosis but in physiological 
levels is associated with a resistance of hepatocytes to 
apoptosis[151]. Therefore, further studies are necessary 
to elucidate the contrasting roles of Kupffer cells in 
the induction of immune tolerance following liver 
transplantation. 

CONCLUSION
Several specific immune reactions that involve NK, 
NKT and Kupffer cells are responsible for the short- 
and long-term outcomes of liver transplantation. This 
review demonstrates that many immune cells and 
mediators as well as molecular signaling cascades 
participate in the process of liver transplantation 
tolerance. Despite intense research within the field 
of ischemia-reperfusion injury, there are still many 
pathophysiological and immunological mechanisms 
involved in tolerance induction and graft rejection that 
still need to be elucidated. 
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