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Abstract
In mammals, the intestinal epithelium is a tissue 

that contains two distinct pools of stem cells: active 
intestinal stem cells and reserve intestinal stem 
cells. The former are located in the crypt basement 
membrane and are responsible for maintaining 
epithelial homeostasis under intact conditions, whereas 
the latter exhibit the capacity to facilitate epithelial 
regeneration after injury. These two pools of cells can 
convert into each other, maintaining their quantitative 
balance. In terms of the active intestinal stem cells, 
their development into functional epithelium is precisely 
controlled by the following signaling pathways: Wnt/
β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/
Smad. However, mutations in some of the key regulator 
genes associated with these signaling pathways, such 
as APC , Kras  and Smad4 , are also highly associated 
with gut malformations. At this point, clarifying the 
biological characteristics of intestinal stem cells will 
increase the feasibility of preventing or treating some 
intestinal diseases, such as colorectal cancer. Moreover, 
as preclinical data demonstrate the therapeutic effects 
of colon stem cells on murine models of experimental 
colitis, the prospects of stem cell-based regenerative 
treatments for ulcerous lesions in the gastrointestinal 
tract will be improved all the same.
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Core tip: Although the specific roles of intestinal stem 
cells in epithelial homeostasis and regeneration have 
been explored, the specific markers for identifying 
intestinal stem cells (ISCs) remain unclear. The reserve 
pool of intestinal stem cells is located at the 4+ position 
of crypts, and their biological characteristics are distinct 
from the intestinal stem cells at the crypt basement 
membrane. Intestinal stem cells are important cellular 
sources for initiating colorectal cancers. Managing 
murine models of ulcerous colitis using colon organoids 
indicates the therapeutic effects of ISCs.
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INTRODUCTION
The intestinal epithelium in mammals turns over 
every 4-5 d[1]. The fast-cycling cells located the at 
crypt basement membrane, termed intestinal stem 
cells (ISCs), are responsible for maintaining epithelial 
homeostasis under intact circumstances[1]. In the 
homeostatic process, ISCs produce daughter cells, 
the transit-amplifying (TA) progenitors, who undergo 
4-5 divisions and migrate along the villus-crypt axis to 
differentiate into functional cells within the epithelium. 
In the small intestine for example, TA progenitors 
are committed into absorptive cells, endocrine cells, 
goblet cells and Paneth cells[2]. Herein, the former 
three cell types constitute the villus-domain of the 
intestinal epithelium, and the Paneth cells move 
towards the crypt bottom because of active Wnt 
signals within this domain regulating their maturation[3] 
(Figure 1). However, ISCs within the crypts are not 
uniform because a reserve pool of ISCs at the 4+ 
position of the crypts exhibit special roles in epithelial 
regeneration[4]. Relative to the reserve ISCs, ISCs 
located at the crypt basement membrane, which are 
involved in epithelial homeostasis, are classified into 
a more active pool. In recent years, great effort has 
been made to compare the differences between these 
two pools of ISCs in their biological characteristics and 
in investigating their relative origins. Moreover, as the 
growth signals for active ISCs in vivo are clarified, 
emerging protocols for culturing these ISCs have been 
established and are constantly being optimized. In 
addition, colon-derived ISCs have exhibited therapeutic 
potential in experimental models of colitis[5,6]. Based 
on these advancements, this review will first introduce 
the mechanisms by which niche-signals regulate the 
development of active ISCs into functional epithelial 
cells under intact conditions. Then, issues concerning 
the locations of ISCs and their diverse populations will 
be presented. Subsequently, advancements involved 
in identifying and expanding ISCs will be summarized 
in this review. For ISC-related malformations of the 
gut, sequential mutations of the APC, p53, Smad4 
and Kras genes are exclusively associated with the 
transformation of ISCs into colorectal cancer stem cells 
(CSCs), which are regarded as the primary sources 
for initiating colorectal cancers (CRCs)[1]. Additionally, 
the most important event for mediating cancer 
progression, namely, cross-talk between colorectal 
CSCs and their niche cells, will be summarized in 
this review in relation to recently published findings. 
In reviewing the topics above, the prospects for the 

clinical use of ISCs for managing some epithelial 
injuries will be analyzed along with presenting our 
insights on the transplantation of ISCs.

DEVELOPMENT OF THE ACTIVE ISC 
POOL
Within crypt domains, robust self-renewing active 
ISCs enable constitutive epithelial turnover, and the 
development of active ISCs into functional epithelial 
cells is generally mediated by the following signaling 
pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, 
Notch and BMP/Smad[1,4,7]. In this process, Paneth cells 
are capable of secreting niche signals for ISCs, including 
Wnt3 (an agonist of Wnt/β-catenin), epithermal growth 
factor (EGF), and Delta-like ligand1/4 (Dll1/4, ligands 
of Notch receptors)[8]. Another population of niche 
cells include the myofibroblasts located around the 
crypts[9,10]. These cells can produce some bioactive 
proteins for ISCs, such as R-spondin1 (an amplifier of 
Wnt3-activated signals) and Noggin (an antagonist of 
BMP/Smad)[10,11]. All these proteins are essential for 
maintaining the proliferative status in ISCs (Table 1).

Active Wnt signaling is believed to be the main 
driving force leading to ISC proliferation[1]. In this 
process, acting via a co-receptor binding approach, 
Wnt3 couples with LRP5/6 and Frizzled receptors, 
leading to the cytoplasmic accumulation of β-catenin, 
which up-regulates c-Myc expression through β-catenin/
TCF4-mediated transcriptional activation[7]. R-spondin1 
is capable of protecting LRP6 against Dkk1/Kremen-
mediated internalization by binding to its receptors 
(Lgr4/5), resulting in an increase in LRP6 on the cell 
surface[12-14]. As a result of the actions of R-spondin1, 
ISCs become more sensitive to Wnt3. Moreover, the 
inactivation of Lgr4 gene function results in a significant 
reduction of Paneth cells in the crypts[15]. Likewise, a 
loss of TCF4 gene function hampers the maturation of 
Paneth cells[3]. All these results suggest that Wnt signals 
are not only essential for driving the proliferation of 
ISCs but also for their commitment into mature Paneth 
cells.

The other driving force for ISC proliferation relies 
on the EGF-mediated activation of the Ras/Raf/
Mek/Erk/MAPK signaling pathway. Previous data 
suggest that more than 50% of mitosis in ISCs and 
TA progenitors relies on high levels of EGF within 
the crypt-domains[16]. In addition, Dll1/4-mediated 
activation of the Notch pathway also contributes to 
the proliferative potential of ISCs[17]. This is supported 
by evidence showing that the proliferative potential of 
ISCs from Dll1/4 knock-out mice are decreased, but 
this depletion of Dll1/4 expression in vivo increases 
the potential for ISCs to differentiate into secretory 
cell lineages, including goblet cells, endocrine cells 
and Paneth cells. In contrast, ISCs from Dll1/4 over-
expressing mice show accelerated proliferation, leading 
to a decreased number of secretory cells within the 
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epithelium[17]. Therefore, Dll1/4 appears to maintain 
the proliferative status of ISCs within the crypts, 
preventing ISCs from differentiating into secretory 
cell lineages. Similar effects have also been observed 
in relation to Noggin expression. Noggin binds to and 
inactivates the BMP4 protein, resulting in a blockade 
of the BMP/Smad signaling pathway, which helps ISCs 
maintain their proliferative status[18].

Thus, the fast turnover of the intestinal epithelium 
not only relies on ISC proliferation but also on 
the differentiation of ISCs into functional cells. As 
described above, TA progenitors become mature 
when they migrate along the villus-crypt axis. In this 
process, the levels of Wnt3, EGF and R-spondin1 
progressively decrease from the crypt basement 
membrane to the upper regions of crypt, whereas 
BMP4 levels are obviously increased[7]. Combined with 

the expressions of some lineage-devoted genes, such 
as Math1 (secretory lineage)[19] and Hes1 (absorptive 
lineage)[20], these TA progenitors stop dividing and 
ultimately differentiate into functional epithelial cells. In 
all, the spatial differences in the expressions of niche 
cell-derived signals along the villus-crypt axis maintain 
the proliferative status of ISCs and prevent these cells 
from differentiating within the crypt-domains. 

LOCATION OF ISCS IN CRYPTS
Within the crypt-domains of the small intestine, 
three types of cells are arranged, including ISCs, 
TA progenitor cells and Paneth cells[2]. ISCs are 
exclusively located within the lower domain of the 
crypts because the development of active ISCs is 
dependent on essential signals from Paneth cells[3]. In 
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Table 1  Bioactive proteins from niche cells maintain the proliferative status in intestinal stem cells

Niche cell Bioactive protein Receptor Target pathway ISC proliferation ISC differentiation

Paneth cell Wnt 3 LRP5/6 and Frizzled Wnt/β-catenin ↑ /
Paneth cell Dll1/4 Notch 1/2 Notch ↑ ↓
Paneth cell EGF EGFR Ras/Raf/Mek/Erk/MAPK ↑ /
Myofibroblast R-spondin1 Lgr4/5 Wnt/β-catenin ↑ /
Myofibroblast Noggin BMP4 BMP/Smad / ↓

ISCs: Intestinal stem cells. ↑: Increase; ↓: Decrease; /: No alterations.
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Figure 1  Structure of villus-crypt axis. There are two pools of stem cells within crypts, the CBC stem cells and 4+ reserve ISCs. The former ones maintain 
homeostasis of intestinal epithelium under intact condition through producing TA progenitors, while the latter ones are responsible for epithelial regeneration after 
injuries by converting themselves into CBC stem cells. Besides, some progenitors can reprogram themselves into active ISCs upon tissue injuries. ISC: Intestinal stem 
cell; TA: Transit-amplifying.
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sized offspring[25]. Thereafter, the daughters adhering to 
Paneth cells remain at the crypt basement membrane 
and continue to function as ISCs, whereas the cells 
not receiving resources from Paneth cells develop into 
TA progenitors[38,39]. In spite of such discrepancies in 
the characteristics of ISCs at different locations, recent 
evidence indeed supports the idea that the ISCs at 
the 4+ position are more sensitive to foreign stimuli-
induced cell-death than are ISCs at the crypt basement 
membrane[40]. A study on this was carried out by Zhu 
et al[40], and they found that tamoxifen-preconditioning 
for Cre-expression in Lgr5-eGFP-IRES-CreERT2 Tg mice 
induced apoptosis in a small portion of ISCs. Herein, 
the dead ISCs were fast-cycling cells, positive for 
Lgr5, and mainly located at the 4+ position of crypts. 
Additionally, ionizing irradiation (1 cGy) also caused the 
death of ISCs at the 4+ position[40]. Lgr5+ ISCs at the 
crypt basement membrane replenished such cell loss[21]. 
Accordingly, nearly 10% of Lgr5+ ISCs were confirmed 
to be located around the same sites in crypts[21]. To a 
certain extent, these findings indicate the heterogenicity 
among Lgr5+ ISCs.

ISC POPULATIONS
The ISCs mentioned above are referred to as an active 
pool for maintaining epithelial homeostasis in intact 
circumstances. Thus, the niches of the ISCs manipulate 
their fates for tissue regeneration[4]. Recently, a distinct 
population of ISCs located at the 4+ position of crypts, 
has been extensively investigated, and the relevant 
factors that identify these cells are as follows: (1) 
Marker genes: Bmi1, HopX, mTERT and Lrig1[41-44]; 
(2) Status under intact conditions: No more than 2% 
of these ISCs are proliferative (termed label-retaining 
cells, LRC)[41]; (3) Response to foreign stimuli: They 
activate their cell-cycles to replenish dead cells through 
direct differentiation into functional epithelial cells or 
by converting themselves into CBC stem cells[41,45-47]; 
and (4) Forces driving proliferation: Independent of the 
Wnt/β-catenin signaling pathway[41] (Table 3). Because 
of such characteristics, these ISCs are classified as 
a reserve population. In mammals, some tissues or 
organs also share the same pattern of maintaining their 
homeostasis using a system of diverse stem cells, such 
as hematopoietic stem cells in bone marrow and hair 
follicle stem cells in skin[4]. 

In terms of the inter-conversion between reserve 
ISCs and CBC stem cells, Tian et al[45] firstly reported 

1974, Cheng and Leblond pointed out that the column 
cells in the crypt basement membrane, located next 
to the Paneth cells, seemed to be the progenitors of 
intestinal epithelial cells because they observed that 
these column cells were rapidly cycling[21]. However, 
due to a lack of available markers for identifying these 
epithelial progenitors at that time, the “stemness” of 
these cells was difficult to define. As recent clarification 
that the Lgr5 gene is a target of the Wnt/β-catenin 
signaling pathway, the transgenic (Tg) mouse (Strain 
name: Lgr5-eGFP-IRES-CreERT2) was established 
by Clevers, H.’s group[22]. Based on this model, this 
team first demonstrated, both in vitro and in vivo, 
that these crypt basement column cells (CBC), which 
highly express Lgr5, were ISCs (also called CBC 
stem cells)[22,23]. Since then, various promising data 
concerning the characteristics of these Lgr5+ ISCs have 
been published, such as their numbers in the crypts 
(14-16 per crypt)[22], their resistance to foreign stimuli 
(less radiosensitive than mature epithelial cells)[24], their 
cell-cycle duration (about 21.5 h), their mitotic process 
(symmetrical division) and their DNA segregation 
pattern (random distribution to offspring)[25] (Table 
2). Apart from these points, several genes have been 
reported to be highly expressed by Lgr5+ ISCs, such 
as Musashi-1[26], Sox9[27], Ascl2[28], Smoc2[25], Rnf43[29], 
Znrf3[30], Olfm4[31], Cd24I[32], Cd44 variant 4-10 
(Cd44v4-10)[33], Cd133[34] and Cd166[35]. Hence, these 
genes are referred to as ISC-related genes.

However, Potten[36] believed that the cells located 
at the 4+ position of the crypts were active ISCs. It 
has been shown that ISCs at this position expand their 
numbers every 24 h and that they are very sensitive 
to ionizing irradiation, with only 1 cGy of ionizing 
irradiation being enough to initiate apoptosis among 
these ISCs[36]. Thereafter, through the double labeling 
of DNA using 3HTdR and BrdU, Potten et al[37] found 
that when these ISCs divided, parental DNA strands 
were allocated to their larger daughter cells, while the 
newly synthesized strands were allocated to the smaller 
progeny[37]. Because of this action, the larger cells keep 
their stem-cell identities and genomic stability, and the 
smaller cells become TA progenitors for replacing dead 
cells within the epithelium[37]. Although evidence for 
the hierarchical distribution of parental DNA strands is 
well supported, there has been an inconclusive debate 
concerning this issue. Data from Clevers H’s team 
recently demonstrated that the dividing Lgr5+ ISCs 
randomly segregate the parental DNA stands into equal-

Table 2  Debate on intestinal stem cells’ locations and their relevant characteristics

Location Representative research by Number per 
crypt

Sensitivity to IR Cell-cycle Cell-division DNA segregation 

CBC Clevers H’s team 14-16 Less than mature cells 21.5 h Symmetry Random
4+ position Potten CS’s team 4-6 Apoptosis upon receiving 1 cGy Approximately 

24 h
Asymmetry Hierarchy

Cui S et al . Current understanding concerning ISCs
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their findings through the use of a Tg mouse strain 
whose Lgr5 gene contained the sequence encoding the 
human diphtherotoxin receptor (DTR). When treated 
with diphtherotoxin, the Lgr5+ cells were depleted in 
the crypts, while numbers of Bmi1+ cells increased. 
However, Lgr5+cells emerged within the crypts 48 hours 
later. Thereafter, the number of Lgr5+ compartments 
increased and they migrated progressively from the 4+ 
position to the crypt basement membrane, indicating 
a revival of CBC stem cells. Based on these findings, 
the offspring of Tg mice (Strain: Bmi-CreER) crossed 
with an Lgr5-DTR/+ mouse strain were then crossed 
with different Tg mice (Strain: Rosa26-LacZ), and 
these offspring was used to trace the lineage of the 
restored CBC stem cells. The results of this analysis 
demonstrate that the CBC stem cells were derived 
from Bmi1+ ISCs. Similar results were also reported 
in studies using murine models of radiation-induced 
ISC apoptosis[46,47] Moreover, when affected by foreign 
stimuli, some TA progenitors are also capable of 
converting themselves into ISCs, such as the Dll1+ 
secretory progenitors at the 3+ position[48] and the 
label-retaining progenitors at the 5+ position[49]. Apart 
from the issues mentioned above, the Lgr5+ ISCs were 
shown to be able to convert into HopX+ ISCs both in 
vitro and in vivo[42]. All these findings suggest niche 
conversion between distinct stem cell populations, but 
the relevant mechanisms remained unclear until now. 
Thus, it can be confirmed that the expressions of the 
above mentioned marker genes of reserve ISCs overlap 
in active ISCs but at relatively low levels, meaning that 
ISCs still lack specific definable markers[21]. Hence, it is 
only feasible to discriminate the distinct populations of 
ISCs based on their locations and the genes that are 
highly expressed[50]. 

EXPANDING ISCS IN VITRO
Precisely discriminating Lgr5 expressing levels using 
FACS-sorting techniques facilitates the isolation of ISCs 
from Tg mice (Strain: Lgr5-eGFP-IRES-CreERT2)[23]. 
For the wild-type hosts, recent works have also 
reported that several cell-surface markers may serve 
as potential candidates for sorting ISCs, including 
CD24[51], CD44[52], EphB2[5,53], CD133[34] and CD166[35]. 
However, the main obstacle to this lies in the fact that 
not all sorted cells are ISCs because all these markers 
can be found not only among ISCs but also among 
TA progenitors and mature cells, which results in a 
low purity for the target cells. To solve this problem, 

several novel strategies that use combinations of 
several surface makers, such as CD24/Sox9[54], CD24/
CD44[55], CD44/CD133[56] and CD24/CD44/CD166/
GRP78/c-Kit[57], enable the more precise identification 
of ISCs than is possible using one single marker for 
FACS analyses. 

For culturing ISCs, extensive studies have been 
performed during the last two decades. At the 
beginning of this period, due to a profound lack of 
knowledge about the biological characteristics of 
ISCs, human colon cancer cell lines or an epithelial 
cell line (IEC6 from the small intestine of rats) 
were used as substitutes for ISCs[58]. Thereafter, as 
advances were made in understanding the biological 
characteristics of ISCs, a novel culturing system for 
ISCs was established by Clevers, H. and colleagues[23]. 
These ISCs are wrapped by Matrigel containing 
laminin-α1/α2 and supplemented with Wnt3, EGF, 
Noggin, R-spondin1 and Jagged-1 in a serum-
free medium to enable their growth, together with 
Y-27632 dihydrochloride to protect ISCs against ROCK 
pathway-induced anoikis. In this three-dimensional 
(3D) system, one single isolated small intestine-
derived ISC is capable of expanding in number, while 
also differentiating into functional epithelial cells for up 
to 1 year[23]. The ISC-derived structures are termed 
intestinal organoids. Moreover, through the use of 
similar models, Lgr5+ stem cells from various organs 
or tissues, such as the liver[59], pancreas[60], stomach[61] 
and colon[5], can also be cultured and induced to form 
organoids. Another successful system was established 
by Ootani et al[62], which was based on a fetal calf 
serum-containing system for the long-term expansion 
of ISC-derived organoids. A remarkable difference 
from the system established by Clevers H’s team 
lies in the fact that pieces of the small intestine were 
directly used in vitro. Details are shown in Table 4. 
Moreover, intestinal myofibroblasts were obviously 
expanded in this system. As we mentioned above, 
the myofibroblasts around the crypts form the niches 
for ISCs. To some extent, we propose that increased 
myofibroblast numbers will facilitate the development 
of ISCs into organoids based on previous findings that 
intestinal myofibroblasts are capable of increasing 
the organoid-forming potential of crypt fragments 
in vitro[10]. Although these 3D-culture systems allow 
for ISC expansion, the commitment of ISCs into 
functional cells is hard to be prevented. Moreover, 
the colony-forming efficacy (CFE) of the ISCs is only 
about 10%[23]. To solve this problem, Yin et al[63] used 

Table 3  Characteristics of crypt basement column cells stem cells and reserve intestinal stem cells

ISC type Main location Cell-cycle status under 
intact conditions

Differentiating 
capability

Foreign stimuli-
induced  response

Leading pathway Typical marker genes

CBC stem cell Crypt basement Active Yes Apoptosis Wnt/β-catenin Lgr5
Reserve ISC 4+ position Slow Yes Proliferation Unknown but independent 

of Wnt/β-catenin
Bmi1, HopX, Lrig1, 

mTERT

Cui S et al . Current understanding concerning ISCs
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two small molecules, CHIR99021 and valproic acid 
(VPA), which were found to synergistically improve 
the expansion of ISCs in vitro, showing a CFE that was 
about 100-fold greater than that of ISCs without these 
two molecules. In this case, CHIR99021 mainly targets 
the activation of the Wnt/β-catenin signaling pathway, 
inhibiting absorptive cell differentiation, and VPA is 
capable of preventing ISCs from differentiating into 
secretory-lineage cells[63]. 

ISC AND CRC
CRC is the third leading cause of cancer-related death 
in developed countries, and several factors, such as 
a high fat diet, chronic inflammation and genomic 
instability, are highly associated with its occurrence[64,65]. 
For example, the constitutive activation of NF-κB in 
mature epithelial cells will initiate the formation of 
CRCs[66]. Likewise, chronic inflammation also induces 
the generation of CRCs from APC-mutant DCLK1+ Tuft 
cells[67]. Apart from these mature cells, ISCs are very 
important cellular sources for initiating CRCs[68]. Recent 
evidence suggested that factors including aging[69] and 
the total number of stem cell divisions[70], increase the 
frequency of gene mutations in ISCs in addition to the 
inherent mutations from the germline. Accordingly, 
CRCs can be identified and typed based on their genetic 
or epigenetic profiles[28,65,71]. 

As mentioned above, four main pathways precisely 
control the proper development of one single ISC. 
However, aberrant Wnt signals overwhelmingly drive the 
pathogenesis of CRCs in most cases[65]. For example, 
mutant APC-induced robust activation of the Wnt/
β-catenin signaling pathway is regarded as the first 
step in ISC-initiated gut malformation[72]. Along with 
the loss of function in p53, aberrant ISCs will wildly 
expand their numbers and show poor differentiating 
capabilities[73]. In addition, when mutations in Smad4 
and Kras occur, invasive characteristics are conferred to 
these cells[74]. As a result of these actions, normal ISCs 
are converted into CSCs (Figure 2), and several ISC-
related genes are expressed by CSCs, such as Lgr5[75], 
Wip1[76], Yap[77,78],EphB2[79], Cd24[80], Cd44 variant 
6[33,81], Cd133[82,83] and Cd166[35,84], which indicate a 
poor prognosis for CRC patients when highly expressed 
due to the fact that they encode products that play 

roles in CSC expansion and invasion. However, not 
all CSCs share the same genetic profile. Recent data 
suggest that some subpopulations of colorectal CSCs 
have their own markers, such as CD26[85], CD110 and 
CUB-domain-containing protein-1(CDCP1)[86], which 
confer metastatic potential to CSCs. In addition, DCLK1 
can be a specific marker of colorectal CSCs, which 
makes a distinction between colorectal CSCs and ISCs 
possible[87]. These results suggest that colorectal CSCs 
possess diverse genetic profiles, a paradigm reflecting 
the heterogenicity of CRCs[64,65,71]. 

As in ISCs, the development of colorectal CSCs also 
relies on their niches, which are composed of several 
types of cells, including endothelial cells, immune cells, 
myofibroblasts, cancer-associated fibroblasts (CAFs) 
and a small portion of mesenchymal cells[65]. Under 
such circumstances, colorectal CSCs progressively 
expand their numbers and produce daughter cells by 
using the resources from the niche-cells. Moreover, 
CSCs communicate with their niche-cells, obtaining 
invasive phenotypes to promote tumor progression, 
although the relevant signals are quite complicated. 
For example, within the tumor microenvironment, 
high levels of prostaglandin E2 can decrease the 
activity of GSK-3β through activating a cAMP/PKA 
cascade, leading to the cytoplasmic accumulation of 
β-catenin and facilitating the expansion and metastasis 
of colorectal CSCs[88,89]. In addition, prostaglandin 
E2 has an immunosuppressive capacity, which acts 
on several types of immune cells, including NK cells 
(decreased proliferation and cytolysis), dendritic 
cells (increased IL-10 production) and regulatory T 
cells (increased proliferation)[90]. Additionally, some 
CAF-derived cytokines, including HGF, osteopontin 
(OPN), SDF-1[81], TGF-β[91], IL-6[92] and IL-17A[93], 
also exhibit effects that increase the frequencies of 
colorectal CSC-induced malformations. For example, 
the TGF-β-induced epithelial-mesenchymal transition 
(EMT) in colonic CSCs increases their potential for 
liver metastasis[91,94],and HGF, OPN and SDF-1 are 
capable of up-regulating the expression of Cd44v6 
in colorectal CSCs by activating the Wnt/β-catenin 
signaling pathway. In addition, colorectal CSCs show 
improved survival via the activation of the PI3K/
Akt cascade, which is regulated by the interaction 
between HGF and the CD44 receptor[81]. Similarly, 

Table 4  Two systems for expanding intestinal stem cells

Established by Published year System type Substrate Supplemental factor Medium Cultured 
content

Expanding 
duration of 

cultured content

Sato et al[23] 2009 3D Matrigel containing 
laminin α1 and α2

N2, B27, Wnt3, EGF, Noggin, 
R-spondin1, Jagged-1 and 
Y-27632 dihydrochloride

Serum-free ISCs Up to 1 yr

Ootani et al[62] 2009 3D Collagen gel containing 
collagen Ⅰ and Ⅲ

/ Containing 
20% of FCS in 

medium

Small pieces 
of intestinal 

tissue

Up to 1 yr

Cui S et al . Current understanding concerning ISCs
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the survival and invasive capacities of CSCs can be 
increased through the interaction between the CD44 
receptor and hyaluronan, a molecule mediating cell 
adhesion[95]. Additionally, SDF-1 is an important 
attractant for some bone marrow progenitors, such as 
CD133+ hematopoietic progenitor cells and endothelial 
progenitor cells, to the tumor microenvironment, 
which facilitates tumor growth and metastasis[96,97]. 
For the immune mediators mentioned above, it has 
been reported that preconditioning using IL-6 could 
increase the proportion of ALDH+ cancer stem-like cells 
among cultured colonic cancer cells and increase the 
expression of Lgr5 by these cells. Moreover, another 
tumor-facilitating action of IL-6 lies in its capacity to 
increase the number of Th17 cells and increase their 
production of IL-17A, a cytokine favoring tumor growth 
through its support of the expansion of colorectal 
CSCs[92,93]. CAFs have been reported to be capable 
of increasing IL-17A secretion after chemotherapy, 
and the increase in this immune mediator enables 
colorectal CSCs to acquire tolerance to anti-cancer 
drugs[93]. 

In addition to the cytokines mentioned above, 
at the subcellular level, exosomes also participate 
in establishing the network mediating intercellular 
communications. Exosomes are bioactive nanoparticles 
originating from multiple cell types (including 
cancer cells), and can be endocytotically taken up 

by adjacent or distant cells. Exosomes regulate 
the biological responses of target cells using their 
cargoes of proteins, lipids, miRNAs and mRNAs[98]. 
Of the specific roles of exosomes in regulating the 
generation of CRCs, fibroblast-derived exosomes 
have been demonstrated to be capable of enhancing 
the expansion of CRCs and conferring a resistance to 
5-fluorouracil[99]. In providing feedback to niche-cells, 
exosomes from SW480 CRC cells have been shown 
to enhance the proliferation of endothelial cells via 
their cell cycle-facilitating mRNAs[100]. Moreover, tumor 
exosomes have antagonistic effects on immune cells, 
decreasing the cytotoxicity of NK cells, impairing the 
anti-tumor response of CTL cells and increasing the 
numbers of regulatory T/B cells, which establishes an 
immunosuppressive microenvironment, favoring tumor 
growth in vivo[101]. 

However, not all exosomes from CRC cells carry 
the same cargo profiles. For example, Cha et al[102] 
found that miRNA-100 was the main type of exosomal 
miRNA in Kras-mutant CRC cells, whereas miRNA-
10b is predominant in wild-type exosomes. Even 
when CRCs relapse, the main type of serum miRNA in 
patients with recurrent CRC are different from those 
in patients without recurrent CRC[103]. It is possible 
that seven exosomal miRNAs, let-7a, miRNA-1299, 
miRNA-1246, miRNA-150, miRNA-21, miRNA-223 and 
miRNA-23a, may be useful candidates for assessing 
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the progression of CRCs due to the high correlation 
between their serum levels and tumor burdens in 
vivo[104]. In addition, exosomal miRNAs differ in type 
among different CRC cells, reflecting the epigenetic 
heterogenicity of CRCs.

Based on the findings presented above, we con
clude that genomic mutations are prerequisites for the 
transformation from normal cells into CSCs, which will 
ultimately form solid tumors through interactions with 
cancer niche-cells.

ISCS AND THEIR APPLICATION
Clearly, the generation of Tg mice (Strain: Lgr5-eGFP-
IRES-CreERT2) and establishment of 3D-culture 
systems for ISCs initiated the era of treating intestinal 
diseases using ISCs. Recently, data from two separate 
studies demonstrate that murine Lgr5+ colonic stem 
cells have the potential to healing epithelial injuries 
in immunodeficient mice with dextran sodium sulfate 
(DSS)-induced colitis[5,6]. Moreover, these studies also 
suggest that engrafted clusters could survive within 
lesioned sites for more than 6 mo, undergoing crypt-
fission and commitment into functional cells, indicating 
the effectiveness and feasibility of homogenous 
transplantation[6]. Moreover, the protocols for expanding 
human ISCs from stomach, small intestine and colon 
tissues have been established, which holds great 
promise for treating some gastrointestinal diseases, 
such as inflammatory bowel disease (IBD), gastric 
ulcers (GCs) or microvillus inclusion disease[5,53,58]. To 
this end, Watanabe[105] has described a strategy for the 
autologous transplantation of colonic stem cells into 
patients with IBD. In brief, normal colonic tissues can 
be isolated through enteroscopy-guided biopsy. After 
expanding their number in vitro, the colonic stem cells 
can be transplanted into the lesioned sites[105]. Based 
on this, we recommend that GCs can also be managed 
using a similar approach. Of note, we believe that the 
influence of the microenvironment within the site of 
the injury on the viability of the graft must be taken 
into consideration. For IBD, extended inflammation 
within intestinal lesions limits epithelial healing[106]. 
To some extent, it would be beneficial to decrease 
apoptosis in engrafted stem cells in vivo through the 
use of immunosuppressive therapy. To date, it remains 
unclear whether stomach stem cells are acid-resistant. 
If so, this would help increase the viability of such grafts 
through the use of certain anti-acid drugs. Another 
issue concerning the application of autologous stem 
cells for treating IBD or GCs lies in the lack of evidence 
indicating whether the genomes of stem cells derived 
from such patients are stable. As mentioned above, 
chronic inflammation within the colon will initiate CRC 
formation. In addition, it is hard to determine whether 
freshly isolated samples contain mutant cells, especially 
when such cells are cultured with supplemental growth 
factors. Recent data suggest that ISCs from diabetic 

mice are more inclined to differentiate into absorptive 
cells and Paneth cells than are ISCs from healthy 
mice[107]. To avoid the above issues, we recommend 
that the genomic stability be determined before clinical 
transplantation. If instable genomes are detected, 
allogenic transplantations could be used as substitutes. 
Li et al[58] noted that a standardized strategy including 
HLA-matching between donors and recipients and the 
use of immunosuppressive drugs could be an option for 
dealing with graft rejection. However, the shortcomings 
of allogeneic transplantation lie in the long-term use 
of immunosuppressants and the limited availability of 
donor tissues. 

For ISCs with gene mutations, it is hoped that they 
can be reprogrammed into normal cells using CRISPR/
Cas9 technology, which is a powerful tool for editing 
multiple genes synchronously within an individual 
cell[108]. Using this technology, sequential mutations of 
four key genes, APC, p53, Smad4 and Kras, in human 
ISCs were first carried out in vitro to investigate the 
specific roles of these mutant ISCs in initiating CRCs 
in vivo[74]. Apart from this, it is also possible that 
ISCs may be massively cultured within biocompatible 
frameworks to form artificial mucosa, which could 
be realized by using 3D-bioprinting technology[109]. 
Therefore, any advancement concerning new theories 
in stem cell biology, new technologies for culturing 
stem cells or new applications of stem cells in treating 
diseases will push regenerative medicine forward. 

CONCLUSION
Overall, the mechanisms by which ISCs maintain 
epithelial homeostasis are highly specific, and any 
stimuli altering the biological characteristics of ISCs 
will interrupt the homeostatic process, leading to 
lesions involving mucosal atrophy, hypertrophy or even 
malformation. Any information concerning biological 
alterations in ISCs will improve the public’s awareness 
on how to prevent some intestinal diseases. Moreover, 
ISCs are valuable tools, and their potentials for healing 
ulcerous lesions in experimental models have been 
demonstrated. In spite of this, a detailed protocol, 
including quality control for ISC culturing, criteria for 
evaluating the effectiveness of grafts, and criteria for 
evaluating transplantation-related adverse effects, 
needs to be established before carrying out relevant 
clinical trials.
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