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Abstract
Macrophages (MΦ) differentiate from blood monocytes 
and participate in innate and adaptive immunity. 
Because of their abilities to recognize pathogens 
and activate bactericidal activities, MΦ are always 
discovered at the site of immune defense. MΦ in the 
intestine are unique, such that in the healthy intestine, 
they possess complex mechanisms to protect the gut 
from inflammation. In these complex mechanisms, 
they produce anti-inflammatory cytokines, such as 
interleukin-10 and transforming growth factor-β, and 
inhibit the inflammatory pathways mediated by Toll-like 
receptors. It has been demonstrated that resident MΦ 
play a crucial role in maintaining intestinal homeostasis, 
and they can be recognized by their unique markers. 
Nonetheless, in the inflamed intestine, the function of 
MΦ will change because of environmental variation, 
which may be one of the mechanisms of inflammatory 
bowel disease (IBD). We provide further explanation 
about these mechanisms in our review. In addition, 
we review recent discoveries that MΦ may be involved 
in the development of gastrointestinal tumors. We 
will highlight the possible therapeutic targets for the 
management of IBD and gastrointestinal tumors, and 
we also discuss why more details are needed to fully 
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understand all other effects of intestinal MΦ.

Key words: Macrophages; Homeostasis; Inflammatory 
bowel disease; Gastrointestinal tumors; Therapeutic 
targets

© The Author(s) 2018. Published by Baishideng Publishing 
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Core tip: The manuscript involves three components. 
First, after briefly describing the origin of macrophages 
(MΦ), it summarizes their general biologic features and 
common functions. The second component reveals 
the differences between resident MΦ in the intestine 
and those in other tissues. Notably, we depicted 
how resident MΦ participate in maintaining intestinal 
homeostasis and why they can maintain intestinal 
health by comparison between each of these distinct 
features. The third part discusses how the deficiency 
of this anti-inflammatory system leads to autoimmune 
diseases. However, we also discuss the many details 
of why intestinal MΦ and the underlying mechanism 
of inflammatory bowel disease and gut tumors remain 
obscure.

Liu YH, Ding Y, Gao CC, Li LS, Wang YX, Xu JD. Functional 
macrophages and gastrointestinal disorders. World J Gastroenterol 
2018; 24(11): 1181-1195  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v24/i11/1181.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i11.1181

INTRODUCTION
The intestine is organized into distinct specialized and 
functional tissues, such as the epithelium and lamina 
propria (LP). As the major site of bacterial coloniza­
tion (102 cfu/mL in the duodenum, 102 cfu/ml in the 
jejunum, 103 cfu/ml in the proximal ileum, 107-108 

cfu/ml in the distal ileum, and 1011-1012 cfu/mL in the 
colon[1]), it is crucial to maintain intestinal homeostasis 
in which the intestinal immune system contributes 
to such maintenance under physiological conditions. 
Meanwhile, both commensal bacteria and their products 
play important roles[2]. 

The mammalian intestine is considered the largest 
immune organ in the body. It is estimated that 
65%-80% of the immune cells, such as macrophages 
(MΦ), dendritic cells (DCs), T cells and B cells[3], exist 
in the intestine. There are many lymphocytes and 
natural killer (NK) cells in the region of the epithelial 
base[4,5]. Most of the intraepithelial lymphocytes are T 
cells, and they express CD3, CD8[6], TCRαβ[5] or TCRγδ[7] 
(mainly in mice). Goblet cells of the intestinal epithelium 
secrete net-like MUC2 mucins that compose the surface 
mucus layer, which can filter out microbes[8,9]. Both the 
intestinal epithelium and mucus layer constitute the 

double-protective barrier to maintain homeostasis at the 
entrance where pathogens invade. With the background 
described above, it seems that MΦ are insignificant 
in the intestinal immune system. In fact, they play 
a unique supporting role in maintaining the balance 
of intestinal immunity, and they are by no means as 
simple as we thought.

MΦ are one of the nonhematopoietic cells in all 
mammalian species that are distributed throughout 
the tissues of individuals. Their origin is relatively clear, 
and their biologic features have long been explored. 
In terms of immune defense, their name reveals their 
function: phagocytosis. They participate in innate 
immune responses and adaptive immune responses, 
especially in the intestine, which is the largest pool of 
MΦ and commensal bacteria. They can be considered 
as regulators instead of inflammation propellants (see 
below). 

Emerging evidence suggests that intestinal resident 
MΦ contribute to maintaining intestinal homeostasis by 
several mechanisms (see below), and the production 
of immunosuppressive cytokines and their inhibitory 
biologic behavior suppress cascaded inflammatory 
responses. This is beneficial to the host because they 
protect the intestine from over-responding to commensal 
bacteria, resulting in severe tissue damage. Thus, 
they have attracted increasing attention in research on 
intestinal homeostasis and the correlative mechanisms 
of intestinal autoimmune diseases, represented by 
inflammatory bowel disease (IBD).

IBD includes two types of diseases: ulcerative colitis 
(UC) and Crohn’s disease (CD). IBD has long been consi
dered a typical autoimmune disease. Several reports 
have confirmed that multiple factors, for example, epith
elial defects, disturbance of commensal or pathogenic 
bacteria and destruction of the mucus layer, lead to the 
development of IBD. In addition, intestinal MΦ highlight 
the defects of their protective function in IBD.

In addition, we propose some promising targets for 
the studies and treatments of IBD and gastrointestinal 
tumors. These comprehensive descriptions and findings 
of MΦ above have been summarized in figures of our 
manuscript to make the unique function of intestinal MΦ 
more understandable. 

MACROPHAGES: DIFFERENTIATION AND 
BIOLOGY
Macrophages differentiate from blood monocytes
In 1884, Ilya Ilyich Mechnikov, an immunologist 
and pathologist in Russia, identified MΦ. Hereafter, 
the exploration of this cell type has never waned. 
Regarding the origin of MΦ, the mononuclear phagocyte 
system arises from hematopoietic stem cells in the 
bone marrow and from progenitors in the embryonic 
yolk sac[10], as well as from fetal liver during early 
development. As early as 1980, it was verified by using 
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the Chediak-Higashi marker that both interstitial and 
intraalveolar MΦ of the lung are derived from bone 
marrow precursor cells[11]. The family of mononuclear 
phagocytes consists of monocytes (Mo), MΦ, osteoclasts 
and DCs. 

Granulocyte-macrophage colony stimulating factor 
(GM-CSF) is a major factor that can promote hema
topoietic stem cell differentiation into granulocyte-
monocyte cells, promonocytes and Mo[12,13]. Thereafter, 
Mo circulate in the blood stream in different types of 
tissues (the environment with different types of tissues 
controls the differentiation and maturation of resident 
MΦ by several molecular mechanisms[14-19]), a part of 
the blood MΦ undergo maturation, adapt to their local 
microenvironment and turn into various resident MΦ. 
Resident MΦ may remain as relatively long-life span 
cells, although they usually cease to proliferate[20]. 
The remaining blood Mo differentiate into free MΦ, 
migrating between diverse tissues like amoebae. 

To be more rigorous, some researchers further 
showed that Mo in the bone marrow can be classified as 
Ly6Chi Mo and Ly6Clo Mo by their expression of Ly6C/Gr1, 
CCR2 and CX3CR1. Ly6Chi Mo express high levels of 
Ly6C/Gr-1, CCR2 and CD62L, but low levels of CX3CR1. 
CCR2 is a chemokine receptor, which is essential for 
Ly6C+Gr1+CX3CL1- Mo to enter the circulation. Ly6Clo 
Mo express low levels of Ly6C/Gr1, CCR2 and CD62L 
but high levels of CX3CR1[21]. Ly6Clo Mo are proposed 
to be the precursors of resident MΦ[4,22], but there are 
some conflicts about this hypothesis if the Mo entering 
the blood stream rely on expressing CCR2, and there 
is no abundant evidence to support this conclusion. 
Moreover, MΦ differentiate from blood Mo, a finding 
that has been challenged recently. Some researchers 
have suggested that blood Mo contribute little to MΦ 
in the steady state, and emerging evidence indicates 
that resident MΦ can undergo self-renewal[23]. However, 
other researchers demonstrated that blood Ly6Chi Mo 
are responsible for turning into resident MΦ because 
they convert into Ly6Clo Mo and can return to the 
bone marrow, differentiating into Ly6Clo Mo[21]. This 
explanation may be helpful to understand the origin of 
resident MΦ.

Biologic features and common functions of 
macrophages
The volume of MΦ is 5-10 times that of Mo, and they 
have more organelles (especially lysosomes), folds 
and pseudopodia. Resident MΦ are widely distributed 
throughout the body with distinctive phenotypes - for 
example, dust cells in lung, Langerhans cells in skin, 
histiocytes in connective tissue, Kupffer cells in the 
liver, mesangial cells in the kidney and microglial cells 
in the central nervous system. 

A considerable amount of MΦ exists in the intestine, 
and specific markers expressed by MΦ can be used 
to study the heterogeneity. For instance, the F4/80[24] 
antigen and macrosialin in mice are proven to be useful 

markers in most of the tissues to define the distribution 
of MΦ, while several antigens such as sialoadhesin, a 
lectin-like receptor for sialylated glycoconjugates, are 
particularly strongly present in populations of MΦ in 
lymphoid organs that do not express F4/80 or CD68. 
In humans, the CD68 antigen (the human homolog of 
macrosialin) is widely found in MΦ expressing EMR2 (the 
human homolog of F4/80)[20]. 

Presently, many promising markers are awaiting 
identification, and some detected materials have 
already generated new hypotheses. For example, 
matrix metalloproteinase-9, produced by MΦ in the 
early phase of mouse peritonitis, may be used as 
an inflammatory marker[25]. In addition, the protein 
dehydrogenase/reductase-9 was identified as a specific 
and stable marker of human regulatory MΦ (Mregs)[26], 
which contributed greatly to the existing body of 
knowledge on immunosuppressive therapy. 

MΦ can be classified as M1 and M2, functionally 
within the Mregs. M1 MΦ produce high interleukin 
(IL)-12 and low IL-10, while M2 MΦ show the opposite 
trend. Additionally, M2 MΦ express IL-13α1, but M1 
MΦ do not[27]. A recent study has shown that a novel 
marker, MS4A4A (a member of the membrane-
spanning 4A gene family), is only expressed in M2 MΦ 
- that is, MS4A4A might be a surface marker of M2 

MΦ[28]. M2 MΦ were largely mysterious in the past, 
while the importance of M1 MΦ in mucosal biology has 
been appreciated for decades; the immune regulatory 
function of M2 MΦ has only begun to be understood in 
the last few years. Additionally, their differentiation, as 
well as their differences from M1 MΦ in cell biology, will 
become clearer in the future. Thus, regarding Mregs, 
it is also important that they are activated by different 
pathways and play diverse roles in the immune 
system, which will be described below.

MΦ, “big eaters”, are named after their major fun
ction: phagocytosis, involving the uptake of particulate 
materials (> 5.0 μm) by opsonic (Fc receptors and C3b 
receptors) or non-opsonic receptors such as mannose 
receptors, scavenger receptors, formyl-methionine-
leucyl-phenylalanine, and pattern recognition receptors 
(PRRs), especially the Toll-like receptors (TLRs). With 
the existence of these receptors, MΦ can participate in 
innate immunity and adaptive immunity (Figure 1).

MΦ dispose of approximately 2 × 1011 erythrocytes 
a day and clear damaged or dying cells[20]. Activated 
MΦ can recognize microorganisms that break into 
the epithelial or mucosal barriers with their special/
nonspecial receptors and stretch the pseudopodia to 
swallow these microbes, followed by their digestion 
by oxygen-dependent/-independent pathways in 
phagolysosomes. Beyond that, MΦ can be activated by 
IL-8 and release chemotactic factors and mediators of 
inflammation (IL-1, IL-6, IL-12 and tumor necrosis factor 
(TNF)-α, which recruit neutrophils to the inflammatory 
site. 

The neutrophils produce bactericidal compounds, 
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microbial productions promote the expression of MHCII 
molecules and costimulatory molecules in MΦ, which 
probably enhance the autoimmune response[29].

Gut-associated lymphoid tissues, including dispersed 
and aggregative tissues, are the primary part of the 
intestinal immune system[30-32]. The latter type is 
represented by Peyer’s patches (PPs), settled in the LP 
of the appendix and small intestine, and the solitary 
lymphoid follicles, widely distributed in the intestinal 
LP[33,34]. The PPs look like an arch, and they are covered 
by follicle-associated epithelium, which involves special 
cells named microfold/membranous cells (M cells)[34,35]. 
T cells, B cells[36], DCs and MΦ exist in a pocket-like 
structure outside the base of M cells. M cells efficiently 
uptake antigens. However, instead of processing and 
presenting antigens, they are only responsible for 
transporting antigens and communicating with the 
resident B cells in the center of PPs. 

Most PP cells are B cells, and only a few are T cells, 
which has been explored in mature mice. The B cells 
located in the germinal centers of PPs can produce 
IgA[37-40] (ingredient of sIgA) to participate in pathogen 
defense. In addition, M cells transport antigens to 
epithelial cells or antigen presenting cells (DCs and MΦ) 
to induce the adaptive immune response. It has been 
certified that the cell-bound antigen transportation 
can affect mucosal tolerance with the participation of 

causing the liquefaction of tissue and formation of 
pus to eliminate the invading as well as missing 
pathogens. To complement MΦ, neutrophils secrete 
several preformed proteins stored in the granules, such 
as lactoferrin, lipocalin, lysozyme, IL-37, defensins 
and myeloperoxidase (converts H2O2 to hypochlorous 
acid)[20]. However, MΦ are not so bellicose. To maintain 
homeostasis of innate immunity, several self-regulative 
mechanisms restrain inflammation. NK cells inhibit the 
activation of MΦ by releasing IFN-γ or reducing the 
number of overactive MΦ by cytotoxicity. IL-1β, IL-10 
and transforming growth factor (TGF)-β, produced by 
MΦ, are responsible for down-regulating the innate 
immune response. Moreover, the dead neutrophils 
are phagocytosed by mononuclear phagocytes, and 
lipoxins, protectins and resolvins contribute to the 
restoration of normal function[20].

In adaptive immunity, MΦ are an antigen-presenting 
cell type, like DCs. In the marginal sinus of a lymphoid 
organ, after digestion, MΦ present fragments at the 
cell surface on MHCII molecules. Indeed, MΦ are 
less effective than DCs in antigen presentation to 
naïve T cells because they only express appropriate 
costimulatory molecules (e.g., CD40, CD80 and CD86) 
following infection or contact with microbial productions. 
However, DCs express high levels of MHCII molecules 
as well as costimulatory molecules. In fact, several 

Resident MΦ Inflammatory MΦ

C3b

Fc

Hyperesponsiveness

PAMPs

IFN-γ IL-1 etc .Hyporesponsiveness

CD40                           SR                             C3bR                         FcR                            CKR

CD80/86                      MR                            MHCⅡ                       TLR                            fMLP

Figure 1  Receptors or molecules of resident and inflammatory macrophages. MΦ express opsonic (FcR and C3bR) or nonopsonic receptors, such as CKRs, 
MRs, SRs, fMLP and TLRs, as well as express high levels of MHC Ⅱ. However, there are some differences between resident MΦ and inflammatory MΦ. Resident MΦ 
(left side) do not express high levels of costimulatory molecules such as CD40, CD80 and CD86, and present hyporesponsiveness to TLRs to suppress inflammation. 
However, inflammatory MΦ (right side) show the opposite trend. The PAMPs lead to inflammation by connecting with hyperresponsive TLRs. CKR: Cytokine receptor; 
fMLP: Formyl-methionine-leucyl-phenylalanine; MR: Mannose receptor; MΦ: Macrophages; PAMP: Pathogen-associated molecular pattern; SR: Scavenger receptor; 
TLR: Toll-like receptor.
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regional lymph nodes[41].
M1 MΦ or classically activated MΦ develop in cell-

mediated immune responses, which are mainly driven 
by interferon (IFN)-γ and TNF. IFN-γ can be produced 
in innate immunity and adaptive immunity. In the 
former, NK cells are important, but the production of 
IFN-γ in NK cells is too transient for the persistence of 
this population of MΦ. Consequently, it is necessary to 
depend on the adaptive immune response; T helper 
(Th)1 cells release sustainable IFN-γ and induce classical 
activated MΦ to kill the microbes indiscriminately[42]. 

Endogenously produced IFN-β is another factor 
that can replace IFN-γ to activate classically activated 
MΦ[43]. M1 MΦ are the major component of host 
defense. They produce pro-inflammatory cytokines 
(e.g., IL-1, IL-6 and IL-23) and associate with Th cells, 
but it has been reported that their connection with 
Th17 cells, which produce IL-17, results in serious 
tissue damage. Thus, their over-activation may be the 
cause of autoimmune diseases[42].

M2 MΦ or alternatively-activated MΦ are produced 
during the innate or adaptive immune response. 
Basophils and mast cells produce innate IL-4, one of 
the first innate signals released during tissue injury, 
and IL-4 turns the resident MΦ into this population 
of cells to promote wound healing. IL-4 can also be 
released in adaptive immune responses that can 
be thought as particularly important pathways to 
develop and persist the alternatively-activated MΦ[42]. 
In addition, the Th2-type immune responses have 
been documented to work at the intestinal mucosal 
surface to respond to the disturbances by cytokines, 
such as IL-4 and IL-13[44]. However, compared with 
M1 MΦ, there is no sufficient evidence to show that M2 

MΦ directly participate in the bactericidal activities, 
but they do have indirect regulatory effects[45], which 
may explain why it is hotly debated in the field of 
neoplasms[46-56], fibrosis[57-60], metabolic syndrome 
(might relate to insulin resistance)[61-65] and intestinal 
autoimmune diseases.

Mregs are a type of immunosuppressive cells, 
which have been illustrated comprehensively by Mosser 
et al[42]. Those authors summarized the mechanisms 
of producing Mregs in innate and adaptive immune 
responses and the stimuli of these processes. In 
addition, they mentioned that Mregs produce IL-10 
and decrease the production of IL-12 to dampen 
inflammation. However, their helpful antiinflammatory 
function might be exploited by parasites to safely 
survive in the host’s defense, which is an interesting 
point and powerful evidence to confirm the role of 
Mregs in the immune system. 

To summarize, MΦ are extraordinarily complicated in 
their structure and functions. On the one hand, they are 
pioneers of pathogen defense in vivo, and one of the 
regulators that control the immune responses. On the 
other hand, they can be considered a bridge between 
innate immunity and adaptive immunity. It has been 

proven that they are very important in diseases such 
as asthma[66-70], atherosclerosis[71-76], retinopathy[77-80], 
neoplasm and autoimmune diseases. 

MΦ play a functional role in 
intestinal homeostasis
General characteristics of intestinal MΦ
The differentiation of intestinal MΦ rely on intestinal 
epithelial cells, which have been proven by an 
extracorporeal three-dimensional coculture model[81]. 
MΦ are found in the intestinal tract of all mammals, 
both in the mucosa and deeper layers[82]. They are 
found mostly frequently in the LP and produce PGF2 
to replenish deficient epithelial cells[23]. Several studies 
have summarized a rule about the quantity of intestinal 
MΦ, as follows: in different parts of the intestine, the 
numbers of MΦ correlate with the quantity of bacteria. 
An experiment provided the supporting evidence by 
recording the weight of each mouse organ or tissue 
and calculating their F4/80 antigen levels. The total 
F4/80 antigen levels in the small bowel were 1.3 × 107, 
and 1.4 × 107 in the large bowel. In the intestine of 
germ-free mice, the numbers of MΦ are decreased[24], 
likely indicating that the pathogen defense should also 
be the basic function of intestinal MΦ.

The general markers of MΦ have been mentioned 
above. Regarding intestinal MΦ, they can be recognized 
by their unique markers. Resident MΦ in the healthy 
mouse colon are F4/80hi, class Ⅱ MHChi (also found 
in humans[83]), CX3CR1hi, CD11c+, CD103- and 
Siglec F-[82]. Unlike resident MΦ in other tissues, the 
highly expressed CX3CR1 is unique. Furthermore, 
the intestinal MΦ express CD13[84], CD14 and CD70, 
and they can be subdivided according to their size[85]. 
Previously, it was difficult to distinguish between 
intestinal DCs and MΦ; however, a small population of 
mucosal MΦ has recently been found to express CD11c, 
which is a specific marker of DCs. The F4/80+, CD11b+, 
and CD68+ cells are more likely to be MΦ rather than 
DCs. They do not present antigens to naïve T cells, and 
only the CD103+CX3CR1- cells are classical DCs[82,86-90]. 
These findings resolved a few puzzles concerning 
intestinal DCs and MΦ-like cells with the emergence of 
a possible hypothesis about the relationship between 
intestinal MΦ and DCs.

Differences between macrophages in the intestine 
and other tissues are illustrated in Figure 1. Unlike MΦ 
in other tissues, resident MΦ[91] in the healthy intestine 
do not express high levels of costimulatory molecules, 
such as CD40, CD80 and CD86[83], and they do not up-
regulate costimulatory molecules or induce a respiratory 
burst to exterminate microbes[92-94]. Additionally, their 
responses to TLR ligands are unexpected[83,95]. TLRs are 
membrane glycoproteins located at the cell surface or 
within endosomes. They have an extracellular region to 
bind ligand and an ectoplasmic domain to trigger the 
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intracellular signaling cascade. They can form hetero- 
or homodimers with each other, or complex with other 
receptors to recognize a wide range of microbes. 

In general, with the TLRs, MΦ can be activated 
through many pathways mediated by MyD88, TRIF 
and NF-κB[20]. It is widely accepted that TLRs are 
the most characteristic PRRs. However, the intestinal 
resident MΦ do not respond to TLR ligands and produ
ce proinflammatory cytokines or chemokines, such 
as IL-1, IL-6, IL-12, IL-23, TNF-α and CXCL10[82,91], 
which can be considered the inertia of mucosal MΦ. 
It has been conjectured that such is likely due to the 
absence of TLRs and other receptors (NOD-1/NOD-2) 
or malfunction of signaling pathways (via inhibitors or 
other mechanisms[96])[82,97,98]. However, this does not 
mean that the intestinal resident MΦ do not express 
TLRs or that TLRs are not necessary. In fact, they are 
essential to protect the intestinal epithelium under 
pathological circumstances[97,99,100].

These differences between intestinal mucosal MΦ 
and their homogeneity in other tissues reveal that they 
are more likely to control inflammation and maintain 
homeostasis in healthy individuals. However, what will 
occur if the balance has become broken?

Intestinal MΦ change dramatically under different 
situations 
It is less rigorous to use the word “change[101]” in the 
subtitle because there is little detail to describe that 
the intestinal resident MΦ change into inflammatory 
MΦ (classical MΦ) under pathological circumstances 
with the changes in the environment, or that these 
two types of MΦ coexist in healthy intestine, working 
respectively. Nonetheless, there is another possibility. 
A credible concept has been explained[21] involving 
CD14hiCD16- Mo, which can be considered to enter 
the intestinal LP only in a CCR2-dependent[102] manner 
and turn into the resident CD14lo MHCIIhiCD163hiCD64+ 
MΦ or inflammatory CD14hiMHCIIhiCD163loCD64+ 
MΦ in different circumstances. However, confusion 
concerning the relationship between CD14hiCD16- Mo 
and Ly6Chi/ Ly6Clo Mo has emerged and remains to be 
directly described.

It is clear that intestinal resident MΦ produce 
antiinflammatory cytokines, especially IL-10 and 
TGF-β[4,84,103-111], whereas inflammatory MΦ work at 
the inflammatory site and have strong bactericidal 
activity, as explained above. In healthy intestine, 
IL-10 is produced by mucosal MΦ themselves and 
is a component of T cells[112]. Vasoactive intestinal 
peptide (VIP) and pituitary adenylate cyclase-activating 
polypeptide increase the production of IL-10 by mucosal 
MΦ in vitro and in vivo[113]. IL-10 prevents the NF-
κB pathway, and inhibiting the autocrine/paracrine 
production of IL-10 reverses TLR unresponsiveness in 
MΦ[82]. Maintaining Foxp3 expression of regulatory T 
cells (Tregs) has been reported as one of the important 

functions of IL-10 produced by MΦ[114]. CD4+Foxp3+ 
Tregs greatly contribute to the immune regulatory 
networks with the complement of other T cells and B 
cells, maintaining intestinal homeostasis[115]. Recently, 
research[107] on Citrobacter rodentium-infected mice 
with cell type-specific deletion of Il-10 demonstrated 
that IL-10 prevents excessive inflammation in acute 
bacterial infection by controlling IL-23[116,117] production 
to limit innate immunity. Another study indicated that 
the deficiency of IL-10 results in stable chromatin 
alterations in intestinal MΦ[118]. These results showed 
that IL-10 indeed plays a critical role in limiting 
inflammation. 

Another factor for antiinflammation is TGF-β. 
Intestinal resident MΦ express high levels of TGF-β 
receptors and show constitutively-active TGF-β signa­
ling[82]. TGF-β also connects with Foxp3, expressed 
by Tregs, and CD4+Foxp3+ Tregs decrease the ability 
of mucosal MΦ to activate and translocate NF-κB[115]. 
Intestinal resident MΦ do not respond to TLR ligands 
with the existence of TGF-β[82]. In contrast to IL-10, 
their production in murine MΦ is inhibited by VIP[111]. 
Moreover, the expression of Smad7 (a member of 
the Smad family that mediates a pathway for TGF-β 
and BMP-2 signal transduction) interrupts TGF-β 
signaling and activates inflammatory MΦ, a finding 
that was demonstrated in an experiment of necrotizing 
enterocolitis MΦ[110]. 

Currently, the study of CD200 for antiinflammation 
has received less attention. CD200L is a member of the 
protective system, with the ability to restrain the activity 
of MΦ. Inhibitory signaling of CD200L is triggered by 
the interaction with CD200 in nonhematopoietic cells as 
well as MΦ[20]. This process protects tissues from severe 
damage. A study reported that knock-out of CD200 or 
CD200R1 produces MΦ hyperactivity and autoimmune 
diseases[119]. Enlightened by this, it is possible to 
assume CD200 maintains intestinal homeostasis. There 
are some relevant studies in the respiratory system[120], 
but the existing evidence in the intestine remains 
insufficient. 

The enteric nervous system (ENS) plays a crucial 
role in controlling gastrointestinal physiology and in­
teracting with microbes and immune cells, functions that 
have been explored for decades. Accumulating evidence 
indicates they closely contact MΦ. The development of 
CX3CR1hiMHCIIhi CD11b+CD11cloCD103- muscularis MΦ 
(MMs) requires CSF1, and enteric neurons selectively 
express bone morphogenetic protein (BMP; expressed 
by MMs) receptor 2, which produces CSF1. By contrast, 
the expression of BMP2 activates enteric neurons. 
The correlation of MMs and ENS contributes to gut 
motility[121]. Additionally, MMs have been found to 
express tissue-protective and wound-healing genes 
resembling M2 MΦ, reacting in intestinal infection[122]. 

More importantly, neurotransmitters are essential 
for neuronal immune control. VIP is known to exhibit 
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antiinflammatory effects, depending on promoting the 
production of IL-10. Nitric oxide is well known for its 
antimicrobe ability in the respiratory burst. However, 
it suppresses excitability in neurons[121] and influences 
ENS during intestinal inflammation[91]. Interestingly, 
serotonin (5-HT), which was considered a trigger of 
inflammation, has been demonstrated to act, indi­
rectly, on MMs by 5-HT4 receptors in neurons and 
to stimulate an antiinflammatory cascade in MΦ. It 

has been indicated that 5-HT2 and 5-HT7 are related 
to the development of M1 and M2 MΦ[91]. In addition, 
γ-amino butyric acid has been suggested to have 
an immunosuppressive effect on resident MΦ of the 
central nervous system[91]. However, in the intestine, it 
remains unclear. It is worth investigating the functions 
of ENS and how they act on MΦ to understand the gut 
immune system and associated disease treatments in 
the future.

Current views about intestinal MΦ
First, Kennichi et al[123] provided an exhaustive ex­
perimental result concerning LP-resident CD169+ MΦ 
that mainly persist in secondary lymphoid organs. They 
indicate that CD169+ MΦ reside at the bottom-end of 
the LP microenvironment, far away from the epithelium-
LP border. Most importantly, the CD169+ MΦ recruit 
inflammatory monocytes by producing CCL8, selective 
depletion of CD169+ MΦ and anti-CCL8 antibody 
promotion of dextran sulfate sodium-induced colitis in 
mice. The comparison of CD109- and CD109+ MΦ led to 
an interesting hypothesis. Unlike CD109- MΦ, CD109+ 
MΦ are located in a region distant from the perimeter 
where they can be interrupted by commensal bacteria 
and dead epithelial cells, and they can directly release 
CCL8 into the systemic circulation in the vascular-
rich environment. CD109+ MΦ probably respond to 
the collapse of the frontline defense - i.e. they can be 
considered as a “conservation corps” in the intestine 
(Figure 2). 

Second, M2 MΦ struggle for attention. As another 
regulative population, M2 MΦ produce IL-10 and express 
CD163 and CD206 lectin receptors. They do not produce 
proinflammatory mediators with signals of stimulation. 
Certainly, they produce tissue-repairing factors, such 
as vascular endothelial growth factor (VEGF), actin 
and metalloproteinases, due to their function in wound 
healing. M2 MΦ are MHCII+, which may be helpful in 
exploring their potential in bactericidal activities[82,83,124,125]. 
Unlike M2 MΦ, Mregs express high levels of costimulatory 
molecules, such as CD40, CD80 and CD86, to submit 
antigens to T cells more effectively[42], highlighting the 
hypothesis that the regulation of M2 MΦ in the intestine 
might be different from that of Mregs. However, the 
antiinflammatory function of Mregs mentioned above 
has not been directly verified in the intestine. Therefore, 
we are unsure about the role of Mregs in intestinal 
homeostasis, and some questions remain concerning the 

meaning of the difference between M2 MΦ and Mregs 
(Figure 2).

Finally, a novel finding[126] concerning GPBAR1 (a 
G protein-coupled receptor for secondary bile acids) 
suggests that GPBAR1 is essential to maintain intestinal 
immune homeostasis by regulating M1/M2 MΦ. BAR501 
(a small-molecule stimulus of GPBAR1) contributes 
to this regulatory process, depending on the produc­
tion control of IL-10. Absence of the GPBAR1 gene 
causes the recruitment of M1 macrophages and severe 
inflammation in the colon. Exposure to BAR501 leads to 
the increased expression of IL-10 and TGF-β mRNA, and 
percentage of CD4+/Foxp3+ cells. Based on this study, 
GPBAR1 deserves attention for its potential to protect 
intestinal health (Figure 2).

MΦ and gastrointestinal 
disorders
MΦ and IBD
According to the mechanisms of intestinal MΦ in 
maintaining homeostasis, any defect of the antiin­
flammation system may bring the reduction of immune 
tolerance, resulting in IBD. In 1998, it was found that 
intestinal MΦ displayed low expression of class Ⅱ MHC 
molecules in mouse colitis[127]. A hypothesis arose 
from this study that there could be dysfunction of MΦ 
participating in adaptive immune responses when 
inflammation occurs. 

From the origin of MΦ, emerging evidence suggests 
that GM-CSF plays a central role and has a protective 
effect in human CD and acute colitis by activating 
specific Mo[128,129]. Classical CD14hiCD16- Mo differentiate 
into large numbers of inflammatory MΦ in the inflamed 
mucosa of patients with CD[21]. CD14+ Mo in the 
mucosa from IBD patients increase the production of 
TNF-α[130,131], IL-1β and IL-6, and enhance respiratory 
burst activity[21]. Moreover, IL-10 knock-out mice 
develop spontaneous IBD[82]. An intrinsic resistance to 
TGF-β receptor signaling has been shown in the mucosa 
from patients with CD[132]. CD4+Foxp3+ T cells fail to 
protect the intestine from chronic inflammation without 
IL-10- and TGF-β-dependent mechanisms[115]. M2 MΦ 
have been certified to be activated by the Wnt signaling 
pathway, which is associated with UC[133]. These studies 
showed that intestinal MΦ are of great value for IBD. 
Following this result, promising treatments for IBD, such 
as CD109+ MΦ Tregs and GPBAR1, can be considered 
new therapeutic targets.

MΦ are clearly associated with IBD, but there remain 
a few puzzles regarding some details. The first study[134] 
observed that RoRy+ innate lymphoid cells (ILCs; 
the primary source of GM-CSF in the gut) promote 
MΦ to respond to the microbial signals and produce 
IL-1β, which enhances inflammation. By contrast, 
another study[135] discovered that with the regulation 
of RoRy+ ILCs, MΦ promote a negative feedback 
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pathway through the activation of IL-22 production, 
which might be protective. Indeed, the quantity of 
RoRy+ ILCs could increase in human CD. This finding 
inspires the question of whether the possibility exists 
that a portion of MΦ still tries to restore intestinal 
homeostasis when the intestine is trapped in a vicious 
cycle for inflammatory macrophages. The second item 
concerns CD200/CD200R1 mentioned above. Knock-
out of CD200 results in MΦ hyperactivity in vitro, but 
CD200R1 knock-out mice have normal intestinal MΦ 
populations, and they neither develop spontaneous 
IBD nor become more susceptible to colitis induced 
by the dextran sulfate sodium model[82]. This indicates 
that CD200R1 may not be as important as we had 
previously considered, but the reasons remain unclear.

MΦ and gastrointestinal tumors
Since the end of the last century, many studies have 
certified the connection between MΦ and tumors in 
various systems. There are considerable numbers of 
investigations concerning tumor-associated macrophages 
(TAMs). They promote immunosuppression, tumor 
immune evasion[136], tumorigenesis, tumor metastasis 
and angiogenesis as well as invasion by releasing various 
cytokines and inflammatory mediators, such as IL-6, 
IL-10, TFG-β, CCL2, CCL17, VEGF and cathepsins[137]. 

However, different populations of TAM have different 
functions. M1 MΦ have been confirmed to recognize 
and clear tumor cells, a function that is beneficial to 
health. By contrast, the development and movement 
of tumors benefit from M2 MΦ. TAMs are one of the 
promising targets of tumor therapy, especially M2 MΦ. 
Gut tumors are also included. We provide more details 
about TAMs and references in Box 4 to further illustrate 
the relationship between TAMs and tumors.

Similar to other MΦ, TAMs arise from hemato
poietic stem cells in the bone marrow and from 
progenitors in the embryonic yolk sac. With different 
environmental signals, Mo differentiate into distinctive 
macrophages[137,138]. Tumor signals contribute to the 
development of TAMs. Mantovani et al[139] summarized 
the signals associated with TAMs. For example, lactic 
acid, CCL2, CSF1, VEGF and TGF-1 from tumor cells, 
IL-1β from tumor-associated fibroblasts, and IL-10 
from Tregs, all can drive TAMs into tumor-promoting 
MΦ. Moreover, they also list the products of TAMs 
which have different functions. For instance, IL-6, 
MFG-E8 and osteopontin from TAMs can active tumor 
stem cells; TAMs produce epidermal growth factor 
to promote tumor growth, invasion and metastasis. 
Nitric oxide and reactive oxygen species can be 
released to destroy tumor cells. However, they might 
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result in genetic instability, causing tumor formation. 
Nevertheless, further studies have indicated that not 
all the macrophages that have emerged into the tumor 
microenvironment are tumor promoting. 

M1 MΦ (having antitumor function) can recognize 
tumors and kill tumor cells by the cytotoxic effect, 
representing a double-edged sword. They have been 
verified as an independent predictor of survival time 
in patients with non-small cell lung cancer[140]. M2 
MΦ have a protumor function. They promote the 
metastasis of K7M2 wild-type osteosarcoma cells in 
mice. Additionally, all-trans retinoic acid dampens the 
profunction of M2 MΦ by suppressing the production 
of IL-13 or IL-14 (from M2 m MΦ) to inhibit the meta
stasis of osteosarcoma[141]. CHI3L1, a protein secreted 
by M2 MΦ, promotes the metastasis of gastric and 
breast cancer cells[55]. In addition, it was confirmed 
that patients with peritoneal dissemination in gastric 
cancer have more M2 MΦ and low expression of 
M1-related messengers[142]. MFG-E8, a powerful 
angiogenic factor, is induced by bone marrow-derived 
mesenchymal stromal cells in mice. Attenuated tumor 
growth and the decreasing function of M2 MΦ can be 
found in MFG-E8-deficient mice[143], which represent 

M2 MΦ that contribute to tumor angiogenesis; whether 
the correlation of M2 MΦ and MFG-E8 is parallel or 
antiparallel should be further clarified. 

Above all, TAMs have advantages and disadvantages 
to both human physiology and tumors. They are 
members of our defensive line, but they are also tumor 
helpers. Compared with the favorable contributions 
of TAMs, such as M1 MΦ in tumor resistance, the 
promising therapeutic targets they provide might 
be more useful. In the 1990s, some scientists syste­
matically revealed that TAMs were worth exploring for 
antitumor therapy[144], and more and more findings 
were uncovered during the last 50 years. On the one 
hand, TAMs are hopeful antitumor targets; on the 
other hand, as Mantovani and Allavena[139] illustrated, 
the mechanisms of TAMs in tumor development and 
antitumor processes are intricate, which limits re­
searchers’ ability to find the antitumor target precisely. 
This phenomenon is the yin-yang of antitumor therapy 
and the challenge[145] of future antitumor studies.

Several studies have presented recent research 
progress in gastrointestinal tumors. First, tumor angio
genesis and survival in intestinal-type gastric cancer 
is closely associated with the infiltration of thymidine 
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phosphorylase-positive MΦ[146]. Therefore, thymidine 
phosphorylase could be a useful marker for tumor 
angiogenesis, and the prognosis of intestinal-type gastric 
cancer. Second, there is a hotspot induced by M2 MΦ. 
A portion of M2 MΦ, cooperating with TNF, were shown 
to be recruited to tumors[56,147]. The macromolecular 
contrast agent PG-Gd-NIR813 shows a dual magneto-
optical imaging probe of tumor-associated M2 MΦ[50], and 
a few new factors have been evaluated as mediators 
of the development of gastrointestinal tumors, such 
as M2 MΦ-secreted CHI3L1 protein[55] and monocyte 
chemoattractant protein-1[148]. All are likely to become 
novel approaches for antitumor therapy. 

Conclusion
In summary (Figure 3), MΦ with their various receptors 
act as sentinels in innate immunity and adaptive immu­
nity. In healthy intestinal mucosa, they are indispensable 
to suppress inflammation and play an essential role in 
maintaining homeostasis by producing many inhibitors, 
such as IL-10 and TGF-β. However, they show strong 
bactericidal activities. Intestinal resident MΦ create 
a harmonious environment for commensal bacteria 
and their host. Any defect in keeping this balance can 
reduce immune tolerance, causing acute tissue damage 
or chronic autoimmune diseases, explaining their close 
association with IBD. New findings concerning intestinal 
MΦ and IBD, as well as tumors, can be very helpful 
for studies and disease treatments. Meanwhile, there 
are many details awaiting clarification as well as many 
unresolved issues. 
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