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Abstract 
Dent’s disease is an X-linked renal tubulopathy 
characterized by low molecular weight proteinuria, 
hypercalciuria and progressive renal failure. Disease 
aetiology is associated with mutations in the CLCN5 
gene coding for the electrogenic 2Cl-/H+ antiporter 
chloride channel 5 (CLC-5), which is expressed in the 
apical endosomes of renal proximal tubules with the 
vacuolar type H+-ATPase (V-ATPase). Initially identified 
as a member of the CLC family of Cl- channels, CLC-5 
was presumed to provide Cl- shunt into the endosomal 
lumen to dissipate H+ accumulation by V-ATPase, thereby 
facilitating efficient endosomal acidification. However, 
recent findings showing that CLC-5 is in fact not a Cl- 

channel but a 2Cl-/H+ antiporter challenged this classical 
shunt model, leading to a renewed and intense debate 
on its physiological roles. Cl- accumulation via  CLC-5 is 
predicted to play a critical role in endocytosis, as illustrated 
in mice carrying an artificial Cl- channel mutation E211A 
that developed defective endocytosis but normal endo
somal acidification. Conversely, a recent functional 
analysis of a newly identified disease-causing Cl- channel 
mutation E211Q in a patient with typical Dent’s disease 
confirmed the functional coupling between V-ATPase and 
CLC-5 in endosomal acidification, lending support to the 
classical shunt model. In this editorial, we will address the 
current recognition of the physiological role of CLC-5 with 
a specific focus on the functional coupling of V-ATPase 
and CLC-5.
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tubulopathy due to defective endocytosis. Recent revelations 
that CLC-5 is a 2Cl-/H+ antiporter and not a Cl- channel 
challenged the classical model proposing CLC-5 as a Cl- shunt 
to facilitate V-ATPase-mediated endosomal acidification. 
Therefore, physiological roles of CLC-5 and its interaction with 
V-ATPase in endosomal acidification and/or endocytosis are 
intensely debated. Recent functional analysis of a novel pure 
Cl- channel mutant from a Dent’s disease patient indicated a 
possible functional coupling between V-ATPase and CLC-5 
not only in endosomal acidification but also at the plasma 
membrane.
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INTRODUCTION
Renal proximal tubular cells have a high capacity for the 
uptake of various proteins in primary urine via receptor-
mediated endocytosis. Acidified condition in intracellular 
organelles such as endosomes and lysosomes is es
sential for the normal endocytic pathway consisting of 
ligand-receptor dissociation, recycling of the uncoupled 
receptors to the cell surface and transport of the re
leased ligands to lysosomes for degradation[1,2]. 

Intravesicular acidification is achieved mainly by the 
active H+-pumping of vacuolar ATPase (V-ATPase)[1,3]. 
Conversely, chloride channel 5 (CLC-5), long believed 
to be a pure chloride channel as the name implies, colo
calizes with V-ATPase and is suggested to be involved in 
V-ATPase-mediated endosomal acidification by shunting Cl- 
to neutralize the positive charge due to H+ accumulation[4]. 
Indeed, mutations in CLC-5 cause Dent’s disease, which 
is characterized by renal proximal tubulopathy due to 
defective endocytosis[5,6], suggesting that V-ATPase and 
CLC-5 are functionally coupled in endosomes. However, 
recent reports demonstrating that CLC-5 is not a Cl- 
channel but in fact functions as a 2Cl-/H+ antiporter 
demands re-evaluation of its physiological roles and the 
pathogenesis of Dent’s disease[7-9]. Although the debate 
is ongoing on whether Cl- accumulation[10] or CLC-5-
induced V-ATPase activation is more important for normal 
endocytosis, we recently demonstrated that impaired 
endosomal acidification derived from inadequate V-ATPase 
activation by mutated CLC-5 may be the underlying 
pathology in Dent’s disease[11]. Moreover, we identified 
such functional relationship between V-ATPase and CLC-5 
even at the plasma membrane of mouse proximal tubules.

CLC-5 AND DENT’S DISEASE
CLC-5, a member of the CLC family, was originally 
identified by cloning of a voltage-gated chloride channel, 
CLC-0, from Torpedo marmorata electric organ[12]. 
Several human mutations in corresponding genes of the 

CLC family are known to cause genetic disorders such as 
myotonia congenita (CLC-1), Barter syndrome (CLC-Kb), 
osteopetrosis (CLC-7) and Dent’s disease (CLC-5)[13,14]. 

Dent’s disease is an X-linked proximal renal tubulo
pathy arising from mutations in the CLCN5 gene encoding 
for the electrogenic 2Cl-/H+ antiporter CLC-5[7-9] and is 
characterized by low molecular weight (LMW) proteinuria, 
hypercalciuria, nephrocalcinosis, nephrolithiasis and 
slowly progressive renal failure[15,16]. In addition, affected 
patients present with various clinical signs of proximal 
tubular dysfunction including glycosuria, aminoaciduria, 
hyperphosphaturia and uricosuria, which is consistent 
with partial Fanconi syndrome[5]. These manifestations 
usually remain subtle or asymptomatic during childhood; 
however, Dent’s disease leads to chronic renal insufficiency 
over a few decades. Furthermore, in the absence of 
effective therapy, early diagnosis for Dent’s disease only 
allows for conservative therapy to prevent kidney stones 
and progression of chronic renal insufficiency[16]. 

TISSUE AND SUBCELLULAR 
DISTRIBUTION OF CLC-5
CLC-5 is abundantly expressed in renal and intestinal 
epithelial cells, though it is also expressed in brain, lung 
and, to a lesser extent, liver[17]. In the kidney, CLC-5 
expression is highest in proximal tubules and intercalated 
cells of the collecting ducts[18]. Especially in proximal 
tubules, a major site for urinary LMW protein reabsorption 
via receptor-mediated endocytosis[17,19], CLC-5 is 
predominantly located in early endosomes, colocalizing 
with V-ATPase[4,20]. Additionally, CLC-5 is also found to an 
extent in the apical membrane of proximal tubules, as 
suggested by its robust plasma membrane expression 
in HEK293 cells as well as in Xenopus laevis oocytes 
following heterologous overexpression[4,18].

FUNCTIONS OF INTRACELLULAR 
V-ATPASE
V-ATPase is a large multi-subunit complex that is ubiq
uitously expressed in intracellular organelles of eukaryotic 
cells such as endosomes, lysosomes, secretary granules 
and trans-Golgi network[21,22]. V-ATPase pumps H+ across 
membranes using energy generated by ATP hydrolysis 
and provides an acidic intraorganellar environment that is 
critical for normal endocytic pathway[22-24]. Thus, V-ATPase 
lowers luminal pH of early endosomes and promotes the 
dissociation of internalized ligand–receptor complexes, 
which is essential for both recycling of the uncoupled 
receptors to cell surface and transport of the released 
ligands first to late endosomes and then to lysosomes for 
protein degradation[24-27].

FUNCTIONS OF PLASMA MEMBRANE 
V-ATPASE
In addition to intracellular organelles, V-ATPase is also 
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highly expressed in plasma membrane of specialized cells 
in kidney and other tissues. Though V-ATPase is found 
over the entire length of the nephron, it is abundantly 
expressed in renal proximal tubular cells[2,28,29] and 
intercalated cells of the collecting duct[21,29,30], playing a 
pivotal role in acid-base homeostasis.

Proximal tubular cells secrete H+ from cytosol to 
tubular lumen via Na+/H+ exchangers (NHEs), mainly 
NHE3[31] on apical membrane, and reabsorb appro
ximately 80% of the filtered HCO3

-[32-34]. V-ATPase is 
assumed to be partially involved in this reabsorption 
process along the proximal tubules[26,35,36]. In the collecting 
duct, alpha-intercalated cells secrete H+ into the urine via 
apical membrane V-ATPase, while beta-intercalated cells 
export H+ into the vessel lumen via basolateral membrane 
V-ATPase, regulating final urine acidification. Genetic 
defects in specific V-ATPase subunits are known to cause 
renal tubular acidosis (RTA)[37-39]. Specifically, mutations in 
ATP6V0A4 and ATP6V0B1 coding for a4 and B1 subunits, 
respectively, lead to distal RTA in humans[38,40]. 

NONCANONICAL FUNCTIONS OF 
INTRACELLULAR V-ATPASE
While the conventional functions of intracellular V-
ATPase are well established, recent studies suggested 
that V-ATPase might have noncanonical functions as 
well[41]. For example, V-ATPase achieves the desired 
acidic endosomal pH in order to regulate the budding 
of endosomal carrier vesicles, where V-ATPase itself 
functions as not only a proton pump but also a pH sen
sor[1,42,43]. Luminal pH information is hypothesized to be 
detected by V-ATPase and transmitted to the cytosolic 
side via conformational changes in its transmembrane 
a2 isoform. This in turn results in the recruitment of ADP-
ribosylation factor (ARF)-6 (ARF-6) and ARF-nucleotide 
binding-site opener (ARNO), both of which are involved 
in endocytosis by regulating the formation of endosomal 
carrier vesicles. Conversely, lysosomal V-ATPase is also 
suggested to constitute an important component of the 
lysosomal-associated amino acid sensing machinery[44]. 
Although the precise mechanism underlying this function 
of V-ATPase is unknown, accumulation of amino acids 
in lysosomes activates Rag guanosine triphosphatases 
(GTPases)[45] that promote the translocation of the 
master growth regulator mechanistic target of rapamycin 
complex 1 (mTORC1) to the lysosomal membrane[46,47]. 
In this process, the interaction between V-ATPase 
and the regulator that anchors Rag GTPases to the 
lysosomes is necessary for amino acid-induced signal 
transduction[48]. Therefore, lysosomal V-ATPase performs 
pivotal roles as both a proton pump and an amino acid 
sensor transmitting signals to activate mTORC1, which is 
essential for lysosomal function[49].

FUNCTIONAL COUPLING OF V-ATPASE 
AND CLC-5
As indicated above, active H+ pumping by V-ATPase 

contributes to the preservation of an acidic luminal pH 
within intracellular organelles including endosomes and 
lysosomes, which is required for normal endocytic process. 
In contrast, two different strains of CLC-5 knockout mice 
developed LMW proteinuria, typical symptoms of Dent’s 
disease due to defective endocytosis[50,51]. Furthermore, 
Günther et al[6] showed that endosomes isolated from 
CLC-5 knockout mice were acidified at a significantly 
lower rate and to a lesser extent than those from wild-
type mice. Subsequent analyses verified the lower luminal 
concentrations of Cl- and H+ in early endosomes isolated 
from proximal tubules of CLC-5 knockout mice[52]. These 
observations, in conjunction with the colocalization of 
CLC-5 with V-ATPase in early endosomes, strongly suggest 
that V-ATPase and CLC-5 are functionally coupled during 
endosomal acidification and/or endocytosis.

Indeed, since its identification as a member of the 
CLC family, CLC-5 was considered to be a Cl- channel[53] 
that provided Cl- to counter and dissipate positive charge 
(H+) accumulation generated by V-ATPase, thereby 
facilitating efficient endosomal acidification. This Cl- 
shunt model facilitated by functional V-ATPase coupling 
with CLC-5 was considered essential for normal 
endocytosis[25]. However, recent studies demonstrating 
that CLC-5 is not a Cl- channel but a 2Cl-/H+ antiporter 
forced comprehensive reevaluation of these physiological 
roles of CLC-5[7-9], given that the 2Cl-/H+ antiporter 
would result in ineffective acidification due to parallel 
H+ efflux at the expense of wasted energy (ATP) by 
V-ATPase. Thus, physiological roles of CLC-5 as a 2Cl-/H+ 
antiporter and its interaction with V-ATPase in endosomal 
acidification and/or endocytosis remain unknown and 
have become an important issue in the field.

PHYSIOLOGICAL ROLES OF CLC-5 IN 
ENDOCYTOSIS: CL- ACCUMULATION OR 
V-ATPASE ACTIVATION?
Analysis of a mutation in the so-called gating glutamate 
at position 211 (E211), a conserved residue that serves 
as a central gate for H+-coupled Cl- transport[54,55], may 
provide a key in understanding the complex nature of 
CLC-5 functions. Novarino and colleagues generated mice 
carrying the E211A mutation which deprived H+ transport 
of CLC-5, altering it to a simple Cl- conductance[10], and 
these mice developed defective endocytosis similar to 
that observed in CLC-5 knockout mice. Surprisingly, 
however, endosomal acidification was preserved in 
E211A mice in contrast to CLC-5 knockout mice (Figure 
1). Therefore, they proposed that endosomal Cl- 
accumulation rather than endosomal acidification might 
be critical for renal endocytosis. However, mutations in 
the gating glutamate, such as that is present in E211A 
mutant mice, have not yet been identified in patients 
with Dent’s disease.

We recently analyzed a previously unrecognized 
mutation of E211 to glutamine (E211Q) that was found 
in a typical Dent’s disease patient[56] and confirmed that 
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functional coupling between V-ATPase and CLC-5 occurred 
in endosomal acidification[11]. Electrophysiological studies 
in Xenopus laevis oocytes demonstrated that the disease-
causing mutant E211Q had similar characteristics to 
the artificial mutant E211A. Thus, E211Q mutation also 
abolished H+ transport of CLC-5 and altered it to a simple 
Cl- conductance, which was supported by the molecular 
modelling of CLC-5 mutants[11]. Upon heterologous 
overexpression in HEK293 cells, both Cl- channel mutants, 
E211Q and E211A, enhanced bafilomycin-sensitive 
endosomal acidification. However, acidification was greater 
in endosomes expressing wild-type CLC-5. Because CLC-
5-induced endosomal acidification reflected V-ATPase 
activity, these results indicated that the 2Cl-/H+ exchange 
mode of CLC-5 was required for maximal endosomal 
acidification[11]. Indeed, simulation studies on lysosomal 
acidification via CLC-7, another CLC member with Cl-/H+ 
exchange function, lent support to the model in which 
the Cl-/H+ exchange mode was more advantageous than 
the Cl- channel mode in intravesicular acidification[57,58]. 
Our results revealed that the conversion of CLC-5 from 
a 2Cl-/H+ antiporter into a Cl- conductance is the definite 
cause of Dent’s disease. More importantly, we showed that 
impaired endosomal acidification via inadequate V-ATPase 
activation should be considered as a pivotal component 
of the aetiology in Dent’s disease. These potential roles of 
CLC-5 in endosome are summarized in Figure 2.

Based on the accumulating data, the cause of dis
crepancy in endosomal acidification by Cl- channel 
mutants between mice proximal tubules and HEK293 
cells remains unclear. Significant basal acidification was 
still found in endocytic vesicles isolated from CLC-5 
knockout mouse kidneys[6]. In contrast, in the absence 
of endogenous CLC-5[59], the basal V-ATPase activity 

in HEK293 cells was quite subtle. Therefore, a small 
difference in endosomal acidification generated by the 
E211A mutant that was detectable in HEK293 cells might 
have been overlooked in proximal tubules obtained from 
E211A mice. Of course, genetically altered mice could 
have potentially developed compensatory mechanisms. 
However, a convincing model for the interaction between 
CLC-5 and V-ATPase in endosomes continues to be a 
focus of intense debate. 

FUNCTIONAL COUPLING OF V-ATPASE 
AND CLC-5 AT THE PLASMA 
MEMBRANE
Physiological significance of CLC-5 at the plasma mem
brane is not clear[14]. Therefore, we also investigated the 
impact of CLC-5 on plasma membrane V-ATPase function 
by measuring hypotonicity-induced V-ATPase activity as 
previously reported[60,61]. Heterologous overexpression of 
both E211Q and E211A mutants in HEK293 cells led to 
the moderate activation of membrane V-ATPase. However, 
wild-type CLC-5 induced even higher V-ATPase activation, 
which was in harmony with the degree of endosomal 
acidification. This V-ATPase activation by hypotonicity 
was observed even in isolated mouse proximal tubules. 
Furthermore, siRNA-mediated gene silencing for CLC-5 
strongly reduced V-ATPase activity, suggesting the 
presence of tight functional coupling between V-ATPase 
and CLC-5 even in apical membrane of intact proximal 
tubules. Although the detailed mechanisms by which 
CLC-5 activates the membrane V-ATPase are unknown, 
noncanonical roles of V-ATPase may allow several possible 
explanations. In addition to the abovementioned multiple 
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V-ATPase functions, it is known that CLC-5 mediates the 
assembly with other proteins, and several binding proteins 
have already been proposed[14]. Therefore, it is possible 
that the 2Cl-/H+ exchange mode of CLC-5 induces V-ATPase 
activation by recruiting unknown cellular factors and/or by 
directly modifying the function of V-ATPase[11].

CONCLUSION
Loss-of-function mutations in CLC-5 were definitely shown 
to cause Dent’s disease phenotypes in humans as well 
as in mouse models, suggesting the indispensability of 
CLC-5 for normal endocytic pathway. However, it remains 
unclear whether Cl- accumulation or V-ATPase-mediated 
acidification by CLC-5 is more important for normal 
endocytosis. Our recent study focusing on disease-causing 
mechanisms of the E211Q mutant of CLC-5 revealed that 
impaired endosomal acidification caused by inadequate 
CLC-5-induced V-ATPase activation may play a key role in 
the aetiology of Dent’s disease. However, future studies 
are necessary to clarify the potentially critical role of 
endosomal Cl- accumulation, as suggested by the findings 
in mice carrying the E211A mutation.
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