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Abstract
About 250 to 350 million people worldwide are chro
nically infected with hepatitis B virus (HBV), and about 
700000 patients per year die of HBV-related cirrhosis 

or hepatocellular carcinoma (HCC). Several anti-viral 
agents, such as interferon and nucleos(t)ide analogues 
(NAs), have been used to treat this disease. NAs 
especially have been shown to strongly suppress HBV 
replication, slowing the progression to cirrhosis and 
the development of HCC. However, reactivation of HBV 
replication often occurs after cessation of treatment, 
because NAs alone cannot completely remove covalently-
closed circular DNA (cccDNA), the template of HBV 
replication, from the nuclei of hepatocytes. Anti-HBV 
immune responses, in conjunction with interferon-γ and 
tumor necrosis factor-α, were found to eliminate cccDNA, 
but complete eradication of cccDNA by immune response 
alone is difficult, as shown in patients who recover from 
acute HBV infection but often show long-term persistence 
of small amounts of HBV-DNA in the blood. Several 
new drugs interfering with the life cycle of HBV in he
patocytes have been developed, with drugs targeting 
cccDNA theoretically the most effective for radical 
cure of chronic HBV infection. However, the safety of 
these drugs should be extensively examined before 
application to patients, and combinations of several 
approaches may be necessary for radical cure of chronic 
HBV infection. 
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Core tip: Among the agents used to treat chronic 
hepatitis B virus (HBV) infection are nucleos(t)ide an
alogues, which have been shown to strongly suppress 
HBV replication. HBV replication, however, may be 
reactivated after cessation of treatment, because com
plete removal of covalently-closed circular DNA (cccDNA) 
from hepatocyte nuclei is extremely difficult. Immune 
responses have been shown to destroy cccDNA, but 
immune response alone is insufficient for complete 
eradication of template DNA. Several drugs were 
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recently developed to block the HBV life cycle in hepa
tocytes, with drugs targeting cccDNA being, at least 
theoretically, the most effective for radical cure of 
chronic HBV infection. The safety of these agents should 
be extensively examined before their use in patients. 
Combinations of two or more classes of agent may be 
necessary for radical cure of chronic HBV infection.
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INTRODUCTION
About 250 to 350 million people worldwide are chro­
nically infected with hepatitis B virus (HBV)[1,2], with about 
700000 patients per year dying from HBV-related cirrhosis 
or hepatocellular carcinoma (HCC)[3]. Several anti-viral 
agents, including interferons and nucleos(t)ide analogues 
(NAs), have been shown effective, with NA-based treat­
ment strongly suppressing the replication of HBV-DNA 
and normalizing serum alanine aminotransferase activity, 
resulting in little or no progression of liver disease[4-6]. NAs 
target the viral reverse transcriptase, effectively reducing 
serum HBV-DNA concentrations. However, intrahepatic 
HBV-DNA, such as converted covalently closed circular 
DNA (cccDNA), is not a direct target of NAs. cccDNA is a 
template for all viral RNAs and HBV-DNA replication can 
be induced to start from residual cccDNA after cessation 
of treatment with NAs[7]. Small amounts of HBV-DNA can 
be found in serum long after patients recover from acute 
HBV infection, suggesting that cccDNA may persist for 
decades[8]. Thus, cccDNA is difficult to eradicate once 
infection is established, and should be the main target 
for the complete eradication of HBV infection. However, 
measuring intrahepatic cccDNA concentrations is difficult 
in a clinical setting[9]. The cccDNA levels in HBV-infected 
human hepatocytes are low, ranging from 1 to 50 copies 
per hepatocyte[10]. Real-time polymerase chain reaction 
(PCR) amplification with specific primers for cccDNA or 
Southern blotting can be used for the detection. How­
ever, PCR amplification may be hampered by other 
co-extracted viral DNA and Southern blotting needs 
much time and effort. Moreover, the form of cccDNA 
may be changed during the DNA extraction procedure. 
Therefore, further investigation should be required to 
establish the precise evaluation of intrahepatic cccDNA. 
As an alternative, the reduction in HBV surface antigen 
(HBsAg) concentration has been reported to partly reflect 
the decrease in intrahepatic cccDNA, with the goal of 
treatment for chronic HBV infection being the complete 
disappearance of HBsAg[11]. Fewer than 10% of patients 
receiving interferon-based therapy[4-6], and few patients 
treated with NAs[12,13], achieve complete loss of HBsAg. 
Various trials have tested agents targeting the life cycle of 
HBV in hepatocytes, including the elimination of cccDNA. 

This review summarizes and discusses the radical cure 
(Table 1) of chronic HBV infection, mainly focusing on the 
elimination of cccDNA. 

HBV REPLICATION CYCLE AND THE 
PRODUCTION OF HBV-RELATED 
PROTEINS
HBV replication cycle
HBV is a DNA virus that belongs to the family Hepa­
dnaviridae, with a 3.2 kb-long partially double-stranded 
relaxed circular DNA (rcDNA) genome[14]. The life cycle 
of HBV is shown in Figure 1. HBV virions are thought 
to enter hepatocytes through a high-affinity interaction 
between the myristoylated preS1 region of HBV and 
the surface structures of hepatocytes, including sodium 
taurocholate cotransporting polypeptide (NTCP)[15-17]. 
After entry into hepatocytes, uncoated rcDNA is released 
into the cytoplasm and then enters the nucleus, where 
it is converted to cccDNA. The cccDNA remains for a 
long time in the nucleus, where it serves as a template 
for the transcription of viral mRNA[17,18]. All viral RNAs, 
pregenomic RNAs (pgRNA) and RNAs encoding the 
surface proteins, precore and HBx of HBV, are transcribed 
from cccDNA, with efficient transcription regulated by 
liver-specific transcription factors[19] and the HBx protein 
itself[20]. Epigenetic control of cccDNA transcriptional 
activity, such as acetylation, methylation or phosphory­
lation, appears to occur[21]. Cytoplasmic pgRNA and poly­
merase protein are subsequently packaged into enve­
lope proteins, with rcDNA produced from the reverse 
transcription of pgRNA. Nucleocapsids packaging rcDNA 
are encapsulated by HBsAg as the envelope protein 
and released from hepatocytes as virions. The precise 
understanding of these processes is important for the 
development of new strategies for the radical cure of 
chronic HBV infection. 

HBV-related proteins and their roles in 
hepatocarcinogenesis
The HBV-related proteins translated from cccDNA 
consist not only of the envelope, core and polymerase 
proteins of HBV, but may play a role in hepatocarcino­
genesis itself. 

Studies analyzing the role of HBx proteins in hepato­
cellular transformation and HCC progression have found 
that low levels of HBx protein are present in non-tumor 
tissues of HBV-infected liver, whereas high levels of 
HBx protein are present in HCCs arising in HBV infected 
individuals, suggesting that this protein has an oncogenic 
function[22,23]. Moreover, HBx transgenic mice often de­
velop liver cancer[24,25], and HBx protein has been found 
to accumulate in hepatocytes, affecting the expression of 
genes associated with signal transduction, cell cycle control, 
transcription, and immune response[23,26]. Expression of 
genes on the X-chromosome is regulated epigenetically, 
including by DNA and histone methyltransferases[27,28], 
and by microRNAs[29,30]. 
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HBx is not only involved in carcinogenesis but in the 
progression of HCC. HBx has been shown to increase 
beta-catenin signaling through epigenetic control or micro­
RNA[31,32] and to be an independent predictor of survival 
after HCC resection[33]. 

HBsAg is also involved in hepatocarcinogenesis. The 
ground glass appearance of hepatocytes was shown to 
be a typical histological finding in HBV-infected livers, 
with this ground glass appearance resulting from the 
accumulation of HBsAg with preS mutations[34-36]. PreS-
mutated HBsAg, especially large HBsAg, was found to 
accumulate in cytoplasm, leading to the induction of ER 
stress and oxidative DNA damage[35-37]. Furthermore 
preS mutations upregulated intracellular signaling via 
hepatocyte proliferation[35,38]. High serum HBsAg levels 
showed a definite correlation with HCC development in 
patients with controlled HBV-DNA[39-41]. Like HBV-related 
proteins, spliced HBV proteins were found to activate 
intracellular signaling via hepatocyte proliferation[42,43]. 
These findings suggest that not only HBV replication, 
but the production of HBV-related proteins, should be 
suppressed to efficiently prevent hepatocarcinogenesis.

IMMUNE RESPONSE AGAINST HBV 
INFECTION
Immune responses against HBV are involved in both 
the pathogenesis and control of HBV infection[44-47]. There­

fore, understanding the immune response against HBV 
may result in better control of HBV infection.

Acute infection
Analysis of immune responses that occur during acute 
HBV infection may provide valuable information on 
strategies by which immune responses control HBV 
infection. 

A mouse model of acute viral hepatitis B was esta­
blished by injecting HBsAg-specific T-cell clones into 
HBV transgenic mice[48]. Although HBsAg-specific T-cells 
were found to kill small numbers of HBV-replicating 
hepatocytes, these T cell clones destroyed intracellular 
HBV-RNA and HBV-DNA in most infected hepatocytes 
without killing these cells. This effect was found to be 
due to interferon (IFN)-γ and tumor necrosis factor 
(TNF)-α[40,49-51]. Because HBV transgenic mice do not have 
cccDNA[52], the effects of these cytokines on cccDNA were 
unclear. In cccDNA-expressing cultured cells, however, 
IFN-γ and TNF-α inhibited HBV replication and reduced 
cccDNA in an additive manner[53]. Moreover, the decay 
of cccDNA was found to require activation of APOBEC3 
deaminases[53], which are expressed in liver tissues of 
individuals with acute, but not chronic, HBV infection. 
These observations indicate that HBV-specific T-cell 
activation followed by treatment with anti-viral cytokines, 
such as IFN-γ and TNF-α, could eradicate HBV without 
cytolysis. 

In a chimpanzee model, cccDNA was found to dis­

Serum HBV-DNA Serum HBsAg Intraheptic cccDNA HBV-DNA-intergrated hepatocytes

Functional cure (clinical cure) Low (-)-(++) (+) (-)-(+)
Radical cure (virological cure) (-) (-) (-) (-)

Table 1  Cure status of hepatitis B virus infection

HBV: Hepatitis B virus; cccDNA: Covalently-closed circular DNA; HBsAg: Hepatitis B virus surface antigen.
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Figure 1  Simplified schema of the hepatitis B virus life cycle and possible targets of therapy. HBV: Hepatitis B virus; cccDNA: Covalently-closed circular DNA; 
HBsAg: Hepatitis B virus surface antigen; rcDNA: Relaxed circular DNA; siRNAs: Small interfering RNAs; pgRNA: Pregenomic RNAs.
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appear during the course of acute hepatitis B, and HBV-
DNA was found to be susceptible to noncytolytic control 
by cytokines[54]. Moreover, HBV-DNA titers in these livers 
were reduced before T-cell influx, suggesting that non-T-
cells, possibly natural killer cells, may have an important 
role in the noncytolytic destruction of HBV-DNA in liver 
during early phases of acute HBV infection[54].

Broad and vigorous CD4+ and CD8+ T-cell responses 
have been reported in patients with acute hepatitis B[55]. 
Moreover, HBV-specific T-cell responses were observed 
during the incubation period of acute hepatitis, with HBV-
DNA reduced before alanine aminotransferase concentration 
peaked, indicating that noncytolytic eradication of HBV 
also occurs in acute hepatitis B in humans[56]. However, 
recovery from acute hepatitis B does not imply complete 
eradication of HBV, as small amounts of HBV-DNA can 
be detected in the blood for a long time after resolution 
of acute hepatitis B[8]. T-cell responses are therefore not 
sufficient to completely eradicate cccDNA from infected 
livers, even in acute hepatitis B.

Chronic infection
Immune responses in patients chronically infected with 
HBV were found to consist of four phases: The immuno­
tolerant, immune-active, inactive carrier, and reactivation 
phases[57]. Although the exact mechanism by which HBV 
induces immune tolerance is unclear, it may arise from 
central deletion or peripheral non-recognition of HBV-
specific T-cells[58]. Immune tolerance may be broken after 
several decades by as yet undetermined mechanisms, 
but these may involve the maturation of dendritic cell (DC) 
function[59]. Breaking immune tolerance to HBV can lead 
to the immune-active phase, resulting in some degree 
of hepatitis. During this phase, suppression of HBV 
replication is observed in 85% to 90% of patients, leading 
to an inactive carrier state. Most patients in an inactive 
carrier state do not need antiviral treatments, but cccDNA 
may be present in their livers. The cccDNA persisting in 
inactive carriers may be a template for reactivation of 
HBV replication. The 10% to 15% of patients who remain 
in the immune-active phase continue to experience liver 
inflammation with active replication of HBV, and may 
be at high risk for progression to liver cirrhosis and the 
development of HCC. The number of HBV-specific CD8+ 
T-cells was found to be the same in livers with low HBV 
replication and little hepatitis and in livers with high 
HBV replication and severe hepatitis[60]. These findings 
suggest that HBV replication is suppressed by immune 
surveillance of HBV-specific T-cells in the liver and that 
these T-cells are important in controlling HBV replication 
in a noncytolytic manner in inactive carriers. In contrast, 
HBV-specific immune responses are thought to be 
dysregulated in livers with active hepatitis, and several 
possible mechanisms have been proposed.

Impairment of innate immune response 
Innate immune system such as pattern recognition rece­
ptors, macrophages, DCs, natural killer cells or natural 
killer T cells are involved in the pathogenesis of HBV 

infection especially at an early stage of infection[61,62]. HBV 
has been shown to alter the function of macrophages 
by modulating the secretion of cytokines[63,64] or type-1 
IFN gene expression[64]. Hepatitis B e antigen was shown 
to directly suppress toll-like receptor (TLR) signaling via 
interaction with Toll/IL-1 receptor-containing proteins such 
as TRAM and Mal[65]. HBV has been shown to downregulate 
TLR-2 expression in patients with chronic HBV infection[66]. 
Thus, innate immunity alteration plays a role, at least in 
part, in the pathogenesis of chronic HBV infection and 
TLR-7 agonists have been applied as immune-modulatory 
components[67,68]. On the other hand, the effect of IFN-α 
on intrahepatic cccDNA has been recently explored[69], 
and IFN-α in addition to lymphotoxin-β receptor (LTβR) 
activation has been shown to induce cccDNA degradation 
through upregulation of nuclear APOBEC3 deaminases[70]. 
APOBEC3 can deaminate double-stranded DNA cytidines 
to uridines[71] and induce cccDNA degradation. IFN-γ and 
TNF-α produced form T-cells can induce deamination 
of cccDNA without cytolysis, supporting the essential 
role of APOBEC3 in reduction of cccDNA[53]. Collectively, 
type-1 IFN-mediated effects, especially APOBEC3 
upregulation, will be a key subject for development of 
new therapeutics.

Dysfunction of dendritic cells
DCs are the most potent antigen-presenting cells, sti­
mulating both T- and B-cells. In patients with chronic 
hepatitis, the cytokine-induced maturation of circulating 
myeloid DCs is impaired, possibly by exposure to high 
amounts of HBV or HBsAg[72,73]. Dysfunctional DCs may 
act as tolerogenic antigen-presenting cells, resulting in 
a failure to induce HBV-specific immune responses.

Alteration of the hierarchy of epitope-specific CD8+ 
T-cell responses
In acute hepatitis B, the CD8+ T-cell response to the im­
munogenic epitope HBc18-27 (HLA-A2 restricted epitope) 
is dominant. In contrast, HBc18-27-specific CD8+ T-cell 
responses are low and CD8+ T-cell responses against 
less immunogenic envelope (183-191) are dominant 
in chronic hepatitis B[74]. Although the mechanisms un­
derlying changes in the major epitope to CD8+ T-cell 
response are not yet known, they may account, at least 
in part, for the different CD8+ T-cell responses observed 
in patients with acute and chronic hepatitis.

Regulatory T-cells
Regulatory T-cells (Tregs) expressing the forkhead family 
transcription factor, Foxp3, are specialized cells that have 
a major role in the maintenance of immunological self-
tolerance by suppressing self-reactive cells[75]. Tregs 
express CD25 [interleukin (IL)-2 receptor α-chain] and/
or cytotoxic T-lymphocyte antigen-4 (CTLA-4), which are 
excellent inhibitors of IL-2 production or downregulation 
of CD80 and CD86 on DCs by a CTLA-4-dependent 
mechanism[76].

 The numbers of CD4+CD25+FoxP3+ Tregs were 
higher in the livers of patients with chronic hepatitis B, 

Tajiri K et al . Radical treatment for HBV



867 July 28, 2016|Volume 8|Issue 21|WJH|www.wjgnet.com

suggesting that these cells suppress intrahepatic HBV-
specific T-cell responses, leading to insufficient immune 
control of HBV replication in the liver[77].

Inhibitory receptors
Program death (PD)-1 is a surface receptor critical for 
the regulation of T-cell function[78,79]. Binding of the ligand 
PD-L1 to PD-1 on T-cells results in the antigen-specific 
inhibition of T-cell proliferation, with a molecule related 
to T-cell exhaustion found in the livers of patients with 
chronic hepatitis B. T-cell exhaustion is characterized by 
poor cytotoxic activity and cytokine production, as well 
as by the expression of inhibitory receptors, including 
not only PD-1 but lymphocyte activation gene-3, CTLA-4, 
T-cell immunoglobulin domain and mucin domain-3, and 
CD244[66]. These inhibitory receptors are thought to be 
induced by persistent exposure of intrahepatic T-cells 
to HBV or HBV-related proteins[80]. Exhaustion of T-cells 
could also account for impaired T-cell responses in the 
livers of patients with chronic hepatitis B, and blockade of 
these receptors could be therapeutic. 

Patients with high serum HBV-DNA concentration 
have been reported likely to progress to cirrhosis and 
eventually HCC[81]. Transition of immune-active patients 
to an inactive state with low HBV-DNA replication by the 
direct stimulation of HBV-specific T-cells or removal of 
immunosuppressive factors, may be sufficient to inhibit 
progression to cirrhosis or HCC. Inactive HBV carriers 
may not require specific treatment, because spontaneous 
HBsAg develops at a rate of 1% to 1.9%/year in these 
patients, making the development of HCC rare[82]. 
Therefore, an inactive HBV carrier may be regarded as 
in a state of functional cure (Table 1). However, HBV 
replication may be reactivated, either spontaneously 
or during treatment with an immunosuppressive or 
anticancer agent, resulting in a higher risk of hepato­
carcinogenesis than in the general population[83]. The 
rate of HCC development was recently reported to be 
greater in patients with high than with low serum HBsAg 
concentrations, even in inactive HBV carriers with low 
serum HBV-DNA concentrations[36,37]. 

Collectively, these results suggest that induction of 
immune control against HBV infection may result in func­
tional cure of HBV infection. Functional cure, however, 
may be an unstable condition, allowing progression to 
cirrhosis or HCC under various conditions. Although radical 
cure (Table 1) is desirable, it is problematic because of the 
difficulty in eliminating HBV cccDNA from the liver.

THERAPEUTIC STRATEGIES FOR HBV 
INFECTION
Immunotherapy
Radical cure of HBV infection could be achieved by both 
the elimination of cccDNA in the liver and the destruc­
tion of HBV-DNA-integrated hepatocytes. The primary 
goals of immunotherapy in HBV-infected individuals include 
the induction or stimulation of HBV-specific immune re­

sponses, leading to the killing of infected cells or the 
degradation of HBV-RNA and HBV-DNA in a noncytolytic 
manner, inhibiting progression to liver cirrhosis and hepa­
tocarcinogenesis. Although immune responses involv­
ing cytokines such as IFN-γ and TNF-α can eliminate 
cccDNA[50,53], cccDNA is not completely eliminated even 
after resolution of acute hepatitis B[8], suggesting that 
immune responses alone may be insufficient to achieve 
radical cure of HBV infection. 

Induction or stimulation of HBV-specific immune 
responses
Efforts to stimulate HBV-specific T-cells have included 
immunizations with HBV-peptides, viral proteins, DCs, 
and DNA, as well as treatment with cytokines[84]. Because 
HBV-specific T-cells in patients with chronic hepatitis 
B are exhausted by long-term exposure to high levels 
of HBV-related antigens, activation of those cells by 
immunization would be ineffective without functional re­
storation of the cells by blocking the inhibitory signals 
responsible for T-cell exhaustion. Blockade of PD-1, 
CTLA-4 or Tim-3 has been shown to restore exhausted 
HBV-specific T-cells[80], suggesting that the combination 
of immunization and blockade of inhibitory signals would 
be effective in activating HBV-specific T-cells.

Other immunotherapeutic approaches to HBV infec­
tion include administration of cytokines, such as IFN-γ, 
IL-6, IL-1β, LTβR-agonists and/or TLR-7 agonist, as well 
as IFN-γ and TNF-α which were shown to cause silencing 
or degradation of cccDNA[67]. This strategy may be more 
effective in the complete eradication of HBV infection 
than strategies involving the activation of HBV-specific 
cells, suggesting that only cytokine administration results 
in the elimination of cccDNA.

Elimination of HBV-infected hepatocytes by a novel 
approach
A novel approach to eliminate HBV-core containing hepa­
tocytes[85] was based on findings showing that elimination 
of HBV is impaired by cellular inhibitor of apoptosis 
proteins (cIAPs), which inhibit the TNF-α-mediated death 
of HBV-infected cells[86]. This led to testing the effects of 
inhibitors of cIAPs, including birinapant and other Smac 
mimetics, on HBV-infected hepatocytes. These inhibitors 
of cIAPs resulted in the rapid reduction in serum HBV-
DNA and HBsAg concentrations, possibly by eliminating 
HBV-core containing hepatocytes. However, the effects of 
those drugs on cccDNA are unclear.

Immunotherapeutic strategies for HBV-DNA-integrated 
hepatocytes
Three main mechanisms are responsible for hepa­
tocarcinogenesis: (1) the oncogenic potential of the 
HBV-related proteins, HBsAg and HBx; (2) HBV-DNA 
integration into the host genome, dysregulating the cell 
cycle by the introduction of deletions, cis/trans-activations, 
and/or translocations, and/or inducing generalized geno­
mic instability; and (3) persistent inflammation in the 
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liver causing rapid turnover of hepatocyte regeneration, 
enhancing the instability and/or mutagenesis of host 
genomes. 

Therefore, if future advances in therapeutic mo­
dalities result in the complete elimination of cccDNA, 
hepatocarcinogenesis resulting from HBV-DNA integra­
tion into the host genome should be addressed. HBV-
DNA integration into the hepatocyte genome has been 
observed in 86.4% of HBV-related HCCs and in 30.7% 
of adjacent liver tissue[87]. Integration of HBV-DNA 
into areas of the host genome encoding genes that 
regulate cellular proliferation, such as telomerase or 
proliferation signal transduction genes, may lead to cis-/
trans-activation, inducing malignant transformation[88]. 
Furthermore, integration of HBV-DNA may induce genetic 
instability by altering the expression of oncogenes, tumor 
suppressor genes and microRNAs[87,89]. In addition, a 
viral-human chimeric transcript was reported to function as 
a noncoding RNA and promote hepatocarcinogenesis[90]. 
Integration of HBV-DNA into the host hepatocyte genome 
of transiently infected individuals has been reported to be 
a rare event, occurring in 0.01%-0.1% of hepatocytes[91]. 
Further investigations are needed to determine the 
mechanism by which HBV-DNA integration into the host 
genome induces carcinogenesis. The immune cytolysis 
of cells expressing HBV-related peptides may be the only 
strategy that effectively eliminates HBV-DNA-integrated 
hepatocytes. However, if non-immunogenic regions of 
HBV-DNA are integrated, elimination of those cells by 
immune attack would be impossible.

Taken together, these findings indicate that immu
notherapy against HBV can control viral replication and 
reduce cccDNA, but may not be sufficient to completely 
eradicate HBV-infected or -integrated hepatocytes. 

Inhibition of HBV replication
Currently available NAs can efficiently reduce viremia 
but cannot eliminate intracellular cccDNA. However, 
complete suppression of HBV polymerase can result in 
the complete elimination of cccDNA through the death 
of cccDNA-containing hepatocytes after one natural 
lifespan of these cells[92]. Among the agents being tested 
are prodrugs of HBV polymerase inhibitors[93]. These 
include prodrugs of tenofovir, such as AGX1009 (Agenix) 
and TAF (GS-7340, Gilead Sciences), which have been 
evaluated in phase 3 trials[93,94], and CMX157, a lipid 
conjugate of tenofovir, which has been evaluated in 
phase 1/2 trials[93,95]. RNase H inhibitors are also being 
tested, based on the specificity of HBV replication, which 
depends on the RNase H activity of HBV polymerase to 
degrade pgRNA[10]. Evaluations of selective inhibitors of 
HBV polymerase RNase H activity[96] suggest that they 
might be more effective when combined with NAs[93].  

Destruction of cccDNA
Eradication of cccDNA in hepatocytes is essential to achi­
eve radical cure of established HBV infection. Several 
trials have targeted cccDNA. For example, gene silencing 
techniques, such as small interfering RNAs (siRNAs) or 

antisense oligonucleotides (ASOs), have been evaluated 
for their ability to reduce viremia and cccDNA. Although 
siRNAs may have promising activity, methods to effectively 
deliver them to hepatocytes have not been determined[97]. 
RNAi can inhibit all steps of HBV replication, and ARC-520 
has been tested in a phase 2 trial in patients with chronic 
hepatitis B[95]. In contrast, a single injection of ASO, 
consisting of liver-targeted peptides, into a mouse model 
of chronic HBV infection was shown to reduce HBV-RNA, 
proteins and HBV-DNA for a long time, suggesting that 
ASO may become a promising treatment in patients 
with chronic HBV[98]. Furthermore, disubstituted sulfona­
mide was shown to selectively inhibit the formation of 
cccDNA[99].

In addition, several genome editing technologies 
have been developed to silence sequence-specific cle­
avage of cccDNA. These include zinc finger nucleases 
(ZFNs)[100,101], transcription activator-like effector nucleases 
(TALENs)[102,103], and the clustered regularly interspaced 
short palindromic repeat (CRISPR)/CRISPR associated 
system (Cas). These sequence-specific genome editing 
technologies could induce double-stranded breaks at 
certain DNA sites. ZFNs consist of a zinc finger domain, 
which contains a sequence-specific binding site, and 
a FokⅠ  nuclease domain. ZFNs form heterodimers 
and induce double-stranded breaks at targeted sites. 
These breaks are subsequently repaired by homology-
directed repair or non-homologous end joining. The 
specificity of ZFNs may be context-dependent, resulting 
from interactions between DNA binding domains and 
neighboring zinc fingers[104]. TALENs have transcription 
activator-like effector specific DNA binding activity, with 
DNA-binding sites more specific than those of ZFNs[105]. 
However, both ZFNs and TALENs require pairs of site-
specific nucleases for each target to produce customized 
proteins[9]. In contrast, CRISPR/Cas technology is a 
novel genome-editing method, which is more useful 
than ZFNs or TALENs[106]. CRISPR/Cas loci encode RNA 
guided endonucleases, which are induced by immune 
responses against foreign genetic elements such as 
bacteriophages and plasmids[107]. The type 2 CRISPR/
Cas system from Streptococcus pyogenes is a chimeric 
single-guide RNA with Cas9 protein[108]. The CRISPR/
Cas9 system was shown to suppress HBV replication in 
cultured cells and in mouse models[109-117], reducing both 
HBsAg[109,110,112-116] and cccDNA[110,113-115,117]. These findings 
suggest that genome editing technology, such as a CRISPR/
Cas system, may be a potential therapeutic option for the 
complete eradication of HBV infection in future. However, 
cleavage of cccDNA and subsequent DNA repair may 
introduce mutations into the host genome. These mutations 
may be harmful to the host, resulting in the possible 
development of malignancy[9,118,119], suggesting the need 
for further improvements in efficacy and safety prior to 
the therapeutic use of these systems. 

Future perspectives on radical cure of chronic HBV 
infection
Various trials have assessed agents that can terminate 
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the HBV life cycle in hepatocytes, including inhibitors of 
HBV-DNA polymerase, virus entry, core assembly and 
HBsAg secretion (Table 2)[93,95,120,121]. Especially Myrcludex 
B, a synthetic lipopeptide that targets NTCP, has been 
shown to efficiently prevent viral spread and has been 
applied in clinical trials[15,17,122,123]. These agents, including 
Myrcludex, are not themselves sufficient to eliminate HBV 
from chronically infected hepatocytes, as shown by the 
remaining cccDNA in the nuclei and HBV-DNA-integrated 
hepatocytes. Immunotherapy may potentially eliminate 
both cccDNA and HBV-DNA-integrated hepatocytes, but 
its effects would be limited. Although drugs targeting 
cccDNA in hepatocytes are theoretically ideal for complete 
eradication of HBV, no single drug or strategy, whether 
currently available or under development, has shown 
the ability to completely eliminate HBV with established 
safety and efficacy. Future trials, testing combination of 
different agents or strategies, will be necessary.
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