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Abstract
Macrophages are key players in various immune re
sponses. In addition to functions in innate immunity such 
as antigen phagocytosis and cytokine production, antigen 
presentation by macrophage represents a link between 
innate and acquired immunity. During inflammatory 
processes, naïve monocytes differentiate into pro-
inflammatory M1 and anti-inflammatory M2 macrophages. 
Resident monocytes/macrophages contribute to immune 
response that maintains tissue-specific homeostasis. In 
the target organs of autoimmune diseases, macrophages 
have dual functions in both the induction and suppression 
of autoimmune responses, which are mediated by 
production of various cytokines and chemokines, or by 
interaction with other immune cells. This review focuses 
on selected autoimmune diseases, such as systemic 
lupus erythematosus, multiple sclerosis, rheumatoid 
arthritis, and Sjögren’s syndrome, to illustrate the key 
roles of macrophages in the cellular or molecular patho
genesis of autoimmunity. In addition, the contribution of 
macrophages to each autoimmune disease is compared. 
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Core tip: Macrophages are well known as phagocytic 
cells and the source of cytokines and other immuno
modulators of the innate immune system. There are 
many reviews of macrophage function, but not many 
that focus on their role in autoimmunity and autoimmune 
disease. This review focuses on the role of tissue resident 
macrophages in autoimmunity both in general and 
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several selected autoimmune diseases, develops a novel 
context for evaluation and a slightly different way of 
thinking of the complex interactions involved in “mistaken 
self-identity”.
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INTRODUCTION
Autoimmunity proceeds via a complex interaction of 
immune responses by a variety of immune cells in both 
lymphoid and target organs[1]. In some autoimmune 
diseases, T-cell-mediated autoimmune responses are 
involved in the onset or development of disease. Auto
reactive T cells are generated in the thymus and other 
peripheral lymphoid organs in an environment that 
includes other immune cells, stromal cells, and various 
epithelial cells[2,3]. Because the activities of autoreactive 
T cells are regulated by interactions with regulatory T 
(Treg) cells, dendritic cells, macrophages, and B cells, 
the pathogenesis of autoimmune diseases cannot 
be considered simply as a T-cell-mediated immune 
response[4]. The interactions of T cells with other immune 
cells in the pathogenesis of autoimmune disease have 
been described in many research reports[5]. 

Macrophages differentiate from bone marrow-derived 
monocytes or tissue resident cells that are derived from yolk 
sac or fetal liver, such as histiocytes, Kupffer cells, microglia, 
alveolar, peritoneal, and synovial macrophages[6,7]. In 
the innate immunity system, macrophages function as 
phagocytic cells that engulf and digest cellular debris, 
foreign substances, microbes, and pathogens[8]. They 
also secrete cytokines and chemokines that modulate 
the activities of other immune cells in the inflammatory 
lesions[8]. The third macrophage function in innate 
immune system is antigen presentation to T cells which 
represents a link between innate and acquired immunity 
as well as dendritic cell[8]. Macrophages also contribute to 
the recovery of injured tissue by promoting angiogenesis 
or fibrosis[9]. The functions of tissue-resident macro
phages have been the topic of recent reviews.

Classically activated (M1) macrophages produce pro-
inflammatory cytokines, such as interleukin (IL)-1β, 
interferon (IFN)-γ, and tumor necrosis factor (TNF)-α 
that promote various inflammatory responses[6,10]. Alter
natively activated (M2) macrophages produce anti-
inflammatory cytokines, such as IL-10 and IL-4. There 
are three macrophage subsets (M2a, b, and c) with 
characteristic stimuli or cytokine profiles[6,10].

Although macrophages are involved in inflammatory 
stimuli, including autoimmunity, the lesions accompany
ing such responses are not induced by macrophages 
only. In addition, these cells also support tissue repair 

and immune homeostasis restoration. Therefore, the 
complex pathogenesis of autoimmune diseases can be 
seen as reflecting macrophage dysfunction. Further, the 
comparison regarding the contribution of macrophages 
to the pathogenesis between representative autoimmune 
diseases would be important for understanding the cellular 
mechanisms of the onset or development of autoimmune 
diseases. We review recent studies elucidating the role 
of macrophages in cellular and molecular mechanisms 
of autoimmune disease; moreover, we discuss potential 
novel clinical approaches to treat autoimmune diseases 
by targeting macrophages.

MACROPHAGE SUBSETS
Monocytes differentiate into classically activated (M1) 
or alternatively activated (M2) macrophages following 
exposure to polarization signals such as cytokeines, 
chemokines, hormones, bacterial products, and lipids 
(Figure 1A). Exposure of naïve monocytes to IFN-γ, TNF-α, 
or lipopolysaccharide (LPS) induces M1 development. 
M1 macrophages produce pro-inflammatory cytokines, 
including TNF-α, IL-1β, IL-6, IL-12 and IL-23, which in 
turn promote development and responses of Th1 cells[6,9]. 
By contrast, M2 macrophages are further classified into 
three subpopulations, depending on the response to 
various stimuli[6,10]. Exposure of naïve monocytes to IL-4 
and IL-13 promotes M2a macrophages which express 
arginase Ⅰ and produce IL-10, TGF-β, IL-1Ra, CCL17, 
CCL22 and CCL24 to promote Th2 cells, eosinophils and 
basophils (Figure 1A)[6-10]. M2b macrophage development 
is induced by LPS, immune complexes (ICs), or apoptotic 
cells, In turn, M2b macrophages express inducible 
nitric oxide synthase and produce high level of IL-10, 
TNF-α, IL-1β, IL-6 and CCL1, which then promote re
cruitment of eosinophils and Treg cells (Figure 1A)[6-10]. 
M2c macrophages are elicited by IL-10, TGF-β, or gluco
corticoids and express arginase Ⅰ. M2c macrophages 
exert an immunosuppressive function by promoting the 
development of Th2 cells and Treg cells (Figure 1A)[6-10].

TISSUE MACROPHAGES
In addition to the functional macrophage subtypes, there 
are subpopulations of tissue resident macrophages. These 
include microglia in the brain, intraocular macrophage 
in the eye, Langerhans cells in the skin (dermal DCs), 
salivary macrophage in the salivary glands, alveolar 
macrophage in the lung, splenic macrophages, Kupffer 
cells in the liver, intestinal macrophages, subcapsular 
sinusoidal macrophages and medullary macrophage 
in the lymph nodes, bone marrow macrophages, and 
osteoclasts in bone, all of which contribute to various 
tissue-specific immune surveillance (Figure 1B)[9]. For 
example, alveolar macrophages remove foreign antigens or 
allergens in the lung: Kupffer cells contribute to clearance 
of pathogens and toxin in the liver[8,9]. Recent studies 
demonstrate that resident macrophages derives from 
yolk sac and fetal liver in addition to bone marrow (Figure 
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1B)[7]. Adipose tissue macrophage (ATM) are involved in 
the pathogenesis of metabolic diseases such as obesity 
and type 2 diabetes, in which accumulation of M1 ATMs 
promote inflammation and insulin resistance[11,12]. Re
sident macrophages are located in the all tissues, and 
play important roles in immune surveillance function to 
maintain the homeostasis.

Macrophage accumulation within the vascular wall is a 
hallmark of atherosclerosis. The lesional macrophages are 
derived from both blood monocytes and smooth muscle 
cells, and accumulate lipoproteins by macropinocytosis, 
phagocytosis, and binding to scavenger receptors, 
such as SR-A, SR-BI, CD36, and LOX1[13]. The vascular 
subsets include M(Hb) and Mhem macrophages that are 
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Figure 1  Macrophage differentiation and resident macrophages. A: Naïve monocytes differentiate into M1, M2 and atherosclerosis-related macrophages [M(Hb), 
Mox, and M4] by various stimuli. M1 macrophages enhance inflammation through producing TNF-α, IL-1β, IL-6, IL-12 and IL-23. M2 macrophages polarize to three 
subsets (M2a, M2b and M2c) by cytokines or ICs to suppress inflammation and repairs tissues through producing regulatory cytokines, such as IL-10, TGF-β, Il-1R 
ligands and IL-6. Macrophage precursors (monocytes) are circulating, and quickly migrate into all tissues of the body, in which monocytes differentiate into mature 
macrophages with unique functions in each tissue; B: Resident /tissue macrophages are derived from bone marrow, yolk sac, and fetal liver to settle in various tissues. 
Resident macrophages contribute to homeostasis in the tissues. OxPLs: Oxidized phospholipids; ICs: Immune complexes; IFN: Interferon; TNF: Tumor necrosis 
factor; IL: Interleukin; MCP-1: Monocyte chemotactic protein-1; LPS: Lipopolysaccharide; iNOS: Inducible nitric oxide synthase.
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resistant to lipid loading and are induced by hemoglobin-
haptoglobin complexes and hem[13-15]. The Mox macro
phage subset is induced by exposure to oxidized pho
spholipids and is characterized by expression of high 
levels of heme oxygenase-1[13,16,17]. In addition, M4 
macrophage is induced by CXCL4, and associated with 
the pathogenesis of atherosclerosis (Figure 1A)[13,16-18].

Macrophages are also a functional link between 
inflammation and cancer. There is strong evidence that 
tumor-associated macrophages (TAMs) can promote 
tumor progression[19,20]. Cytotoxic killing by M1 TAMs, 
has an antitumor effect, but angiogenesis stimulated 
by vascular endothelial growth factor produced by M2 
macrophages promotes tumor growth[21,22]. A number of 
diverse macrophage-associated phenotypes contribute to 
tumorigenesis in the complex tumor microenvironment.

IMPAIRED ENGULFMENT BY 
MACROPHAGE AND SYSTEMIC 
ERYTHEMATOSUS
Impaired engulfment of dead cells by macrophage results 
in activation of autoimmune responses leading, severe 
autoimmune anemia, and chronic arthritis[23-26]. Apoptotic cells 
release “find me” signals, such as lysophosphatidylcholine, 
to attract phagocytes and expose “eat me” signals on the 
cell surface that stimulate engulfment[23,27]. One of the “eat 
me” signals is phosphatidylserine, which is exposed on 
the cell surface during apoptosis. Macrophages recognize 
phosphatidylserine, engulf the apoptotic cells, which are 
transferred to the lysosomes and degraded by lysosomal 
enzymes. Bridging molecules such as milk fat globule EGF 
factor 8 (MFG-E8) and growth arrest-specific 6 (Gas6) 
protein mediate binding between phosphatidylserine 
on the apoptotic cells, and integrin and tyrosine-kinase 
receptors on macrophages[23,26]. The clearance of apoptotic 
cells in the body is controlled by complex molecular and 
cellular interaction with macrophages.

If apoptotic cells are not engulfed, then they undergo 
secondary necrosis, in which the plasma membrane dis
integrates with release of the cellular contents, which 
then bind to immunoglobulins and complement proteins, 
and activate macrophages and B cells. In addition to Fc 
receptors and B cell receptors, also Toll-like receptors 
are able to recognize the necrotic cell components 
and activate macrophages and B cells. The activated 
macrophages secrete cytokines that stimulate B cells 
to produce autoantibodies able to cause pathological 
conditions such as systemic erythematosus (Table 1)[23,26]. 
In addition, if lysosomal digestion is defective, the dead 
cell components accumulate in the lysosomes, leading 
to intracellular activation of pro-inflammatory cytokines 
such as IFN-β and TNF-α production by the innate 
immune system[23,26]. Thus, both extracellular activation 
of immune responses by apoptotic cells that are not 
phagocytized and intracellular activation of macrophages 
by impaired processing of apoptotic cells contribute to 
the onset or development of autoimmunity.

MACROPHAGES IN MULTIPLE 
SCLEROSIS
Multiple sclerosis (MS) is a debilitating neurological dis
order of the central nervous system (CNS). It is a T-cell-
mediated autoimmune disease with clinical signs and 
symptoms characterized by weakness and progressive 
paralysis[28,29]. Studies of experimental autoimmune 
encephalomyelitis (EAE), an animal model of MS, have 
demonstrated that autoreactive T cells against myelin 
proteins play a key role in disease development[30,31]. Th1 
and Th17 cells trigger autoreactive responses within the 
CNS through pro-inflammatory cytokines including IFN-γ, 
IL-17, IL-12, and IL-23. At later phases of MS, Th2 and 
Treg cells contribute to controlling inflammation. 

Macrophages participate in the pathogenesis of EAE[32,33]. 
Indeed, there are few infiltrating macrophages in the CNS 
under physiological conditions. However, during induction 
and exacerbations of EAE, macrophages infiltrate the 
meninges surrounding the CNS, the perivascular space, 
and the choroid plexus[34,35]. The number of infiltrating 
macrophages in the CNS decreased during remissions in 
parallel with the decrease in lymphocyte infiltrates[34,35]. 
The expression of chemokines and chemokine receptors 
by CNS macrophages contributes to the induction and 
progression of EAE[36]. EAE studies have demonstrated 
that up-regulation of CCR2, CCL2, CCL3, CCL4 and 
CCL22 induces macrophage accumulation and effector 
function in the CNS[37,38]. Moreover, CCR4, a receptor 
for CCL17 and CCL22, is up-regulated in macrophages 
present in the CNS lesions[39]. CCR4 gene knockout mice 
exhibit lower macrophage infiltrates in the CNS, and 
exhibit milder EAE symptoms than those seen in wild 
type mice[40]. 

Both M1 and M2 macrophages play important 
roles in enhancing and regulating the pathogenesis 
of EAE. TNF-α, IL-1β, IL-12 and nitric oxide, expressed 
by activated M1 macrophages, induce inflammation 
and tissue damage in the CNS[41-43]. Fewer M2 than M1 
macrophages are present in the CNS during exacerbations 
in EAE mice. An increase in the M2 macrophage population 
contributes to anti-inflammatory effect associated with 
increased production of IL-4, IL-10, IL-13 and TGF-β[44]. 
Moreover, M2 macrophages are thought to have more 
regulatory function in the pathogenesis of EAE[45]. In 
addition to tissue repair, the anti-inflammatory cyto
kines produced by M2 macrophages drive differentiation 
and recruitment of Th2 and Treg cells to suppress the 
autoimmune response in EAE[45]. Adoptive transfer of M2 
macrophages into EAE mice significantly inhibits disease 
development[41,44]. Thus, macrophages play key roles in 
the pathogenesis of MS (Table 1). 

MACROPHAGE IN RHEUMATOID 
ARTHRITIS 
Rheumatoid arthritis (RA) is a chronic autoimmune 
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disorder characterized by inflammation of the synovial 
lining of the joint capsule. Pathological characteristics 
of RA lesions include immune cell infiltration, synovial 
cell hyperproliferation, fibrosis (pannus formation), and 
destruction of cartilage and bone[46]. Various immune 
cells are observed in RA lesions, including CD4+ T 
cells, CD8+ T cells, B cells, natural killer (NK) cells, γδT 
cells, mast cells, dendritic cells, and macrophages[47,48]. 
Monocyte/macrophage-derived cytokines, such as 
TNF-α, IL-1β, IL-12, IL-6, IL-15, IL-18 and IL23, trigger 
and enhance the activation and recruitment of Th1 and 
Th17 T cells in the synovial tissues of RA patients and 
animal models[49]. In addition, activated macrophages 
also play an important role in controlling Treg cells in the 
pathogenesis of RA[49,50]. 

Synovial macrophages are resident cells in the 
synovial tissues of healthy joints[49]. The macrophages 
become activated and polarized to form M1 or M2 
phenotype within RA lesions. However, inflammatory 
synovial macrophages have not yet been classified into a 
phenotype. Many M1 macrophages that produce TNF-α 
and IL-1β are observed in the synovial tissues of RA 
patients along with M2 macrophages that produce IL-10. 
The ratio of M1 to M2 macrophages present in synovial 
lesions varies in relation to disease stage. IFN-γ and TNFα 
promote polarization to M1 macrophages during synovial 
inflammation in early stage disease[51,52]. IFN regulatory 
factor (IRF) 5 is thought to be a key transcription factor 
for M1 macrophage differentiation[53]. IL-10, IL-4, IL-13 
and ICs promote polarization to M2 macrophages and 
suppression of synovial inflammation at later stage[54]. 
M2 macrophage differentiation is controlled by a lot of 
number of transcription factors, including IRF3, IRF4, and 
nuclear factor (NF)-κB (Table 1)[55-57]. 

Therapies targeting monocyte/macrophage have been 
used to treat RA. Inhibition of TNF-α produced by synovial 
inflammatory macrophages promotes IL-10 expression 

by CD4+ T cells, enhances Treg cell function, promotes 
monocyte apoptosis via transmembrane (tm)TNF-α, and 
is associated with an antiosteoclast effect[58-63]. Inhibition 
of IL-6 signaling enhances the frequency of Treg cell, 
and monocyte apoptosis[64-69]. Abatacept [cytotoxic 
T-lymphocyte antigen 4-Ig (CTLA4-Ig)] inhibits both the 
interaction between monocytes/macrophages and T cells, 
and monocyte differentiation into osteoclasts[70]. Therefore, 
macrophages contribute to the pathogenesis of RA directly 
or indirectly. Clinical use of agents that target macrophage 
function would likely be effective for treating RA.  

MACROPHAGES IN SJÖGREN’S 
SYNDROME
Sjögren’s syndrome (SS) is a chronic autoimmune dis
ease that targets exocrine glands, such as salivary and 
lacrimal glands, and also causes systemic autoimmune 
lesions[71]. The mononuclear cell populations infiltrating 
the salivary gland tissues of SS patients include CD4+ T 
cells, CD8+ T cells, Treg cells, B cells, NK cells, DCs and 
macrophages[72]. Among them, infiltration of CD4+ T cells, 
Treg cells, B cells, DCs and macrophages is correlated 
to lesion severity[73]. SS is triggered by T-cell-mediated 
autoimmune responses; however, also other immune 
cells contribute to the onset or development of SS, 
including macrophages. Macrophages are observed in the 
autoimmune lesions of the salivary gland tissues from 
SS patients (Figure 2). Indeed, an elevated expression of 
macrophage-derived molecules, such as chitinase-3-like 
protein 1 and chitinase 1, is associated with increased 
severity of SS lesions, suggesting that macrophages are 
involved in the pathogenesis of SS[74]. In addition, pro-
inflammatory cytokines produced by macrophages, such 
as TNF-α, IL-1β, IL-6 and IL-12, have been associated 
with the induction of autoimmune lesions in the target 
glands of MRLlpr/lpr mice, a murine model of SS[75]. In 
a SS model using autoimmune regulator (AIRE) gene 
knockout (KO) mice, many macrophages in addition 
to CD4+ T cells infiltrated the corneal stroma, limbus, 
and lacrimal glands[76]. Adoptive transfer of CD4+ T cells 
from AIRE KO mice into immunodeficient recipient mice 
resulted in local infiltration of macrophages in the target 
tissue[76]. Moreover, in vivo depletion of macrophages 
by injection of clodronate liposome into AIRE KO mice 
attenuated dry eye symptoms[76]. Therefore, autoreactive 
T cells may elicit macrophage infiltration into the target 
organs of macrophage-associated autoimmune lesions 
(Table 1).

Aromatase is an enzyme that converts androgens 
to estrogens. Aromatase gene knockout (ArKO) mice 
develop marked abdominal adiposity, suggesting that 
aromatase regulates lipid metabolism[77,78]. ArKO mice 
also spontaneously develop an autoimmune disease in 
exocrine glands, such as salivary and lacrimal glands 
that resembles SS[79]. We reported significantly increased 
expression of mRNA encoding pro-inflammatory cyto
kines, IL-1β, IL-6, IFN-γ, TNF-α, and monocyte che

Figure 2  Macrophages in autoimmune lesions. CD68+ macrophages 
infiltrate in the salivary gland tissue from SS patients. Immunohistochemical 
analysis using paraffin-embedded sections from lip biopsy materials was 
performed by staining with anti-CD68 antibody (DAKO). Biotinylated antibody 
and horseradish peroxidase (HRP)-conjugated streptavidin (LSAB kit, DAKO) 
was used as a secondary antibody, and then CD68+ cells were detected by 
using 3,3’-Diaminobenzidine (DAB) as a substrate. Counter staining was 
performed with hematoxylin. Original magnificaion is × 400. Arrows show CD68+ 
macrophages.
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motactic protein-1 (MCP-1) in white adipose tissue of 
ArKO mice[80]. We also found an increased number of 
inflammatory M1 macrophages in white adipose tissue of 
ArKO mice, and significant enhancement of MCP-1 mRNA 
expression in the salivary gland tissue[80]. The severity of 
autoimmune lesions in a murine SS model exacerbated 
by administration of an aromatase inhibitor, and the 
percentage of macrophages in the spleen of SS model 
mice treated with aromatase inhibitor was significantly 
higher than that in control mice[80]. Collectively, the 
data indicates that aromatase may be involved in the 
pathogenesis of SS-like lesions by controlling the target 
organ- and adipose tissue-associated M1 macrophages.  

CONCLUSION
Macrophages have dual functions in promotion and 
regulation of inflammation. The differentiation and 
distribution of macrophages influence the onset or 
development of systemic and organ-specific autoimmune 
diseases. Macrophages serve as a bridge between innate 
and adoptive immunity to maintain immunological 
homeostasis, and macrophage dysfunction or impair
ment leads to the induction of severe immune disorder. 
Clinical interventions targeting macrophages may result 
in discovery of novel treatments of immune disorders, 
including autoimmune diseases. 
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