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Abstract
Currently, there does not exist a strategy that can reduce diabetes and scientists
are working towards a cure and innovative approaches by employing stem cell-
based therapies. On the other hand, bioprinting technology is a novel therapeutic
approach that aims to replace the diseased or lost β-cells, insulin-secreting cells in
the pancreas, which can potentially regenerate damaged organs such as the
pancreas. Stem cells have the ability to differentiate into various cell lines
including insulinproducing cells. However, there are still barriers that hamper
the successful differentiation of stem cells into β-cells. In this review, we focus on
the potential applications of stem cell research and bioprinting that may be
targeted towards replacing the β-cells in the pancreas and may offer approaches
towards treatment of diabetes. This review emphasizes on the applicability of
employing both stem cells and other cells in 3D bioprinting to generate
substitutes for diseased β-cells and recover lost pancreatic functions. The article
then proceeds to discuss the overall research done in the field of stem cell-based
bioprinting and provides future directions for improving the same for potential
applications in diabetic research.

Key words: Bioprinting; Tissue engineering; Pluripotent stem cells; Mesenchymal stem
cells; Human embryonic stem; Adult human liver cells; β-cells; Islet cells; Biomaterials;
Bioink; Stem cell; Diabetes
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Core tip: The shortage of strategies that can potentially reduce diabetes has prompted
scientists to employ stem-cell based therapies that could help generate pancreatic β- cells
that can regenerate damaged pancreas. The present review article discusses the potential
applications of stem cell research by incorporating 3D bioprinting technology. The
article also elaborates the research that has been previously and provides future
directions for enhancing the potential applications in diabetic research.
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INTRODUCTION
Diabetes has become a major cause of concern owing to its serious repercussions
health and its increasing occurrence at alarming rates. According to the World Health
Organization, the number of people with diabetes rose to 422 million and caused 1.6
million deaths in the recent past. Diabetes, a non-communicable disease, is considered
as a huge economic burden, for instance in 2010, approximately $376 billion dollars
were  used to  treat  and prevent  the  disease  and its  complications[1,2].  Over  time,
diabetes can permanently damage the body organs and is the major cause of kidney
failures, heart attacks, strokes, blindness, and lower limb amputations[1,3]. Diabetes is a
chronic  metabolic  disease  that  can  be  divided  into  two  main  etiopathogenetic
categories: Type 1 diabetes mellitus (T1DM), which is the autoimmune destruction of
insulin in the pancreas and type 2 diabetes mellitus (T2DM) which occurs when the
body uses insulin ineffectively[1].

T1DM, also known as juvenile-onset diabetes, is identified by serological evidence
and is most commonly found in infants and children[4]. T1DM is a metabolic disease
characterized by the autoimmune destruction of islet beta cells (β-cells) and their
secretory functions that result in a deficiency of insulin production[5]  (Figure 1A).
T1DM involves genetic factors such as human leukocytes, antigen class II genes and
environmental factors that initiate autoimmunity[6].  The pathogenesis of T1DM is
caused by cellular and humoral immune pathways where CD8+T lymphocytes kill β-
cells[1]. T1DM patients do not produce insulin and exogenous insulin administration is
required to mimic insulin release to control glucose levels during mealtimes. Patients
with T1DM have been treated with immunosuppressant agents in the past, but this
type  of  treatment  does  not  maintain  the  function  of  β-cells  rendering  insulin
replacement therapy as the only treatment effective for the restoration of metabolic
disturbances in T1DM patients. The treatment for T1DM requires administering a
long acting insulin dosage (once or  twice a  day with each meal)[7].  Furthermore,
treatment for T1DM is based on a rigorous monitoring of blood glucose levels and
intravenous insulin injections. The management of T1DM requires significant patient
compliance, which is associated with an increased risk of hypoglycemia.

T2DM  or  adult-onset  diabetes  is  a  more  prevalent  category  caused  by  a
combination of insulin resistance and inadequate insulin secretory responses and
functions [1 ,4]  (Figure  1B).  T2DM  is  asymptomatic  as  its  progression  causes
hyperglycemia, which triggers pathological and functional changes in target tissues.
Patients with T2DM and T1DM are at risk of developing micro- and macro-vascular
complications[8-13]. These are associated with atherosclerotic disease affecting arteries
that supply blood to the heart and increase the risk of cardiovascular disease in which
death from myocardial infarction and strokes is the leading cause of mortality in
T1DM and T2DM patients[2,14]. Patients with T2DM are subjected to a non-insulin-
based therapy and in some patients with T2DM; the insulin requirements are similar
to those with T1DM necessitating daily injections for  long-acting insulin during
mealtimes[15].

Researchers  have  intensely  studied  diabetes  and  have  decades  of  experience
investigating means to  replace  β-cells  of  the  pancreas  that  are  destroyed by the
immune system. Current procedures involve allotransplantation,  which requires
passing a catheter through the liver, involving high risks of bleeding and blood clots,
and is categorized under extremely invasive surgeries[16]. A very common treatment
for diabetes is the transplantation of the pancreas, but an extreme shortage of donors
still exists[9]. According to United Network for Organ Sharing, a person is added to the
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Figure 1

Figure 1  Schematic representation differentiating between normal and diabetic (Type 1 and Type 2) pancreas.

national transplant waiting list every ten minutes. Moreover, the other hurdles related
to pancreas and islet transplantation are associated with alloimmune responses[9,16].

Current treatment strategies have not been able to successfully maintain or replace
the function of β-cells, thereby seeking alternative therapies such as regenerative
medicine using stem cells, in combination with bioprinting technologies to cure and
diminish the health challenges of diabetes. The efficacy of combining stem cells and
additive manufacturing in the field of regenerative medicine has been established in
prior  studies  and has  prompted further  research for  scientists,  worldwide.  This
review discusses stem cell-based therapies and the applications of bioprinting in
regenerative  medicine,  which  can  be  directed  towards  strategizing  potential
treatments for regenerating the pancreas affected during diabetes, either in part or as
a whole.

STEM CELL-BASED THERAPIES
The  main  goal  of  diabetes  therapy  is  to  attain  normoglycemia  through  the
replacement of the diseased or lost cells of the pancreas with new cells. Scientists have
attained success in producing insulin-secreting cells from different types of cells. This
section focuses on the current types of stem cell research to treat diabetes and past
research relating to novel applications of stem cell therapies for diabetes.

Stem cell-based therapy
Induced pluripotent  stem cells:  Ever  since Takahashi  et  al[17]  demonstrated that
induced pluripotent stem cells (iPSCs) could be generated from differentiated somatic
cells  through the  reprogramming of  adult  and  embryonic  mouse  fibroblasts  by
transfecting  the  cells  with  plasmids,  they  have  opened  up  a  possibility  for
replacement in cell-based therapy. iPSCs are also favored for their capacity to self-
renew infinitely and their potential  for differentiation into a wide variety of cell
types[18]. The maintenance of undifferentiated iPSCs as cell lines holds great promise
for modeling diseases and to generate personalized stem cells for cell therapies[19].
According to studies done by Alipio et al[20], hyperglycemia in diabetic mice was found
to be controlled by mouse skin fibroblast-derived iPSCs that differentiated into β-like
cells, which were morphologically identical to normal, endogenous cells that secreted
insulin. Mature pancreatic cells that had the ability to secrete insulin and C-peptide
were generated by the differentiation of human embryonic stem cells (ESCs) and
iPSCs[21]. Patients suffering from T1DM and T2DM diabetes were employed as sources
to produce iPSCs[22]. In vitro production of insulin-secreting cells was also achieved by
the directed differentiation of iPSCs using small molecules and growth factors in the
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culture[23]. The primary advantages of employing iPSCs are that they do not present
ethical concerns and only pose a low risk of teratoma formations[24]. However, the
reprogramming of somatic cells into iPSCs achieved with the aid of viral transfection
of transcription factors requires the use of genomes[25]. These genomes are harmful as
they can trigger mutations and hamper the normal function of iPSCs and their ability
to differentiate, in addition to causing the formation of tumors[25].

Mesenchymal stem cells: The method for isolating mesenchymal stem cells (MSCs)
from  the  rat  bone  marrow  was  first  described  by  Friedenstein  as  explained  in
previous studies[26]. Although the bone marrow is the richest source of MSCs[27-29], they
have also been successfully isolated from adipose tissues[30,31], fetal liver[32], umbilical
cord and its blood[33,34],  fibroblasts[35],  endometrium[36],  placenta[37],  trabecular and
compact bone[38]. MSCs have been found to be able to differentiate into mesodermal,
endodermal and ectodermal cells  under suitable culture conditions[39].  MSCs are
suitable for the regeneration of tissues, as they do not result in teratoma formation[39].
Other advantages of  using MSCs for stem cell-based therapy include the ease of
isolation,  expansion  to  large  quantities  and  their  multipotential  differentiation
capacity[40]. In addition, their ability to circumvent immune recognition and inhibit
immune responses also makes them ideal candidates for immunomodulatory cell
therapy in immune-mediated diseases[41].

According to studies performed by Xu et al[42], the direct injection of MSCs into the
pancreas had helped alleviate diabetes symptoms by improving the metabolic control
in animal models,  counteracting autoimmunity,  enhancing islet engraftment and
survival, besides serving as a source of growth factors and cytokines. Direct injection
of MSCs has not only been found to be effective in improving the functions of the
pancreas but also healed related symptoms like diabetic foot and neuropathy[43]. The
main limitation posed by MSCs is  their  potential  to  differentiate  into unwanted
mesenchymal lineages, which can be detrimental to their therapeutic applications[44].
The possibility of malignant transformations and cytogenetic aberrations of MSCs
may also considered drawbacks[44]. Results of some MSCs clinical trials in T1DM are
shown in Table 1[45-51].

Human embryonic stem cells (hESCs): hESCs are characterized by properties such as
pluripotency  of  gene  expression,  self-renewal  ability,  and  high  proliferative
capacity[52,53]  thereby  making  them  a  valuable  treatment  option  in  all  types  of
medicine. Numerous in vivo and in vitro differentiation strategies have been adopted
for  the  production of  functional  pancreatic  islets.  Generally,  hESCs are  initially
harvested from the inner cell mass of the blastula post fertilization when the cells are
still capable of differentiation into all types of germ layers and there is a high level of
telomerase  activity[52].  This  is  followed  by  the  differentiation  of  the  hESCs  into
definitive endoderm, which further undergo differentiation into functional β-cells,
through a chain of endodermal intermediates[54,55]. These techniques cause the hESCs
to be exposed to specific transcription factors that can facilitate coordinated activation
and inhibit intracellular signaling pathways. Although cell signaling and epigenetic
factors involved in the differentiation process remain to be studied and understood,
the detection of markers such as pancreatic and duodenal homeobox gene 1 (PDx1),
insulin gene enhancer  protein (Isl-1),  and Forkhead box protein A2 validate  the
endodermic differentiation into endocrine and exocrine pancreatic β-cells[56,57].

Non-stem cell-based therapy
Adult human liver cells: The liver has been extensively studied as a potential source
for pancreatic β-cells that can help cure diabetes. It has an added advantage over
other organs as it has been derived from the endoderm along with the pancreas[58,59]. A
comprehensive developmental shift of adult human liver cells into insulin-producing
cells  was  induced  with  the  help  of  PDx1  and  other  soluble  factors[59].  Studies
conducted by Yang et  al[60]  provide evidence that  purified adult  rat  hepatic  oval
‘‘stem’’ cells transdifferentiate into pancreatic endocrine hormone-producing cells
when subjected to culture in a high-glucose environment. These differentiated cells
then self-assemble forming three-dimensional  islet  cell-like clusters  that  express
pancreatic  islet  cell  differentiation-related transcripts  which can be validated by
reverse  transcription–PCR/nested PC and islet-specific  hormones  detectable  by
immunohistochemistry[60].  Hepatic  oval  cell  activation  through  hepatic  trans-
differentiation and pancreatic islet regeneration was also successfully reversed for
streptozotocin-induced diabetes[61]. Although these methods differed in terms of their
approaches,  they  were  successful  in  ameliorating  hyperglycemia  in  the  mouse
models. This further led to a search for alternate pancreatic sources of insulin as can
be seen from the studies conducted by Zalzman et  al[62],  which demonstrated the
reversal  of  hyperglycemia  in  mice  by  employing  human  expandable  insulin-
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Table 1  Results of some mesenchymal stem cells clinical trials in diabetes mellitus type 1[45]

Types Routes of transplantation Outcome

Human MSCs Intravenously introduced to Non-obese
diabetic/Severe combined immunodeficiency

mice with total body irradiation or local
abdominal or leg irradiation

Safe and efficient for the long-term treatment of
severe complication after radiotherapy[46]

Umbilical cord derived MSCs Injected directly into the pancreas Improvement of metabolic control. Enhancement
of islet engraftment and survival[42]

Bone marrow-derived MSC Differentiated in vivo into functioning β-cells Normalization of chronic hyperglycemia in a
diabetic rat[47]

Human placenta derived MSCs Differentiated into islet-like cell clusters and
transplanted into streptozocin-induced diabetic

mice

Restoration of normoglycemia in diabetic mice[48]

Human umbilical cord blood derived MSCs Differentiated into IPC through intravenous
administration

Improvement in glycemic profiles, histological
improvement of insulates[49]

Wharton's jelly and amniotic membrane derived
MSCs

(1) Differentiated into IPC and transplanted into
the liver; (2) Infected with PDX1 gene and

differentiated to IPC; and (3) Differentiated into
IPC and transplanted into the liver of STZ-induced

diabetic rats

Expression of insulin Secretion of C-peptide;
expression of pancreas-specific genes[49];
correspondence to high concentrations of

glucose[50]; reduction of blood glucose levels after
4 wk of transplantation[51]

MSCs: Mesenchymal stem cells; IPC: Insulin-producing cells.

producing cells that were generated by the differentiation of fetal liver progenitor
cells .

β-cells:  The pancreas is the first choice for harvesting potential stem cells for the
treatment of diabetes[63]. Bonner-Weir et al[63] demonstrated through their experiments
that the availability of small amounts of pancreatic tissue could help to restore the
maximum pancreatic β-cell mass. This has been attributed to the replication and de-
differentiation of differentiated β-cells of the pancreatic ducts, which in turn triggers
the production of more β-cells. Further studies conducted showed that these ductal
cell populations could be cultivated and directed into forming cell-clusters secreting
insulin[63,64]. A clonal population of adult pancreatic precursor cells, that had the ability
to produce both insulin and C-peptide, were generated from ductal cells by Seaberg et
al[65]. Although there were debates in the past about the existence of pancreatic adult
stem cells despite their progress and potential, strong evidence indicating that the
pancreatic ducts of mice contained multipotent progenitor stem cells, which could
generate new β-cells, was given by Xu et al[66]. However, more research needs to be
done  for  the  promotion  of  β-cell  formation  in  diabetic  patients  by  finding  and
activating  pancreatic  stem  cells.  This  necessitates  the  development  of  better
experimental strategies to come up with suitable methods to overcome the issues of
isolation and ex-vivo expansion of these stem cells for transplantation.

Islet cells: The pancreatic islets, also termed, as the islets of Langerhans, constitute
regions of the pancreas that contain the hormone-producing cells (endocrine cells)
and  were  first  described  by  Paul  Langerhans  in  1869,  a  German  pathological
anatomist[67]. The relation between the pancreas and diabetes was established much
later by Minkowski and von Mering[68]. The islets of Langerhans were first isolated
from the pancreas of a guinea pig by Moskalewski et al[69] by employing an enzymatic
digestion technique. Studies conducted by Bottazzo et al[70] indicated the possibility
that islet cell transplantation would be a very suitable option for people who were
suffering from T1DM poorly controlled with insulin. The challenges of transplanting
islet cells include finding compatible donors, ensuring the survival of the new islets
and side effects induced by medications administered to prevent immune rejection[71].
Azarpira et al[72] successfully isolated islet cells from cadaveric donors which were
then administered via injections into the recipient’s portal vein. The study showed
that  there  was  a  reduction  in  the  initial  β-cell  mass  attributed to  instant  blood-
mediated  inflammatory  reactions,  immune  responses  resulting  from  the
transplantation  of  the  islet  cells  and  diabetogenic  effects  triggered  by  the
immunosuppressive medications[72]. This necessitated the need for repeated episodes
of  cell  transplantation  to  ensure  significant  outcomes[73].  According  to  studies
conducted by Bennet et al[74], it was established that the exposure of isolated islets to
ABO-compatible  blood resulted in  an immediate  thrombotic  reaction and hence
required  multiple  transplants  to  reduce  the  insulin  shots.  There  was  also  the
possibility of the impairment in insulin production of the transplanted islets due to
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their entrapment by blood clots, which could shut them off from oxygen and attract
immunocytes[75].  This motivated scientists to seek alternative cell  sources such as
pluripotent and multipotent stem cells, to generate pancreatic cells and aid in diabetes
therapy by replacing the diseased or lost pancreatic cells[76].

3D BIOPRINTING
Bioprinting techniques had emerged in 1988,  as  demonstrated by Klebe[10]  using
cytoscribing  technology,  a  method  that  requires  mispositioning  of  the  cells  to
construct synthetic tissues using a Hewlett Packard inkjet printer. 3D bioprinting is a
revolutionary  field  that  is  utilized  in  biomedical  engineering  and sciences.  The
difference between 3D printing and 3D bioprinting is that bioprinting technologies
utilize living cells, which are printed layer by layer to form a 3D structures[11,12] with
the ultimate goal to regenerate the diseased or damaged tissue and reduce organ
shortage[2]. Currently in the United States, there is a great need for an alternative to
organ transplants,  due to the limited availability of  organ donors[77].  A potential
solution for this problem is tissue engineering by developing organs that can be built
with the patients' genetics to eliminate the chances of rejection, relieve suffering, and
save lives[78]. The purpose of tissue engineering and state-of-the-art 3D printing is to
develop a degradable scaffold,  that will  allow cells  to proliferate and regenerate
through pores to replace the damaged organ or tissue. These characteristics provide
the cells with viability and functionality, in addition to the ability to attach and mimic
the native organ environment[13].

3D printing tissue engineering and regenerative medicine holds great promise for
building  and  assembling  viable  and  functional  tissues  and  organs.  3D printing
involves a combination of scaffold and biomolecules that sustain the cells, to improve
or  regenerate  specific  tissue  or  the  whole  organ[13].  Researches  had encountered
challenges while trying to develop the accurate scaffold materials for manual cell
seeding[79]. Difficulties in seeding the cells manually limit the cells’ precise placement
and ability  to  proliferate  inside  the  scaffold[79].  Despite  the  great  advantages  of
biofabrication of scaffolds, another limitation is that cells need to grow in high density
to develop the thickness of the organ or tissue, which is difficult to achieve because
the  cells  only  attach  to  the  surface  and  do  not  penetrate  the  entire  scaffold[79].
Furthermore, the difficulty and need to achieve vascularization and anastomosis is
critical. These challenges have led to the development of optimization of bioprinting
technologies and cell seeding protocol where scientists encapsulate large numbers of
cells to achieve density and promote oxygenation, vascularization and the desired
pattern through the scaffold[80,81].

3D bioprinting technologies involve the design of unconventional scaffolds where
the design is inspired by the patient's own anatomy for developing a correct shape for
the tissue construct. Bioprinting technology can develop a porous construct to allow
media and nutrients to reach the cells. Bioprinting technologies are based on three
major steps for the design of tissue regeneration. To develop a medical image of the
desired area of the body, a blueprint is created using a software system, which is
followed by toolpath planning and finally 3D bioprinting, which is divided, into three
major categories depending on the technique employed to print (Figure 2)[13,79,82].

The  first  category  is  extrusion-based  bioprinting  that  uses  a  combination  of
automated robotic  and fluid allotting system of  pneumatic,  mechanical  force  or
solenoid micro-extrusion to continuously extrude bioink on the biopaper[13,79]. The
second category is inkjet-based

bioprinting, in which small droplets of cells are ejected to fabricated tissues[83]. This
method involves electro-hydrodynamic jetting, acoustic droplet ejection, thermal,
piezoelectric, or electrostatic energy for printing[79]. The third category is laser-based
bioprinting; which incolves cell-transfer and a photo-polymerization process using
digital light to crosslink the bioink (Figure 2)[13,79].

The process of bioprinting involves two components, namely the bioink and the
biopaper. The bioink is a biomaterial in which live cells are embedded to print on the
biopaper to mimic the extracellular matrix of  the desired tissue.  The biopaper is
another important component of 3D bioprinting because it serves as the substrate on
which cells (bioink) are deposited in an organized pattern[13]. Currently, hydrogels are
popularly  employed as  bioinks  as  they  facilitate  effective  oxygen,  nutrient  and
metabolite transportation, besides providing great permeability to water[13,79,84].

However,  synthetic  bioinks  struggle  to  achieve  high  printability  and
biocompatibility, thereby strengthening the need for developing naturally derived
bioinks. A novel furfuryl-gelatin based bioink was developed and found to exhibit a
highly porous networked structure, and co-culture feasibility when C2C12 myoblasts
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Figure 2

Figure 2  Classification of bioprinting techniques. Three major classifications of bioprinting modalities are A: Inkjet-based printing, which air-pressure pulses that
force droplets from nozzle by heating up the printhead; B: Exzrusion-based printing,using pneumatic or mechanical dispensing systems for extruding continuous
beads of materials and/or cells; C: Laser-based bioprinting that uses lasers focused on an absorbing substrate for generating pressure that compels the bioink to be
extruded onto a collector substrate.

and STO fibroblasts were printed in a double-layered structure[85]. These structures,
cross-linked by exposure to visible  light,  have been successful  in preserving the
viability  of  both  cells  types,  showing  that  this  bioink  can  be  used  for  tissue
engineering  applications  for  developing  complex  tissues  to  help  study  cellular
communication in a disease or normal models[85]. Comparison of cell viabilities for ink
jet based-, extrusion based- and laser assisted bioprinting is shown in Table 2[86-90].

Other properties  of  the bioink,  such as transfer  of  thermal energy into kinetic
energy and high viscosity,  rapid gelation mechanism by enzymatic,  physical,  or
chemical crosslinking processes are important for consideration to develop the ideal
scaffolds[91].

APPLICATIONS OF BIOPRINTING
3D bioprinting  has  the  ability  to  write  living  cells  in  a  stackable  layer-by-layer
organizational pattern using biomaterials to engineer a specific construct for the use
of tissue regeneration, surgery procedures, drug and medical studies to treat disease
and  health-related  complications[84,92,93].  This  computer-assisted  technology  is  a
powerful tool that has obtained attention worldwide[79] and 3D bioprinting modalities
are driven by endless possibilities of innovative use in regenerative medicine and
tissue engineering. This technology offers the advantage of placing cells in a precise
location and specific fashion to create a cellular models[84,92,93].

Tissue engineering and regenerative medicine
Current  translational  benefits  in  3D  bioprinting  are  in  tissue  engineering  and
regenerative medicine i.e., bone tissue engineering for the development of the specific
tissue construct by recreating the unique patients’ anatomy[79,94]. Another such benefit
of  3D  bioprinting  is  the  ability  to  develop  a  cardiac  patch  with  the  ability  to
synchronously beat, which has great promise in regenerating a specific area of the
heart[95]. Anil Kumar et al[85] developed a novel furfuryl-gelatin based hydrogel that
was  bioprinted  into  cell-laden  rectangular  constructs  and  may  potentially  be
implanted on post infarcted hearts. Cartilage tissue has been successfully bioprinted,
to solve cartilage defect repair[65].  Furthermore, the progress made in creating an
organ-in-a-chip helps to simulate the mechanisms and functions of a specific body
area[92].  This  approach also  provides  the  opportunity  to  perform drug screening
studies  for  diseases[96].  However,  the  difficulty  in  incorporating  vascularization
simultaneously with the 3D bioprinting of tissues,  gives rise to challenges in the
fabrication of bone tissues, to treat major defects or bone loss[97]. The use of hydrogels
for bone tissue in bioprinting approaches makes it difficult to implant into a load-
bearing site in the patient’s body[98].  Thus, the hydrogels need to be mechanically
robust and possess the characteristics to support large-scale regeneration of bone
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Table 2  Comparison of cell viabilities for ink jet based-, extrusion based- and laser assisted
bioprinting[90]

3D bioprinting technique Cell viability

Ink jet based bioprinting 80%-95 %[86,87]

Extrusion based bioprinting 89.46% ± 2.51%[88]

Laser assisted bioprinting < 85%[89]

tissue in vivo[98].
3D bioprinting for bone tissue reconstruction presents major challenges related to

vascularization.  Considerable  progress  has  been  made  in  skin  bioprinting,  but
improvement  in  scar-less  tissue  formation  need  to  be  implemented[79].  Another
challenge that needs to be overcome involves in vivo  studies for bioprinted blood
vessel and the organ fabrication. Moreover, the availability of technologies capable of
bioprinting  vascular  networks  in  high  density  and  generate  organ  constructs
integrating  different  tissues  together,  are  also  needed[79].  For  this,  co-culture  of
different cell types for the development and reconstitution of the functionality of a
whole  organ  is  necessary.  Despite  the  progress  in  3D  bioprinting  technologies
translated  from  bench  to  bedside,  the  aforementioned  applications  still  have
limitations and challenges that need to be overcome, especially in the fabrication of
functional tissues with long-term viability[99]. For instance, the heart, pancreas, and
liver  are  the  organs  that  are  the  most  difficult  to  fabricate  due  to  the  need  for
metabolic functions and vascularization[79]. Metabolically highly active organs are a
great challenge to reconstruct because their complexity requires molecular networks
from arteries, veins and cell communication of different cell types in order to mimic
the identical long-term functionality[99].

Currently,  bioprinted  living  constructs  have  been  acutely  investigated  and
transplanted in vivo (animal models)[100]. Animal studies provided the opportunity and
insights into evaluation of engraftment of the implant with the host anastomosis,
vascularization, and regeneration of functionality[101]. 3D-printed metallic, plastics,
and  ceramics  have  been  developed  as  successful  constructs  for  bone  tissue
replacement and these constructs have been transplanted into humans[97]. Bioprinting
is a powerful tool for medical procedures, especially for a near future with possible in
situ bioprinting[79]. In situ bioprinting is an attractive application for 3D bioprinting
that  has  provided  a  major  advantage  in  regenerative  medicine  over  traditional
procedures. Recently, the use of in situ bioprinting was applied in skin regeneration
for  large  wounds  on  pig  models [102]  and  skull  defects  in  rodents [101,103].  The
advancement of in situ bioprinting can be applied in the regeneration of a variety of
tissues and organs such as plastic surgery, maxillo- and craniofacial reconstruction[103].

Screening and drug toxicity testing
Another benefit in using bioprinting technologies is the application of bioprinted
tissue and organ models for potential pharmaceutics use and for screening and drug
toxicity testing[96]. This application relieves the time consumption and cost related to
drug discovery, which entails financial investment and human resources. In addition,
3D bioprinted tissues have the ability to bioprint in microarrays and develop in vitro
3D-pinted models that mimic the native human tissue[79,96]. This approach provides the
opportunity to use a 3D-assay system that may contribute to a possible solution to
lower the cost and financial investment in pharmaceutics. Bioprinting has also offered
other great advantages for testing toxicity; for instance, the development of liver-on-a-
chip for testing hepatic toxicity of acetaminophen[104] and the test of antitumor drugs
for breast cancer[105].

Future concerns
Regenerative  medicine  is  a  rapidly  expanding  area  of  research  that  deals  with
repairing or replacing damaged tissues and organs[106]. Tissue engineering may one
day  put  an  end  to  allogenic  organ  transplantation  and  the  need  for
immunosuppression. Stem cells are a cornerstone to this process, as they possess the
ability to differentiate into nearly any cell type[107]. Combining the abovementioned
research fields with 3D bioprinting will allow for in vitro tissue creation. Bioprinting
uses the 3D additive manufacturing process while utilizing biomaterials,  growth
factors, or different cell types as the printing medium[108].

Computed tomography or magnetic resonance imaging scans can be used to create
a  digital  blueprint  of  the  desired organ[109,110].  This  computer  created file  is  then
converted into thin slices that can be layered on top of one another. When the 3D
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printing process is done the tissue still needs to undergo a maturation process before
it can be implanted. Over time the tissue will start to develop its own extracellular
matrix and any temporary scaffolding is degraded[110].

One  of  the  largest  challenges  in  3D  printing  human  tissue  and  organs  is  to
implement and promote vascularization[111]. Researches have tried to overcome this
obstacle by printing sacrificial mediums embedded in endothelial cells, which can
mature into blood vessels  as  the original  medium slowly degrades over time[112].
However, these constructs are extremely fragile and require mechanical and chemical
stimulation to undergo maturation and capable of implantation into the body[113].
Once in the body, the new tissue must generate its own extracellular matrix to be fully
incorporated. Trauma and tumor growth can lead to substantial amounts of bone
loss[114]. Traditional bone grafts are limited < 5 cm in size and often fail due to residual
stress[115].  Gao  et  al[87]  used  an  inkjet  printer  to  print  peptides  and  PEG  with
simultaneous photo-polymerization using bone marrow mesenchymal stem cells,
which showed significantly enhanced osteogenic differentiation.

Liver transplantation is the only cure for liver failure. However, there are more
people waiting for livers than there are donors, leading to many deaths while waiting
for a transplant[116]. Faulkner-Jones et al[117] differentiated iPSCs into hepatocytes after
bioprinting showed that stem cells maintain their pluripotency during the printing
process. Ahn et al[118] printed a multilayer porous mesh structure made with alginate
and  ADSCs,  which  they  successfully  differentiated  into  a  hepatogenic  lineage
expressing liver-specific genes.

THERAPEUTIC APPLICATIONS OF STEM CELLS AND
BIOPRINTING TOWARDS DIABETES
Around 15 different types of tissues have been studied in bioprinting technology but
there are other tissues types that are part of the human body, which are unexplored
and need more investigation[79]. In addition, the innovation of bionic organs or new
types of organs is a possible direction for the future in bioprinting to solve organ
shortage and alleviate patients’ suffering[119]. Bioprinting research involves multiple
cell  types  patterned to  mimic  the complex anatomy of  the  human body and the
understanding for an optimal protocol for culture conditions with multiple cell types;
these optimizations should include the correct medium and nutrients to promote
growth and viability of multiple cell types[79,81].

For T2DM
An  example  of  an  application  of  bioprinting  with  cells  is  a  pancreatic  model
bioprinted with pancreatic islets that was implanted into a diabetic murine model
leading to regulated insulin secretion. However, the size of the mouse model of study
was significantly different, about 100000 times smaller than a human model[79,100,120].
Hence,  the 3D bioprinted models of  study need to have relevant dimensions for
clinical use i.e., the simulation of human size, a larger animal model needs to be used
that can possibly represent human physiology[121].

A recent study had reported translational benefits of adult and embryonic stem cell
in which stem cells can be used to produce insulin-like secreting cells known as β-
cells[76]. The translational benefits provided evidence towards the existence of new β-
cells generated by the replication of pre-existing β-cells from the adult pancreas or
partial  removal  of  the  pancreas[76].  Cells  used to  reconstruct  and regenerate  the
pancreas  after  implantation  must  be  pathogen  free.  Ideally,  the  cells  that  will
differentiate into β-cells should not only be able to reconstitute the function of the
pancreas but also maintain long-term and normal activity[122]. It has been shown that
mature exocrine cells of the pancreas can be reprogrammed to become β-like-cells in
vivo with a combination of 3 transcription factors[123]. Another challenge that needs to
be addressed is  that  the differentiated β-cells  persist  as individual cells  or small
clusters and do not reorganize into islets before clinical therapy is induced[122]. The
viruses that are used to reprogram factors needed for induction of differentiation
should be replaced with safer reagents to produce β-cells[124].

Although 3D bioprinting has been successfully applied to fabricate tissues such as
blood vessels[125,126], skin[127,128], bone and cartilage[93,122,125-130] and liver[13], the bioprinting
of pancreatic islet tissues to treat diabetes remains to be explored. However, other
techniques such as stereolithography have shown promise, in this regard. According
to  work  done  by  Gallego-Perez  et  al[131],  microwell  arrays  were  created  with
stereolithography and electrospinning, and structurally interfaced with a porous sheet
of  micro/nano-scale  polyblend fibers.  These arrays served as  a  platform for  the
anchoring and subsequent assemblage of human pancreatic ductal epithelial cells into
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insulin-expressing 3D clusters occurred[131]. Given that cluster size and uniformity are
known  to  influence  islet  cell  behavior,  the  ability  to  effectively  control  these
parameters could find applications in the development of anti-diabetic therapies[131].
Immunoreactivity for insulin,  C-peptide and glucagon was detected on both the
platform and control surfaces; however, intracellular levels of C-peptide/cell were
approximately 60% higher on the platform[131].  Alginate-based porous scaffolds as
extra-hepatic islet delivery systems were successfully developed through 3D plotting
by  Marchioli  et  al[99].  INS1E  β-cells,  human  and  mouse  islets  were  successfully
embedded in these 3D-plotted constructs without affecting their morphology and
viability while preventing their aggregation[99]. Studies such as these show that there is
a definite possibility of treating diabetes by incorporating 3D printing technology, but
rigorous research is in order before that can be achieved.

Investigations led by Dor et al[132]  provided conclusive evidence that terminally
differentiated β-cells could retain a significant proliferative capacity in vivo and could
be  used  as  a  major  source  for  new  β-cells  during  adult  life  and  following
pancreatectomy in mice.

A scalable differentiation protocol to generate millions of glucose-responsive β-cells
from hPSC in vitro was reported by Pagliuca et al[54] as the, insulin-producing cells that
were previously generated from human pluripotent stem cells (hPSC) were found to
lack many functional characteristics exhibited by bona fide β-cells.

Ozbolat et al[14] proposed the concept of miniature organs, that could potentially be
fabricated on a smaller scale in comparison to their natural counterparts and closely
mimic the most vital function of the associated organ, such as a pancreatic organ. This
organ could be placed in a less immune-responsive site in the body to effectively
produce and secrete insulin in the desired quantities into the bloodstream to regulate
glucose levels to normoglycemia in the human body[14].

Chen et al[133] investigated the possibility of differentiating rat marrow MSCs in vitro
into functional islet-like cells and to confirm their diabetes therapeutic potential.
Insulin mRNA and protein expressions were observed in the resulting typical islet-
like clustered cells[133]. The insulin excreted from the differentiated cells was found to
be much higher than the undifferentiated MSCs[133]. The injected differentiated MSCs
were also found to downregulate glucose levels in diabetic rats when diabetic rat
models were made to test the in vivo function of the differentiated MSCs[133].

Jiang et al[56] established a novel serum-free protocol to generate insulin-producing
islet-like clusters (ILCs) from hESCs grown under feeder-free conditions. The hESCs
were treated with sodium butyrate and activin A to generate definitive endoderm[56].
The endoderm population was then converted into cellular aggregates which were
further differentiated into Pdx1-expressing pancreatic endoderm in the presence of
epidermal and basic fibroblast growth factors[56]. The aggregates were finally allowed
to mature and the temporal pattern of pancreas-specific  expression in the hESC-
derived ILCs showed considerable resemblance to in vivo pancreas development, and
the final population contained representatives of the ductal, exocrine, and endocrine
pancreas[56].

Ferrell  et  al[134]  successfully developed a technique that could enable the active
patterning of individual cells and groups of cells in a polymer-based microdevice
using vacuum-assisted cell seeding. Polymer microwells with various geometries on
top of commercially available porous membranes were moulded by employing soft
lithography[134]. This method was used to determine the number of cells in a microwell
for given cell seeding density and microwell geometry and tested successfully with
pancreatic  ductal  epithelial-like  cells  indicating  potential  applications  in  tissue
engineering[134].

Patients with diabetes mellitus are at a greater risk of developing heart failure such
as hypertension and coronary artery disease[135].  Diabetic patients may develop a
diabetic heart disease (DHD) in which progresses with cardiac hypertrophy where the
thickness of the left ventricular wall is increased and caused diastolic dysfunctions
and other abnormalities[2]. Myocardial dysfunctions and impaired coronary perfusions
in DHD are dependent pathologies associated with endothelial dysfunction initiated
by diabetes[136].  Previous studies  had showed that  T2DM disrupts  mitochondrial
proteomic associated with protein import efficiency, which triggers mitochondrial
dysfunction in diabetic patients leading to heart problems[4]. Further studies need to
be explored in order to understand the causes of DHD; for instance, the development
of an organ-on-a-chip can be established to construct experiments for deficiency of
signaling pathways, drugs screening through systemic interactions by interconnecting
different  organs  such as  the  pancreas  and the  heart  or  other  organs  affected by
diabetes[137,138]. In addition, organ-on-a-chip can help to develop devices with sensors
that can read glucose levels or increased proteins levels in the heart that may trigger
heart failure; moreover, these state-of-the-art devices can also help to manage skin
wound in risk of bacterial infections on those diabetic patients[9,139,140]. Status of stem
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cell therapies and bioprinting in tissue repair and regeneration are shown in Table
3[141-181].

For T1DM
Besides providing for a constant source of β-cells, for serving therapeutic benefits in
T1DM there is a need for a protective shell, which can house the newly regenerated β-
cells  while  preventing antibodies  from destroying them,  thereby retaining their
functionality.

Although T1MD has been treated by the transplantation of islets of Langerhans into
the pancreas, it has necessitated the need to administer immunosuppressive drugs to
the  patients[182].  Since  the  side  effects  of  these  drugs  have  not  been  understood
completely, cell transplantation therapy without the use of immunosuppressive drugs
is preferred. Bioartificial pancreas has been fabricated by the encapsulation of islet
cells within a semi-permeable membrane for the resolution of this issue[182].  Prior
research has reported that these models function well with small animal models, but
their clinical outcome on human patients remains to be studied further[182].

Scaffold-free tissue strands, expressing high levels of insulin, were microfabricated
for  extrusion  based  bioprinting  by  Akkouch  et  al[183].  These  tissue  strands  were
composed of rat fibroblasts and mouse insulinoma TC-3 β cells in the core and shell,
respectively and were developed for scale up tissue engineering purposes[183].

Microscale organoids in which heterocellular  aggregates possessed organ-like
functions, have been successfully generated in vitro for pancreatic tissues by Greggio
et al[184]. Efficient expansion of dissociated mouse embryonic pancreatic progenitors
was enabled by establishing three-dimensional culture conditions in Matrigel[184].
Hollow  spheres,  composed  of  pancreatic  progenitors,  or  complex  organoids
spontaneously  undergoing  pancreatic  morphogenesis  and  differentiation,  were
generated by the manipulation of the medium composition[184]

Hiscox  et  al[185]  successfully  developed  a  tissue  engineered  pre-vascularized
pancreatic encapsulating device (PPED) using collagen gels. It was observed that
isolated islets that were placed in collagen gels exhibited fourfold more insulin release
than islets not in collagen. Subsequently, a sandwich comprised of two layers of pre-
vascularized collagen gels around a central collagen gel containing islets was also
developed and implanted. In vitro  characterization of the islets showed that islets
were functional and responded to glucose stimulation[185]. Insulin and the presence of
intra-islet  endothelial  cells  were  detected  by  performing  immunohistochemical
analysis. The results of the study indicated that PPED was able to enhance the islet
survival  by supporting islet  viability and maintaining intra-islet  endothelial  cell
structures[185]. Bloch et al[186] developed a technology to overcome the immunoisolation
of pancreatic islets that leads to severe cell hypoxia and dysfunction. A thermophylic
strain of the unicellular alga Chlorella was used as a natural photosynthetic oxygen
generator to supply oxygen to the islets encapsulated in alginate[186]. The results of the
study indicated that photosynthetic-dependent oxygen generation induced higher
glucose-stimulated insulin response when compared to normoxic perfusion[186].

CONCLUSION
The ever-rising global burden of diabetes and its related complications is predicted to
affect about 650 million by 2040 and is a major burden on our economy (American
Heart  Association).  Diabetes  mellitus  is  believed  to  be  the  underlying  cause  of
functional and structural changes in the myocardium, that manifests in the condition
referred  to  as  diabetic  cardiomyopathy  (DCM),  and  may  lead  to  heart  failure
independent  of  underlying  coronary  heart  disease[187].  Patients  with  T2DM  are
recognized to have an increased risk of cardiovascular morbidity and mortality as
hyperglycemia deteriorates endogenous cardiac protection[188]. Although DCM results
from  various  mechanisms  including  microvascular  impairment,  metabolic
disturbance, subcellular component abnormalities, cardiac autonomic dysfunction,
and  a  maladaptive  immune  response,  the  underlying  pathogenesis  is  partially
understood. But there are major discrepancies among animal and human studies that
leaves an important gap in knowledge[189]. Insights into the pathophysiology of human
DCM are critical to discovering standardized targeted therapies. Therefore, there is an
urgent need to biofabricate human tissue-on-a-chip models that can serve as a basis
for development of novel therapeutic approaches to cure or prevent DCM in vivo.
Bioprinting is a promising recent technology, which is likely to play an influential role
in  regenerative  medicine.  Many  technical  challenges  still  need  to  be  overcome
including limitations in resolution, cell distribution, vascularization, and innervation.
However, this technology is poised to alleviate the treatment limitations of end-stage
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Table 3  Status of stem cell therapies and bioprinting in tissue repair and regeneration

Organs Stem cell Bioprinting

Heart (1) Combination of Mesenchymal and c-kit (+)
Cardiac stem cell[141]; and (2) Human embryonic

stem cell–derived cardiomyocytes[142]

(1) 3D bioprinting approach for vascularized heart
tissue engineering based on human umbilical vein

endothelial cells and induced pluripotent stem
cells-derived cardiomyocytes[143]; (2) 3D-printed

patch composed of human cardiac-derived
progenitor cells in a hyaluronic acid/gelatin

(HA/gel) based matrix[144]; and (3) 3D endothelial
bed was seeded with cardiomyocytes to generate
aligned myocardium capable of spontaneous and

synchronous contraction[145]

Blood vessels (1) Endothelial cells derived from human
embryonic stem cells[146]; and (2) Human

Pluripotent Stem cells[147]

(1) Pluronic F127 was used as a sacrificial material
for the formation of the vasculature through a

multi-nozzle 3D bioprinting system[148]; and (2)
Drop-on-demand bioprinting technique to
generate in vitro blood vessel models[149]

Nerves Mesenchymal stem cell[150,151] (1) Novel technique for bioprinting of fibrin
scaffolds by extruding fibrinogen solution into

thrombin solution, utilizing hyaluronic acid (HA)
and polyvinyl alcohol[152]; and Production of high-

resolution 3D structures of polylactide-based
materials via multi-photon polymerization and
explores their use as neural tissue engineering

scaffolds[153]

Eyes (1) Embryonic stem cell[154]; and (2) Limbal stem-
cell[155]

(1) Produced 3D cornea-mimicking tissues using
human stem cells and laser-assisted

bioprinting[156]; and (2) Physical and chemical
signals through 3D-bioprinting of HA hydrogels
and co-differentiation of retinal progenitor cells

into photo receptors [157]

Kidneys (1) Embryonic stem cell[158]; and (2) Human
pluripotent stem cells[159,160]

Bioprinting method for creating 3D human renal
proximal tubules in vitro that are fully embedded

within an extracellular matrix[161]

Skin Mesenchymal stem cells[102,162] (1) Amniotic fluid-derived stem cells printed in a
set of pressure-driven nozzles through hydrogel
solutions[102]; (2) Novel bioink made of gelatin

methacrylamide and collagen doped with
tyrosinase is presented for the 3D bioprinting of

living skin tissues[163]; and (3) 3D cell printing of in
vitro stabilized skin model and in vivo pre-

vascularized skin patch using tissue-specific
extracellular matrix bioink[164]

Pancreas (1) Embryonic stem cells[165]; and (2) Human
embryonic stem cells[166,167]

(Not fully developed) reviews[168,169]

Brain (1) Multipotent adult stem cells[170]; and (2)
Endogenous neural stem cells[171]

(1) Method for fabricating human neural tissue by
3D printing human neural stem cells with a

bioink, and subsequent gelation of the bioink for
cell encapsulation[172]; and (2) 3D bioprinted

glioma stem cell model, using modified porous
gelatin/alginate/fibrinogen hydrogel that mimics

the extracellular matrix[173]

Lungs (1) Distal airway stem cell[174]; (2) Pluripotent stem
cells[175]; and (3) Exogenous stem/progenitor

cells[176]

Reviews[177,178]

Liver (1) Mesenchymal stem cells[179]; and (2) Induced
pluripotent stem cells-derived organ bud

transplant[180]

(1) Human embryonic stem cells-derived
hepatocyte-like cells were 3D printed using

alginate hydrogel matrix[117]; (2) Development of a
liver-on-a-chip platform for long-term culture of

3D human HepG2/C3A spheroids for drug
toxicity assessment[104]; and (3) Liver tissue model
conducive to hepatotoxicity testing was developed
by bioprinting hepatic spheroids encapsulated in a

hydrogel scaffold into a microfluidic device[181]

organ dysfunction and failure. These challenges can be addressed by using more
sophisticated  printing  technologies.  Another  possibility  for  addressing  these
challenges is  through the fabrication and characterization of  more sophisticated
bioinks that deliver the necessary cues for promoting cell survival and the desired
differentiation.
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Hinton et al[190] developed a novel 3D printing method using the freeform reversible
embedding of suspended hydrogels. This novel printing process generates intricate
structures that mimic the properties of native tissues found in vivo,  including the
structures found in bone and brain.

Human  cardiac  cells  prepared  from  iPSCs  are  incredibly  useful  as  tools  for
generating human models of heart disease to acquire an improved understanding of
the underlying mechanisms, and for testing different drugs or other treatments[191,192].
They can also be used to help predict which patients might have toxic cardiac side
effects from drugs for other diseases. Such an advancement in stem cell-based tissue
engineering  will  enable  building  of  physiologically  relevant  cardiac  tissue  for
applications in drug discovery and will further provide the opportunity to create
personalized in vitro models from cells derived from patients[193]. The use of stem cell
therapies and bioprinting in clinical practice will continue to emerge in the upcoming
years. The availability of disease specific iPSCs such as those derived from patients
having T1DM and T2DM have a huge potential towards fabrication of disease specific
human tissue-on-a-chip models that may be used to model disease progression in
vitro[194].

The employment of stem cells for the treatment of diabetes is still at its infancy
stage in spite of the magnificent strides that have been taken in the field of stem cell
biology and research.  The research that  has been done over the past  decade has
established that insulin-producing cells can definitely be derived from stem cells.
However, the entire potential of stem cells can be harnessed only upon the resolution
of associated issues and hurdles that fall in the way. Some of the key issues that limit
the further exploration of stem cells in clinical trials include exploration of stem cells
in clinical trials includes safety concerns, formations of teratomas, transplantation
issues  and  autoimmune  response,  and  also  ethical  dilemmas  posed  by  ESCs.
Similarly, the problems associated with the scale up production, further hamper the
application of adult stem cells and iPSCs, as a choice of therapeutic resources. The
need to formulate newer methods for the differentiation and selection of completely
functional β-cell is a priority. The regeneration of these cells can be made possible
only by controlling the regulation of various factors. The scientific efforts of the past
research have made it possible to generate insulin-secreting cells and have laid the
foundation for  future  research to  come up with solutions  utilizing stem cells  as
therapeutic agents to alleviate diabetes.
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