
the silent information regulator 2 family, a group of 
Class Ⅲ histone/protein deacetylases. Sirtuins (SIRT 
1-7) have different subcellular localization and function 
and they regulate cellular protein function through 
various posttranslational modifications. SIRT1 and 3, 
the most studied sirtuins, use the product of cellular 
metabolism nicotinamide adenine dinucleotide as a 
cofactor to post-translationally deacetylate cellular 
proteins and consequently link the metabolic status of 
the cell to protein function. Sirtuins have been shown to 
play a key role in the development and rescue of various 
metabolic diseases including non-alcoholic fatty liver 
disease (NAFLD). NAFLD is currently the most chronic 
liver disease due mainly to high-calorie consump
tion and lower physical activity. No pharmacological 
approach is available to treat NAFLD, the current 
recommended treatment are lifestyle modification 
such as weight loss through calorie restriction and 
exercise. Recent studies have shown downregulation of 
sirtuins in human as well as animal models of NAFLD 
indicating an important role of sirtuins in the dynamic 
pathophysiology of NAFLD. In this review, we highlight 
the recent knowledge on sirtuins, their role in NAFLD 
and their unique potential role as novel therapeutic 
target for NAFLD treatment. 
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Core tip: Non-alcoholic fatty liver disease (NAFLD) is a 
leading cause of chronic liver disease with no effective 
pharmacological therapy. The discovery of treatment 
is hindered by the insufficient understanding of the 
pathophysiology of the disease. Sirtuins are key players 
in hepatic carbohydrate and lipid metabolism, insulin 
signaling, and inflammation and hence may represent 
a novel therapeutic target for NAFLD. However, the 
particular role for each sirtuin, the cross talk between 
sirtuins in different cell compartments or within a given 
organelle, and the development of selective sirtuins 
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Abstract
Mammalian sirtuins are seven members belonging to 
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activators/inhibitors still need further investigation.
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INTRODUCTION
Non-alcoholic fatty liver diseases (NAFLD) is emerging 
as the leading cause of chronic liver diseases affecting 
one billion of people in the world. The current model for 
NAFLD pathophysiology, “the multiple-hit hypothesis”, 
characterizes NAFLD as the manifestation of both 
genetic and environmental factors, dysfunction of 
various organs and organelles, as well as the complex 
interaction between hepatocytes and other cells (e.g., 
Kupffer and stellate cells) in the liver[1]. Moreover, the 
liver is a hub for many metabolic pathways making 
NAFLD a multistage, progressive disease with systemic 
consequences. NAFLD is commonly associated with 
obesity, insulin resistance and enhanced risk of 
cardiovascular disease and mortality[2-6]. Importantly, 
cardiovascular diseases are the main cause of 
morbidity in NAFLD patients. High-calorie consumption 
and lower physical activity have contributed to the 
rise in the prevalence of NAFLD. To date, no approved 
pharmacological approaches are available to treat 
NAFLD, the current confirmed recommendations 
for NAFLD are lifestyle modifications such as weight 
loss through caloric restriction (CR) and increased 
physical activity[7-9]. Therefore, a pressing need for 
developing new novel pharmacological treatments, is 
still remaining. An inclusive pharmacological approach 
would be one that addresses the pathogenic complexity 
of NAFLD. Currently, sirtuins have been under intense 
investigation as a novel therapeutic target for the 
treatment of NAFLD. In this review, we summarize 
the current knowledge on the pathophysiology of 
NAFLD and on the sirtuins as a potential target for the 
treatment of NAFLD.

NAFLD PATHOPHYSIOLOGY
NAFLD is a spectrum of liver diseases that occurs 
in the absence of excessive alcohol intake or viral 
infection. It includes hepatic steatosis (> 5% of fat 
in the liver), nonalcoholic steatohepatitis (NASH, fat 
deposit with inflammation), cirrhosis and hepatocellular 
carcinoma[9-12]. NAFLD is currently the most widespread 
form of liver disease affecting 10%-30% of all ages 
from childhood to adult population, and is predicted 
to be the leading cause of liver pathology and liver 
failure in the coming years[13,14]. NAFLD is more pro
minent in obese and insulin resistant individuals 

affecting 70%-90% in these populations[15,16]. NAFLD 
is also present in 10%-20% of the general pediatric 
population; this proportion increases to 50% in obese 
children in western society[13,17-22]. A more recent study 
suggests that metabolic derangements may start early 
in life, even in utero. Exposure to excess fuel in fetal 
life may result in NAFLD in the offspring[23,24].

Our understanding of the mechanisms involved 
in the pathophysiology of NAFLD are insufficient 
to pinpoint the major determinants involved in the 
development and progression of the disease and to 
develop therapeutic strategies for NAFLD. Studies 
on genetic and molecular factors involved in NAFLD 
clearly implicate lipid and glucose metabolism in the 
development of the disease. Moreover, functional 
studies implicate the different cell population in the 
liver as well as interaction between the liver, adipose 
tissue, gut and the muscle in the pathogenesis 
of NAFLD. In contrast to the “two-hit hypothesis” 
proposed by Day[25] in which hepatic accumulation of 
triglyceride (TG) (“1st hit”) sensitizes the liver to additional 
insults such as oxidative stress and pro-inflammatory 
cytokines (“2nd hit”) resulting in NASH. The current 
understanding, “the multiple parallel hypothesis”, 
refers to NAFLD as a systemic, multifactorial disease 
involving multiple organs, such as adipose tissue, 
muscle and the intestine, and organelles such the 
endoplasmic reticulum and the mitochondria.

Hepatic steatosis
Hepatic steatosis, which is previously considered as 
the benign form of NAFLD, results from an imbalance 
between influx of fatty acids to the liver from the 
diet, adipose tissue lipolysis or de novo lipogenesis; 
and their oxidation or export in the circulation as very 
low density lipoproteins (VLDL)[9]. Failure of insulin to 
suppress lipolysis in insulin resistant adipose tissue is 
commonly associated with NAFLD[26,27]. Moreover, it is 
estimated that in NAFLD patients, roughly 60% of fatty 
acids in the liver originate from adipose tissue, 25% 
from de novo lipogenesis, and 15% from the diet[28]. 
Interestingly, both β-oxidation of fatty acids in the liver 
and VLDL secretion, are initially upregulated in non-
alcoholic fatty liver in an attempt to compensate for 
the rise in fatty acids in the liver[29-32]. However, this 
short term compensatory mechanism is insufficient 
to sustain the ongoing influx of fatty acid to the liver 
leading to liver injury[30-32]. NASH patients have lower 
VLDL secretion and lower fatty acid oxidation (FAO) 
than patients with fatty liver[30,31].

Non-alcoholic steatohepatitis and fibrosis
Non-alcoholic steatohepatitis (NASH) is a more severe 
form of NAFLD that is generally defined by the presence 
of steatosis with inflammation and cellular damage. 
Fibrosis is commonly described as an irreversible 
scarring of liver tissue with excessive presence of 
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extracellular matrix. The presence of fibrosis is one 
of the most important predictors of NAFLD related 
mortality[10,33]. The current understanding of NASH 
pathogenesis follows a multiple hits model[34,35] that 
implicate multiple stressors. Lipotoxicity, endoplasmic 
reticulum stress, adipose tissue derived adipokines 
(TNFα and IL6), gut endotoxins and LPS produced by 
gut microbiota that drift into to the liver through the 
portal vein due to changes in the intestinal permeability 
in NAFLD, and oxidative stress trigger inflammatory 
response and progressive liver damage. Inflammation 
can sometimes precede steatosis, and patients with 
NASH can present without much steatosis suggesting 
that inflammation can sometimes occur first. Recent 
studies have also shown that individuals with hepatic 
steatosis may progress to fibrosis in a relatively 
short period of time (3-7 years)[36,37]. NAFLD patients 
may be classified into two categories, slow and fast 
progressors. The slow progressors may develop 
NASH but no fibrosis while the fast progressors may 
develop fibrosis and sometimes skip NASH stage of 
the disease[38]. Changes in mitochondrial function is 
an important mechanism that may drive the switch 
from hepatic steatosis to NASH. Several reports 
indicate that mitochondrial respiration is elevated in 
NAFLD patients[29,30]. However, in humans with NASH, 
respiration may be uncoupled from ATP production, 
causing significant increases in reactive oxygen species 
(ROS)[30]. Importantly, elevated ROS production was 
associated with an increase in detoxification and 
antioxidant capacity in hepatic steatosis, but not in 
NASH, indicating that mechanisms to cope with excess 
ROS generation may be insufficient in NASH[30].

ROLE OF SIRTUINS IN NAFLD
Sirtuins are a group of proteins that belong to the 
family of silent information regulator 2. Sirtuins have 
been shown, in recent years, to play an important role 
in the pathophysiology of various metabolic diseases 
including NAFLD[39]. Sirtuins are implicated in many 
cellular and physiological functions including hepatic 
glucose and fatty acid metabolism, mitochondrial 
function, hepatic gluconeogenesis, insulin secretion 
and the maturation of fat cells[40,41] as illustrated in 
Figure 1. Sirtuins regulate protein function through a 
growing list of posttranslational modification including 
deacetylation, succinylation and malonylation[42,43]. 
Seven mammalians sirtuins (SIRT1-SIRT7) have been 
identified and shown to share the same conserved 
NAD binding site and catalytic core domain but with 
different N and C termini[44]. The different sirtuins 
have various subcellular localization and expression[44]. 
SIRT 1, 6, and 7 are localized mainly in nucleus while 
SIRT 3, 4 and 5 are localized to the mitochondrial 
matrix and SIRT2 predominantly cytoplasmic[44]. 
Recent studies have shown reduced levels of most 
sirtuins in NAFLD. Direct evidence came from Wu 

et al[45] who demonstrated decreased expression of 
SIRT1, SIRT3, SIRT5, and SIRT6 in NAFLD patients 
compared to the control group. This was associated 
with increased expression of lipogenic genes including 
sterol regulatory element binding protein-1, fatty acid 
synthase, and acetyl-CoA carboxylase. In contrast 
to the other sirtuins, the expression of SIRT4 was 
upregulated in NAFLD patients[45]. Interestingly, in a 
recent study, Bruce et al[46] indicated that exposure 
to excess dietary fat during early and post-natal 
life increases the susceptibility to develop NASH in 
adulthood and this was associated with reduced 
sirtuin abundance. Offspring fed a high fat diet (HFD) 
developed NAFLD while HFD-fed offspring of mothers 
fed a HFD diet developed NASH in combination of 
reduced NAD+/NADH, SIRT1, SIRT3 and increased 
expression of genes involved in lipid metabolism[46]. 
SIRT1 and SIRT3 are the most studied sirtuins; we 
will focus mainly on these two sirtuins, their mode of 
action and their role in NAFLD.

Both SIRT1 and SIRT3 are NAD+-deacetylase that 
use NAD as a cofactor to deacetylate cellular proteins. 
Lysine acetylation is a reversible, dynamic reaction of 
adding acetyl groups to lysine residues. Acetylation 
affects all proteins in the cell and has recently been 
shown to be abundant in the mitochondria where it 
plays a key role in the dynamic regulation of proteins 
and thereby cell metabolism[43,47-54]. Dysregulation of 
lysine acetylation plays a pathogenic role in diverse 
conditions such as metabolic syndrome, aging, cancer 
and NAFLD[55-58].

SIRT1 and NAFLD
Studies from our group and others document strong 
involvement of the mitochondria in the pathogenesis 
of NAFLD[59-62]. SIRT3 is the most investigated mito
chondrial sirtuin, while SIRT1 has been shown to be 
expressed in various metabolic tissues including liver, 
adipose tissue, skeletal muscle, pancreas and brain. 
SIRT1 plays a key role in the development of NAFLD 
through its involvement in the regulation of both lipid 
and carbohydrate metabolism[45,46,63-66]. Studies in mice 
and in cultured cells have characterized SIRT1 as a 
metabolic sensor that has the potential to improve 
NAFLD. 

Inhibition of SIRT1 signaling in human fetal he
patocytes resulted in an increase in intracellular 
glucose and lipid levels with upregulation of de novo 
lipogenesis and gluconeogenesis related genes[66]. In 
mice, liver specific deletion of SIRT1 as well as SIRT1 
downregulation using small hairpin RNA resulted in 
hepatic steatosis, inflammation and endoplasmic 
reticulum stress[67,68]. Hepatocyte-specific deletion of 
SIRT1 impaired PPARα signaling and decreased FAO. 
However, SIRT1 overexpression increased levels of 
PPARα and increased FAO[67]. 

SIRT1 is reduced by HFD while CR resulted in 
an increase in hepatic SIRT1 expression and im
provement in NAFLD histology[69]. Overexpression 
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β-oxidation, and amino-acid metabolism and stress-
related pathways[73-77]. The protein is encoded by the 
nuclear genome and is translated as a 45-kDa protein 
with an N-terminal mitochondrial targeting sequence 
that is cleaved to give the 28-kDa enzymatically active 
protein[78]. SIRT3 is expressed in many tissues including 
the liver, adipose tissue, heart, brain and kidney[44]. 
Although SIRT3-KO mice are metabolically undis
tinguishable from WT controls under basal conditions, 
they show increased hyperacetylation of mitochondrial 
proteins in the liver and the heart[54,74,75,79]. About 
65% of all mitochondrial proteins have at least one 
acetylated lysine[48,54,73]. SIRT4 and SIRT5 are also 
localized to the mitochondria and unlike SIRT3-KO 
mice, SIRT4 and SIRT5-KO mice did not display the 
global increase in hepatic mitochondrial acetylation 
observed in SIRT3-deficient animals. 

Mitochondria play a key role in the adaptation to 
CR and SIRT3 has been identified as an important 
regulator in CR-associated metabolic changes[54]. 
The expression of SIRT3 is considerably increased 
in response to CR or prolonged fasting[75,80,81]. SIRT3 
regulates the function of several mitochondrial proteins 
involved in oxidative phosphorylation, FAO, the urea 
cycle, and the antioxidant response system[73,75,82-85]. 
Unlike wild-type mice where FAO is upregulated with 
fasting, fasted SIRT3 deficient mice display reduced 
FAO and ATP production with increased hepatic TG 

of SIRT1 in mice provided protection against HFD 
induced hepatic steatosis through upregulation of 
FAO and downregulation of lipogenesis[64]. Moreover, 
treatment of mice fed a HFD with resveratrol (RSV), 
a polyphenol found in red wine and other plants, 
improved lipid metabolism, and decreased NAFLD 
and inflammation in the liver[70]. Interestingly, it has 
been documented that inhibition of SIRT1 signaling 
in human fetal hepatocytes resulted in an increase in 
intracellular glucose and lipid levels[66]. SIRT1 is also 
modulated in obesity. Recent studies have shown 
a correlation between plasma SIRT1 and NAFLD in 
obese patients. SIRT1 was significantly lower in an 
obese group with severe liver steatosis compared 
to a group with mild steatosis, and both groups had 
lower SIRT1 in the plasma compared to control lean 
patients[71]. Phenotypic similarities exist between 
CR and SIRT1 overexpression. Mice overexpressing 
SIRT1 are leaner and resistant to hepatic steatosis 
and insulin resistance[72]. Together, these studies 
indicate a potential therapeutic use of SIRT1 in hepatic 
steatosis[66].

SIRT3 and NAFLD 
SIRT3 is a soluble protein located in the mitochondrial 
matrix and has been shown as a major regulator of 
mitochondrial protein acetylation and function[44,73]. 
SIRT3 regulates carbohydrate metabolism, ketogenesis, 
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Figure 1  An illustration representing various sirtuins with summary findings for SIRT1, SIRT3, and SIRT4. NAFLD: Non-alcoholic fatty liver diseases; FAO: 
Fatty acid oxidation; HFD: High fat diet.
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content[75]. 
SIRT3 also regulates the acetylation levels of 

mitochondrial electron transport complex I and 
regulates ATP synthesis[77]. ATP levels were reduced by 
more than 50% in the heart, liver and kidney of mice 
lacking SIRT3[77]. Succinate dehydrogenase (SDH) 
(one of complex II subunits of the electron transport 
chain) has been identified as a direct target of 
SIRT3, suggesting a role of SIRT3 in the regulation of 
complex II[86,87]. Increased succinate concentrations is 
involved in hepatic stellate cells (HSCs) activation. The 
expression of SIRT3 and SDH activity are decreased in 
isolated liver and HSCs from methionine- and choline-
deficient (MCD) diet-induced NAFLD. Suppression of 
SIRT3 using siRNA exacerbated HSC activation while 
SIRT3 overexpression attenuated HSC activation 
in vitro[88]. Interestingly, liver- and muscle-specific 
SIRT3-KO mice show no detectable changes in their 
metabolic phenotype in response to HFD[89] suggesting 
more studies are needed to ascertain the role of tissue 
specific function of SIRT3[76,89].

Published studies document that both obesity 
and chronic HFD reduce SIRT3 activity, induce hy
peracetylation of various mitochondrial proteins and 
impair mitochondrial function[58,75,90]. HFD has been 
shown to induce SIRT3 expression and FAO early after 
initiation of high-fat feeding[58]. However, chronic HFD 
suppress SIRT3 expression, increase mitochondrial 
protein acetylation, and ultimately reduce FAO. Wild 
type mice fed a HFD develop obesity, hyperlipidemia, 
type 2 diabetes mellitus, and NASH[91-93]. These 
effects of HFD feeding are significantly accelerated in 
SIRT3 deficient mice[58]. Our unpublished data also 
show that overexpression of SIRT3 rescues NAFLD in 
mice heterozygous for the mitochondrial trifunctional 
protein, an animal model of mitochondrial dysfunction 
generated by our group[94].

SIRT3-KO mice subjected to MCD diet exhibit 
increased serum ALT levels, increased hepatic content, 
higher expression of inflammatory and fibrogenic 
genes, and reduced (SOD2) activity. However, over

expression of SIRT3 resulted in opposite effects sugge
sting that SIRT3 ablation aggravates MCD induced 
NASH while SIRT3 overexpression alleviates the MCD 
induced phenotype[95].

Palmitate modulated oxygen consumption and 
enhanced ROS levels and apoptosis in SIRT3 deficient 
mouse primary hepatocytes and SIRT3 siRNA-depleted 
hepatocytes[96]. Recent studies using HFD induced 
NAFLD in mice identified a differentially expressed 
microRNA (miRNA) in livers of NAFLD mice compared 
with controls. The expression of miRNA-421 was signi
ficantly upregulated in mice with NAFLD and SIRT3 was 
identified as target for this micro-RNA. Overexpression 
of miRNA-421 in hepatocytes decreased SIRT3 and 
FOXO3 protein levels, and reduced oxidative damage 
while suppression of this miRNA had opposite effects[97]. 
Interestingly, exposure of fetuses to maternal obesity 
contributes to early perturbations in whole body and 
liver energy metabolism, and this was associated 
with reduced SIRT3 and reduced hepatic FAO. These 
findings suggest that changes in SIRT3 activity precedes 
the development of obesity associated insulin resistance 
and NAFLD in the offspring[98]. 

Sirtuins activators and inhibitors
Weight loss through CR and exercise have been shown 
to improve insulin resistance and inflammation. Based 
on the beneficial effect of CR on NAFLD and other 
diseases and the associated increase in sirtuins levels 
or activity, the development of molecules that activate 
or inhibit sirtuins is of great interest[99].

The discovery of selective and potent sirtuins 
activators and inhibitors is still in its early stages. 
A list of Sirt1 activators that were tested in human 
and animal NAFLD is shown in Table 1[100-114]. RSV, a 
natural polyphenol found in grapes and other plants, 
mimicks CR and enhances sirtuins activity[102,109]. 
However, due to its poor bioavailability, reformulated 
forms of RSV-related compounds have been developed 
such as resVida, Longevinex®, SRT50 along with 
other RSV unrelated molecules such as SRT1720, 
SRT2104, and SRT2379. The formulated form of RSV 
resVida (150 mg/d RSV) showed beneficial effects, 
similar to CR effect, in healthy obese men including 
reduced intrahepatic lipid, plasma glucose, TG, alanine-
aminotransferase and inflammation markers[104]. 
SRT1720 was the most potent SIRT1 activator; it 
enhanced SIRT1 activity by 750% at 10 μmol/L al
though other studies by Pacholec et al[106] concluded 
that neither SRT1720 nor RSV are direct activators 
of SIRT1 and one study reported that RSV does 
not have beneficial effects in NAFLD patients[112]. 
Administration of SRT1720 to diet-induced obesity 
rodent models protected from obesity and insulin 
resistance by enhancing oxidative metabolism in 
the liver, muscle, and adipose tissues[105,107,111]. As 
in CR, SIRT1720 induced mitochondrial biogenesis, 
increase mitochondrial respiration and ATP levels[110]. 

Table 1  Published SIRT1 activators

SIRT1 activators Ref.

Resveratrol Howitz et al[109], 2003
Wood et al[102], 2004

Timmers et al[104], 2011
Smith et al[105], 2009
Milne et al[107], 2007
Amiot et al[113], 2013

Yoshino et al[100], 2012
Chachay et al[112], 2014

SRT1720 Feige et al[111], 2008
Funk et al[110], 2010 

Yamazaki et al[101], 2009
Pacholec et al[106], 2010

SRT2104 Libri et al[108], 2012
Venkatasubramanian et al[103], 2013

Hoffmann et al[114], 2013 
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Moreover, SRT1720 reduced levels of hepatic liver 
content and aminotransferase and the expressions of 
lipogenic genes[101]. Recent studies, however, indicate 
that the activation of SIRT1 by RSV is indirect and 
is mediated by activation of AMPK[40,115]. Sirtuins are 
themselves regulated by the cofactor NAD+ as well 
as their reaction product nicotinamide (NAM) from 
NAD+. NAM (the amide form of vitamin B3, nicotinic 
acid) is a water-soluble sirtuin inhibitor. NAM binds 
to a conserved region in the sirtuin catalytic site and 
favors a reverse reaction instead of the deacetylation 
reaction[116]. Computational studies indicate that NAM 
inhibition of SIRT3 involves apparent competition 
between the inhibitor and the enzyme cofactor NAD+ 
while the inhibition of other sirtuins activity was non-
competitive[117]. More detailed review on sirtuins 
inhibitors and activators is found in[99,118]. More studies 
are needed to develop more potent and specific 
activators and inhibitors of sirtuins activity.

CONCLUSION
Sirtuins represent potential targets for treatment of 
NAFLD due to the role they play in cellular pathways 
involved in hepatic lipid and carbohydrate metabolism, 
insulin signaling, and inflammation. Additional studies 
are urgently needed to further our understanding of 
the interaction among various sirtuins in NAFLD and to 
develop selective activators/inhibitors of sirtuins.
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