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Abstract
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional
regulation of inflammation-related genes, as well as for oncogene and tumor
suppressor expression in human cancers. Among them, a group of RNA-binding
proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs)
control mRNA stability or translation through their binding to AU-rich elements
enriched in the 3’UTRs of inflammation- and cancer-associated mRNA
transcripts. AUBPs play a central role in the recruitment of target mRNAs into
small cytoplasmic foci called Processing-bodies and stress granules (also known
as P-body/SG). Alterations in the expression and activities of AUBPs and P-
body/SG assembly have been observed to occur with colorectal cancer (CRC)
progression, indicating the significant role AUBP-dependent post-transcriptional
regulation plays in controlling gene expression during CRC tumorigenesis.
Accordingly, these alterations contribute to the pathological expression of many
early-response genes involved in prostaglandin biosynthesis and inflammation,
along with key oncogenic pathways. In this review, we summarize the current
role of these proteins in CRC development. CRC remains a major cause of cancer
mortality worldwide and, therefore, targeting these AUBPs to restore efficient
post-transcriptional regulation of gene expression may represent an appealing
therapeutic strategy.

Key words: Colorectal cancer; Adenylate-Uridylate-rich element-binding proteins;
Oncogenes; Tumor suppressors; Post-transcriptional regulation
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Core tip: Colorectal cancer (CRC) is a deadly cancer associated with the deregulation of
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multiple genetic and epigenetic mechanisms, leading to the silencing of tumor
suppressors and the induction of both oncogenes and inflammation-related genes.
Among them, a novel class of RNA-binding proteins called Adenylate-Uridylate-rich
element-binding proteins have been involved in the post-transcriptional regulation of
genes linked to CRC tumorigenesis. Current findings indicate the major regulatory roles
these RNA-binding proteins have on deregulated pathways associated with CRC.
Therefore, targeting these proteins may represent a novel and efficient therapeutic
approach.

Citation: Legrand N, Dixon DA, Sobolewski C. AU-rich element-binding proteins in
colorectal cancer. World J Gastrointest Oncol 2019; 11(2): 71-90
URL: https://www.wjgnet.com/1948-5204/full/v11/i2/71.htm
DOI: https://dx.doi.org/10.4251/wjgo.v11.i2.71

INTRODUCTION
Colorectal cancers (CRCs) represent the third most frequent cancer and a leading
cause of cancer mortality worldwide[1,2]. The progression model of CRC tumorigenesis
results from a long deregulated process that initiates with the development of small
adenomas, large adenomas and finally CRC[3]. In the majority of cases, CRCs develop
sporadically (70% of cases) and rarely are due to inherited mutations underlying
familial adenomatous polyposis (FAP) and the Lynch syndromes[4].  The causes of
sporadic  CRC development  are  still  unclear,  but  several  risk  factors  have  been
identified,  including  older  age,  obesity,  diabetes,  sedentary  lifestyle,  alcohol
consumption or chronic inflammatory diseases (i.e., inflammatory bowel diseases,
Crohn’s disease and ulcerative colitis)[2,5,6]. Considering the pandemic of obesity and
type-2 diabetes in developed countries[7], the incidence of CRC is expected to increase
in the future, making it a major public health concern and economic burden. CRC is
primarily treated by surgery, but also by chemotherapy (e.g., FOLFOX: Folinic acid, 5-
fluorouracil, oxaliplatin) and targeted therapy[4].  However, despite this myriad of
therapeutic approaches, CRC remains one of the most deadly cancers[2]. Several causes
contribute to the development of aggressive metastatic tumors, which include the
development of chemoresistance and late diagnosis due to the lack of symptoms at
early stages. Therefore, deciphering the molecular features of CRC is still a major
research effort to identify novel/early biomarkers and therapeutic approaches.

At the molecular level, CRC has been associated with chromosomal instability and
microsatellite instability that can affect tumor suppressor (TS) and oncogene (ONC)
expression[4]. These mutations trigger various signaling pathways (i.e., Wnt/β-catenin,
TP53,  KRAS)  involved  in  most  cancer  hallmarks  (i.e.,  proliferation,  migration,
survival)[4]. Unfortunately, many of these mutated genes have proven to be difficult to
target  therapeutically,  considerably  limiting  the  amount  of  therapeutic  options.
Nevertheless,  ONC/TS  and  inflammation-associated  gene  expression  are  also
deregulated through mutational-independent  mechanisms or  aberrant  signaling
within  the  tumor  microenvironment.  These  alterations  can  be  mediated  by  the
metabolic status of the intestinal epithelium, the gut microbiota, epigenetic changes
(i.e., DNA methylation, histones acetylation)[8] or the pro-inflammatory environment.
Among them, increasing evidence indicates that post-transcriptional mechanisms
controlling mRNA stability and translation contribute to CRC tumor progression.
Over the last decade, extensive efforts have been devoted to deciphering the impact of
non-coding  RNAs  (i.e.,  long-non-coding  RNAs,  microRNAs)  during  CRC
development. More recently, the role of a family of RNA-binding proteins (RBP)
called “Adenylate and Uridylate-rich elements-binding proteins” (AUBPs) regulating
mRNA  stability  and  translation  have  been  highlighted.  Alterations  in  AUBPs
expression/activity  have  been  associated  with  the  development  of  several
inflammatory, metabolic disorders (i.e., osteoarthritis, diabetes) and cancers[9]. During
carcinogenesis, these proteins contribute to the activation of various ONC and the
silencing of TS, thereby triggering critical pathways involved in CRC development. In
this review, we discuss the specific role of these proteins in the onset and progression
of CRC, with particular emphasis on their ability to regulate the expression of key
ONC,  TS  and  inflammation-related  genes.  Finally,  we  discuss  the  potential  of
targeting these proteins for therapeutic purposes.
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ARE-DEPENDENT POST-TRANSCRIPTIONAL REGULATION
Post-transcriptional regulation of gene expression encompasses various mechanisms
that control mRNA processing, splicing, stability and translation. In this regard, the
3’UTR is a determinant region of mRNA transcripts that can be targeted by various
trans-acting factors, such as microRNAs, long-non-coding RNA or RBP. In particular,
the AU-rich element present in the 3’UTR of various mRNAs plays a critical role in
the control of mRNA stability and translation. The ARE is usually defined as a core
AUUUA sequence, and is most often composed of multiple copies of the AUUUA
motif. Several ARE classes and clusters have been defined based on the number and
context of the AUUUA pentamers[10,11]. The presence of one or more ARE in the 3’UTR
of  mRNAs is  frequently  observed in  immediate-early  response  genes  (e.g.,  pro-
inflammatory cytokines, ONC), which make ARE-dependent regulation critical for
several processes like inflammation[12]. Currently, it is estimated that 5-8% of human
genes contain an ARE in their 3’UTR[11], thus highlighting the importance of ARE-
dependent regulation. The development of several ARE databases, such as AREsite
( h t t p : / / r n a . t b i . u n i v i e . a c . a t / c g i - b i n / A R E s i t e . c g i )  o r  A R E D
(http://brp.kfshrc.edu.sa/ARED/),  has  provided  researchers  with  potent
bioinformatic  tools  to  identify  the  presence  of  AREs  in  eukaryotic  mRNAs[13,14].
Moreover, high-throughput gene expression analyses have allowed the identification
of several ARE-containing genes deregulated in as early as stage I CRC[15].

Aberrant ARE-dependent post-transcriptional regulation has been observed in all
cancer types, and contributes to the overexpression of pro-inflammatory mediators
[e.g., Cyclooxygenase-2 (COX-2)], ONC (e.g., c-myc) and to the silencing of TS [e.g.,
Insulin-like growth factor-binding protein 3 (IGFBP3), Programmed cell death protein
4 (PDCD4)], thereby triggering key oncogenic pathways involved in the establishment
of neoplastic phenotypes[10]. Over the last decade, efforts have been devoted to fully
characterize  the  underlying  mechanisms  associated  with  this  aberrant  ARE-
dependent regulation in CRC. Among them, several non-coding RNAs and RBPs have
been identified, which may represent novel biomarkers and/or therapeutic targets.

COMPLEXITY OF AUBPS-DEPENDENT POST-
TRANSCRIPTIONAL REGULATION
The ARE can be targeted by RBPs called “AU-rich Element-Binding Proteins”, which
display high affinity for binding to adenine and uridine-rich elements present in the
3’UTR  of  several  immediate-early  response  genes,  such  as  pro-inflammatory
cytokines, growth factors and ONC. To date, more than 20 different AUBPs involved
in mRNA stability and translation regulation have been described[11]. Importantly, the
expression and role of these proteins may differ depending on the tissue type or the
cellular context (e.g., inflammation, hypoxia)[16,17]. AUBPs can promote mRNA decay
or regulate mRNA translation by directing ARE-containing mRNAs to P-bodies and
stress  granules,  respectively[18,19].  Therefore,  the  identification  of  target  mRNAs
through transcriptomic approaches is  not  always suitable,  particularly for  those
involved in  translation regulation [i.e.,  T-Cell-Restricted Intracellular  Antigen-1
(TIA1)]. A primary method to identify direct mRNA targets consists of crosslinking
ribonucleoprotein (RNP) complexes, followed by the immunoprecipitation of AUBP
and RNA sequencing (CLIP-seq, RNP-IP)[6]. Many published studies investigating
AUBPs have used in vitro cell models. More recently, however, the development of
several in vivo transgenic models have allowed researchers to better characterize the
physiological and pathological functions of several AUBPs in the context of tissue-
specific expression.

Most  AUBPs  are  regulated  by  post-translational  modifications  (e.g . ,
phosphorylation)  that  can impact  their  subcellular  localization and activity[20,21].
Therefore, not only the expression but also the activity/localization of AUBPs should
be considered in research projects. Moreover, AUBPs can regulate the fate of their
own mRNA transcript, as demonstrated for tristetraprolin (TTP)[22]. This may result in
the transient modulation of their expression, as previously demonstrated for TTP with
insulin  stimulation[23].  This  aspect  should  also  be  considered  in  the  design  of
experimental settings aimed at measuring the level of AUBPs in physiological or
pathological conditions.

The complexity of ARE-dependent regulation is further enhanced by the fact that
one particular AUBP can regulate several mRNAs and, conversely, one mRNA can
also be targeted by distinct AUBPs (e.g., COX-2)[24]. This derives from the fact that
AUBPs can bind to different classes of AREs or share the same binding sites (e.g., HuR
and TTP for COX-2 regulation). Therefore, it is likely that the phenotype observed
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with  the  manipulation  of  one  given  AUBP’s  expression  may  contribute  to  the
concerted deregulation of several mRNA transcripts.

Another layer of complexity is provided by the competition of AUBPs and miRNAs
for the same binding site  on a  given target  (e.g.,  HuR and miR-16)[25].  Moreover,
AUBPs can also directly sequester miRNAs and prevent their binding to their mRNA
targets (e.g., HuR and miR-21)[26]. Such competitions have also been reported between
long-non-coding RNAs, miRNAs or AUBPs[27], however it is still unclear whether this
interplay exists in CRC. Most studies focus on the role of one given miRNA, AUBP or
lncRNA, so this dynamic equilibrium between AUBPs and non-coding RNAs is thus
poorly considered.

ROLE OF AUBPS IN CRC
ARE-dependent  post-transcriptional  regulation  plays  an  important  role  in  the
development and progression of CRC. This importance derives from an ability of
these proteins to directly regulate the mRNA decay and/or translation of several
ONC, TS and/or inflammatory mediators.

HuR (ELAVL1)
HuR (ELAVL1)  belongs to  the  Embryonic-Lethal  Abnormal  Vision in  Drosophila
(ELAV) family  of  RBPs[28].  This  protein  is  ubiquitously  expressed and primarily
localized in the nucleus, where it contributes to nucleo-cytoplasmic export[20,29]. The
protein displays two tandem RNA-recognition motifs (RRM), followed by a hinge
region  and  a  third  RRM.  The  hinge  region  contains  a  HuR  nucleocytoplasmic
shuttling  (HNS)  domain  that  can  be  phosphorylated  by  various  kinases,  and is
involved in nucleo-cytoplasmic shuttling of the protein. In the cytosol, HuR stabilizes
ARE-containing mRNA transcripts (Class I and II mostly) by competing or displacing
destabilizing factors, such as microRNAs or other AUBPs (i.e., TTP), that share the
same ARE binding sites. Moreover, HuR can directly bind to miRNAs (e.g., miR-21)
and  thus  prevent  the  downregulation  of  their  targets [26].  HuR  is  frequently
upregulated in most human cancers and exerts oncogenic functions.

Role of HuR in CRC development
HuR is one of the most studied AUBPs in CRC. HuR is overexpressed in CRC when
compared  to  normal  colon  epithelium[30].  It  contributes  to  the  stabilization  of
inflammation-related transcripts, as well as various oncogenic transcripts involved in
cancer cell proliferation, migration, invasion and angiogenesis. Interestingly, HuR
was  also  found  overexpressed  in  colonic  epithelial  cells  from  patients  with
inflammatory bowel disease[31], thus suggesting that HuR induction may represent an
early event that promotes CRC development.

The role of HuR in CRC has been extensively studied in various in vitro and in vivo
models. HuR silencing in CRC cells (i.e., HCT116) is associated with decreased tumor
growth in xenograft models[32]. Conversely, HuR-overexpressing RKO cells display
larger tumors in nude mice[33].  Finally,  intestinal-specific HuR KO mice (HuRiKO)
display reduced tumor burden in a model of FAP (APCmin/+ mice), and increased acute
intestinal injury following doxorubicin treatment[34].

Efforts  have  been  devoted  to  identify  all  HuR  targets  involved  in  colorectal
carcinogenesis.  In  this  regard,  transcriptomic  analyses  have  been  performed in
various  in  vitro  and  in  vivo  models  with  varying  levels  of  HuR.  Furthermore,
immunoprecipitation of HuR/mRNA complexes has allowed the identification of
several HuR targets with significantly more specificity[35]. However, depending on the
colon  cancer  cell  lines  used  for  analysis,  different  targets  can  be  identified.
Considering the heterogeneity that exists between CRC tumors, different cellular
models should be considered.

Prostaglandin  (PG)  biosynthesis  and  inflammation:  PGs  are  bioactive  lipid
mediators derived from arachidonic acid metabolism. PGs play important functions
in the regulation of physiological processes[36]. Thus, the alteration of PG homeostasis
is often associated with the development of inflammatory diseases and cancer[37,38].
Following their synthesis, PGs are secreted and act in a paracrine or autocrine manner
by binding to nuclear receptors or G-coupled receptors localized at the cellular surface
(e.g., EP receptors)[39]. Prostanoid biosynthesis requires several enzymes, including
phospholipases, COXs and PGs synthases. In particular,  the inducible isoform of
COXs, COX-2, is frequently overexpressed in CRC[30,40], thus leading to aberrant PG
synthesis while promoting inflammation, immune escape of cancer cells[41], tumor
growth and metastasis. In CRC, several PGs were found to be aberrantly expressed
(e.g., PGE2), and their secretion in the tumor microenvironment contributes to both
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the development and progression of CRC[42]. HuR is a positive regulator of COX-2
expression  through  its  ability  to  bind  the  COX-2  3’UTR  and  mediate  its
stabilization[24,25,30,43].  Therefore,  both  HuR  and  COX-2  are  not  only  frequently
overexpressed  in  colorectal  tumors,  but  also  in  early  adenomas  and  FAP[44,45].
Moreover, the binding of HuR to the 3’UTR of COX-2 prevents miR-16-dependent
COX-2 downregulation[25]. Importantly, HuR indirectly induces COX-2 expression by
stabilizing the mRNA transcripts  of  pro-inflammatory cytokines involved in the
transcriptional induction of COX-2 expression (e.g., TNFα)[46,47]. Finally, HuR stabilizes
Inducible Nitric Oxide Synthase (iNOS) mRNA transcripts, thereby fostering nitric
oxide synthesis, which is a major inflammatory mediator[48].

Cancer cell proliferation: The ability of HuR to regulate cancer cell proliferation is
tightly linked to its ability to stabilize COX-2 mRNA. Indeed, PG-related signaling[40,49]

can  trigger  various  pathways  that  promote  cancer  cell  proliferation,  such  as
JAK/STAT,  PI3K,  MAPKs,  Wnt/β-cat  signaling and mTORC1 (see[50-52]  for  more
detailed reviews). These all control the transcription of cell cycle-related genes (e.g.,
cyclin D1, c-myc).  In particular,  PGE2 levels are increased in CRC, and has been
associated with strong oncogenic properties[53].

HuR promotes the overexpression of several proliferation-associated genes.  In
particular,  gene  expression  analysis  of  RKO  cells  (colon  carcinoma  cell  line)
displaying different levels of HuR expression revealed 26 upregulated genes when
HuR  is  induced,  including  cell  cycle-related  genes  (e.g.,  cyclin  D1,  cyclin  A)[54].
However, only a few of them, including TNFα, c-fos and β-catenin, were identified to
be  direct  HuR  targets.  It  is  therefore  likely  that  HuR  controls  gene  expression
indirectly by affecting the mRNA stability of key transcription factors. This idea is
supported by the fact that HuR can stabilize PLAGL2 (Pleomorphic Adenoma Gene
Like-2)[55], a transcription factor frequently overexpressed in CRC and involved in the
regulation  of  several  genes,  including  cyclin-D1[56].  Paradoxically,  despite  the
numerous studies attributing a tumor-promoting function to HuR, another study has
reported that HuR can bind to the 3’UTR of p53 and enhance its translation in RKO
cells under stress conditions (ultraviolet light irradiation)[57].

Cell death: HuR is an important regulator of apoptosis, which stabilizes the mRNA of
anti-apoptotic genes such as Bcl-2[58]. However, the role of HuR in cell death-related
processes in CRC remains poorly understood. Only a few studies have shown that
HuR is involved in the intrinsic apoptotic pathway by directly regulating Bcl-2 mRNA
stability[56].  This  effect  has  been  associated  with  chemoresistance  (epirubicin).
Similarly,  several previously reported HuR targets (in other models) involved in
apoptosis  (BCL2L2,  XIAP,  HIF1α)  were  found downregulated in  normal/tumor
tissues  from  intestinal-specific  HuRiKO  mice  as  compared  to  their  respective
controls[34]. These in vivo studies suggest that these apoptosis-associated transcripts are
direct HuR targets, consistent with previously reported HuR targets in other models.
Moreover,  HuRiKO  mice  display  decreased  β-catenin  expression,  leading  to  the
downregulation of target genes, including survivin[34]. This thus indicates that HuR
can also inhibit apoptosis indirectly. Furthermore, HuR can also indirectly prevent
apoptosis  through  COX-2/PG  pathways  (e.g.,  PGE2),  which  can  trigger  the
transcription of anti-apoptotic genes (e.g., Bcl-2)[59].

In  addition to  its  regulation of  anti-apoptotic  genes,  HuR can also  impair  the
expression of pro-apoptotic factors like caspases. In particular, HuR blocks IRES-
dependent translation of caspase-2 by binding to its 5’UTR[60,61]. This effect confers
resistance to radiotherapy in colon cancer cells  (i.e.,  DLD-1 and HCT-15 cells)[62].
Finally, HuR can also mediate chemoresistance by favoring Multidrug Resistance
genes, such as ABCG2, in CRC cells[63].

Cancer cell migration/invasion: The development of CRC-derived metastasis is one
of the leading causes of CRC mortality[64,65]. HuR overexpression contributes to the
stabilization  of  various  mRNAs  involved  in  this  process.  For  instance,  HuR
contributes  to  the  regulation  of  lysophosphatidic  acid  (LPA)  by  controlling  the
regulation of a key enzyme involved in its biosynthesis, Autotaxin (ATX). LPA exerts
pleiotropic functions by activating G-coupled receptors (LPA1-6)[66]  and triggering
intracellular signaling cascades that inhibit cell death and promote cell proliferation,
angiogenesis[66] and cancer cell migration[67,68].

In  another  study,  HuR  was  found  to  control  HCT116  colon  cancer  cell
migration/invasion by downregulating fibulin 3 expression[69]. The loss of fibulin 3
expression was previously reported in CRC patients, which involved the methylation
of its promoter[70]. Moreover, fibulin 3 downregulation correlates with higher tumor
stages and lymph node metastasis. HuR plays a critical function in fibulin 3 silencing
by promoting the methylation of its promoter. This effect is mediated via DNMT3A
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mRNA  stabilization  by  HuR,  following  HuR  phosphorylation  by  p38MAPK.
Interestingly, HuR was previously reported to also stabilize DNMT3B in RKO cells[71].
Together, these findings indicate that HuR can function on an epigenetic level by
regulating key genes that methylate target genes commonly repressed in CRC[72,73].

The intestinal-specific HuR KO mice (HuRiKO) were also useful to identify potential
HuR targets. In this regard, the expression of olfactomedin4 (Olfm4) was found highly
upregulated  in  the  small  intestine  and  colon  of  HuRiKO[34].  Olfm4  is  frequently
upregulated in human CRC tumors, and is mostly considered to be a stem cell marker
involved in cancer cell proliferation and migration[74].

Other specific mechanisms have been associated with the migration-promoting
effect  of  HuR.  Claudin-1  overexpression  has  been  tightly  associated  with  CRC
progression, invasion and metastasis[75], and HuR stabilizes the claudin-1 transcript[76].
Finally, increased PGE2 synthesis associated with COX-2 mRNA stabilization by HuR
can also increase cancer cell migration/invasion through the activation of membrane
receptors  that  promote  the  expansion  of  cancer  stem  cells.  Furthermore,  PGE2
synthesis can also inducing key regulators of migration/invasion, such as urokinase-
type  plasminogen  activator  receptor  (uPAR)[42],  MMP-2/9[77,78],  VEGFR1[79]  and
VEGF[52].

Regulation of HuR expression/activity in CRC
The  mechanisms  involved  in  HuR  overexpression  in  CRC  are  still  unclear,  but
increasing evidence indicates that non-coding RNAs are involved in HuR induction.
For  instance,  the  long  non-coding  RNA  Overexpressed  in  Colon  Carcinoma-1
(OCC1)[80]  has  been  involved  in  the  regulation  of  HuR  overexpression.  OCC1
expression is decreased in CRC patients and in colon cancer cell lines, indicating it to
be a negative regulator of HuR expression. In work by Lan et al[80], OCC1 was shown
to promote HuR protein degradation by enhancing the binding of ubiquitin E3 ligase
β-TrCP1 to HuR. In agreement with the role of HuR in the regulation of cell cycle-
related genes, OCC1-dependent HuR downregulation leads to an arrest of cancer cells
in the G0/G1 phase of the cell cycle, as well as to decreased expression of direct HuR
target genes (i.e., eIF4E, NEK2, MAD2L1, HNRNPA1, HNRNPK).

Deregulation in microRNA expression is also associated with HuR upregulation in
human cancers. Interestingly, based on the miRwalk database, more than 3000 miRs
(predicted by at least three different algorithms) are predicted to target HuR mRNA
in human, but only a few of them have been experimentally validated[58].  In CRC,
miR-519c  has  been  reported  to  downregulate  HuR  expression[81],  leading  to  an
overexpression of HuR targets, including the multidrug resistance gene ABCG2, and
thus chemoresistance[63].

Interestingly, although microRNAs have been mostly associated with mRNA decay
or  translation  inhibition,  miR-155-5p  seems  to  be  a  positive  regulator  of  HuR
expression[82]. The underlying mechanism is still unclear, but involves the binding of
miR-155-5P to ARE (AUUA and AUUU) within the HuR 3’UTR. This study suggests
that some miRNAs can inhibit  gene expression,  while others may stabilize some
transcripts similar to AUBPs. This effect may depend on the binding site and/or may
also result  from interplay between miRNAs and stabilizing RBPs,  as  previously
demonstrated[83].

Several post-translational modifications (e.g., phosphorylation) have been involved
in the subcellular localization and activity of HuR (see[20] for more detailed reviews).
For instance, the cytoplasmic localization of HuR is affected by kinases such as p38,
cdK1, PKC and AMPK, which phosphorylate HuR at different residues[29]. In CRC, an
increase in cytosolic HuR has been observed in inflamed tissue from patients with
inflammatory bowel disease, early adenomas and CRC, indicating that the nuclear-
cytosolic  shuttling  mechanisms  are  potentially  deregulated  in  both  CRC  and
preneoplastic  conditions[31].  While  these  and other  mechanisms have  been well-
characterized in various cancers, connecting these CRC-related post-translational
alterations to HuR is under current investigation.  One study has shown that the
neddylation of HuR by Mdm2 contributes to its protein stabilization in hepatocellular
carcinoma and CRC[84,85]. The phosphorylation of HuR at Ser318 by PKC (delta), and
its cytoplasmic localization in DLD-1 colon cancer cells[86], is also involved in HuR-
dependent stabilization of COX-2 mRNA. Furthermore, phosphorylation of nuclear
HuR by Chk2 and p38MAPK at Ser88 and Thr118, respectively, in oxidative stress
conditions is critical for the regulation of the splicing of TRA2β4, particularly by
favoring exon 2 incorporation[87]. Interestingly, the silencing of p38α MAPK was also
associated with decreased expression of HuR in HCT116 cells[69]. In addition, several
studies  have  associated  p38α  MAPK  with  oncogenic  properties,  including  the
promotion of cell proliferation, migration, invasion and angiogenesis[88].

Altogether, these data indicate that increased expression/activity of HuR in CRC is
most likely not the consequence of a single mechanism, but rather the concerted
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deregulation of several factors during transcription, post-transcription and post-
translation.

Therapeutic targeting of HuR in CRC
HuR overexpression can modulate a whole network of ONC and TS involved in the
various hallmarks of cancer[89]. Therefore, targeting HuR in CRC may represent an
appealing therapeutic strategy alone or in combination with existing therapeutic
approaches (i.e., chemotherapy, radiotherapy). Several small molecules compounds
that have the capacity to block HuR/ARE interactions have been identified by high-
throughput  screenings[90-93],  with  a  few  of  them  further  characterized  for  HuR
specificity. In particular, polyketides purified from plants or microbial extracts (i.e.,
MS-444,  okicenone,  dehydromutactin)  have shown HuR inhibitory properties[91].
Among them,  MS-444 has  been further  studied and displays  several  anti-tumor
properties[94]. MS-444 is a potent inhibitor of HuR homodimerization, preventing its
cytoplasmic export and the stabilization of several mRNA transcripts[94]. The anti-
tumor effect of MS-444 was further observed in vivo in a model of inflammatory bowel
disease and also in a genetic model of FAP (i.e., APCMin mice), but not in inflammatory
colon cancer (AOM/DSS mice)[31].

Other compounds have demonstrated an ability to impede HuR expression or
activity.  For  instance,  ar-turmerone  from  Curcuma  longa  prevents  LPS-induced
translocation of HuR[95]. However, the effects observed with these molecules are not
restricted to HuR and, thus, it is likely that the beneficial effects observed may also
result from several HuR-independent mechanisms.

Tristetraprolin (TIS11, NUP475, GOS24)
TTP belongs to a small family of Cys-Cys-Cys-His zinc finger proteins comprised of
TTP,  BRF1  and  BRF-2[96,97].  Zfp36  is  an  immediate-early  response  gene[98]  whose
expression can be induced by diverse stimuli like insulin[98,99], TGF-β[100,101], LPS[102] and
TNFα[103]. TTP is one of the best-characterized AUBPs that promote ARE-dependent
mRNA decay[96,97,104]. This process is mediated by the nucleation of small cytoplasmic
foci called Processing-bodies (P-bodies)[100,105,106], where targeted mRNA transcripts are
bound  by  mRNA  deadenylases,  translational  repressors  and  decapping
enzymes[107-109]. Alternatively, TTP can recruit the exosome complex to degrade ARE-
containing transcripts[110,111]. Finally, TTP is also involved in miRNA-dependent post-
transcriptional regulation (e.g.,  miR-16) through its binding to argonaute proteins
(Ago/eiF2C). This interaction promotes complex formation with miRNAs, which
allow their binding to ARE sequences[112,113].

The physiological significance of TTP is highlighted by Zfp36 knockout mice, which
develop severe inflammatory syndromes and growth retardation[114]. Moreover, TTP
expression is frequently lost in human cancers, and this loss is often associated with
poor clinical outcomes[115,116].

Role of TTP in CRC development
Several studies have demonstrated that TTP expression is downregulated in early
adenomas  and  adenocarcinomas [24 ,117,118].  TTP  is  considered  as  a  TS,  whose
downregulation in CRC contributes to the enhanced expression of pro-inflammatory
cytokines. However, TTP is also critical to ONC and TS gene regulation. Interestingly,
no significant difference was observed in the survival rate of patients with colon
adenocarcinoma in TTP low-expressing versus TTP high-expressing individuals[119].
Moreover,  there  were no differences  noted in the stage or  aggressiveness  of  the
tumors in TTP low and TTP high patients compared to other cancer types (i.e., breast
cancer, lung adenocarcinoma)[119]. However, it should be noted that the loss of TTP is
frequently associated with an overexpression of HuR during CRC development[24],
thus favoring the overexpression of their common targets. Accordingly, not only the
loss  of  TTP,  but  also  the  concomitant  induction  of  HuR  expression  should  be
considered in these analyses.

PG biosynthesis and inflammation: TTP plays a critical role in inflammation, since
most of these targets are inflammatory mediators like TNFα[103,120,121], GM-CSF[122] and
COX-2[24,123].  All  of  them contain AREs in their  3’UTR mRNA. Furthermore,  TTP
knockout mice develop a severe inflammatory syndrome characterized by cachexia,
arthritis, dermatitis, inflammation and autoimmunity[114,124].

In colon epithelium, TTP is a potent inducer of COX-2 mRNA decay through its
direct  binding  to  ARE  within  the  3’UTR[125].  Several  studies  have  reported  the
downregulation of COX-2 mRNA by TTP in various in vitro and in vivo models, as
well as in human tissues[24,123]. TTP expression is silenced in CRC, and together with
HuR overexpression,  stabilization of  the  COX-2 mRNA occurs.  These  combined
AUBP  effects  allow  for  pathological  protein  and  PGE2  production,  with  the
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subsequent  activation  of  downstream  signaling  pathways  involved  in  CRC
development[24].

TTP is well-known for its ability to mediate the mRNA decay of pro-inflammatory
cytokines, including IL-6 and TNFα[12]. However, the regulation of these cytokines by
TTP in CRC is not known. Nevertheless, other pro-inflammatory cytokines seem to be
regulated by TTP, such as IL-23, which plays a key role in colon cancer promotion[126].
A study performed in CT26 cells (murine colon cancer cell line) has shown that TTP
can induce IL-23 mRNA decay by directly binding to the ARE present within its
3’UTR[127].

Cancer cell proliferation and cell death: The ability of TTP to promote the mRNA
decay of several cell cycle-related genes, including cyclin-D1, c-myc or c-fos, is well
established in various cancers[128,129]. However, the regulation of all these targets by
TTP in CRC remains to be established[117]. Nonetheless, TTP can negatively control cell
proliferation  by  promoting  COX-2  mRNA decay,  thus  leading  to  decreased  PG
signaling (e.g., PGE2)[130].

TTP also exerts negative control on tumor growth by mediating mRNA decay of
the  RBP  Lin28[131].  Importantly,  Lin28  overexpression  fosters  adenocarcinoma
development[132] through several mechanisms, including the downregulation of let-7
miRNA[132,133]. Let-7 is a critical regulator of cell cycle-related genes (e.g., c-myc)[134], and
it  is  thus  likely  that  the  loss  of  TTP  in  CRC  may  indirectly  contribute  to  the
overexpression of Let-7 targets involved in cell proliferation. The role of TTP in cell
proliferation and cell death was further highlighted by its induction by resveratrol in
HCT116  and  SNU81  cells.  In  this  study,  the  induction  of  TTP  expression  was
associated with a direct binding to several genes involved in apoptosis and cell cycle
progression, including cIAP2, LATS2, MDM2 and E2F1[135].

Cancer cell migration, invasion: The loss of TTP in cancer is often associated with an
increase in cancer cell migration and invasion. This effect has been attributed to an
ability of TTP to destabilize the mRNAs of several migration-related genes such as
MMP9 and uPAR[9,136]. In CRC, the relationship between these genes and TTP is not
known. However,  several  genes promoting epithelial-to-mesenchymal transition
(EMT) were reported as direct TTP targets, including ZEB1, SOX-9 and MACC1 as
evidenced in colon cancer cell lines[118].

Furthermore, the loss of TTP in CRC (e.g., HCT116 and SW480 cells) correlates with
an increase in stemness markers (i.e., Bmi-1, ALDH-1 and ABCG2)[137], thus indicating
that TTP is a critical regulator of colon cancer cell differentiation. Some cell adhesion
molecules (CAMs) are negatively regulated by TTP[138], and thus their overexpression
following TTP loss will contribute to the establishment of a metastatic phenotype. TTP
promotes the decay of Claudin-1 mRNA in human colon cancer cells through direct
binding to its 3’UTR[76]. Claudin-1 overexpression has been associated with TNFα-
induced EMT and cancer cell migration[139].

Paradoxically,  TTP induction  in  colon  cancer  cell  lines  (e.g.,  HT-29)  has  been
involved in the inhibition of anti-tumor immunity, thereby fostering tumor growth
and metastasis formation. In this study, TTP is induced by Heme Oxygenase-1 (HO-1)
and  mediates  Intercellular  Adhesion  Molecule-1  (ICAM-1)  mRNA  decay,  thus
impairing  leucocyte  recruitment/adhesion[138,140,141].  However,  these  effects  were
observed in vitro and, therefore, it is still unclear whether TTP plays the same function
in vivo. Moreover, it is not clear whether TTP binds directly to ICAM-1 mRNA.

Finally, TTP is a negative regulator of angiogenesis, as evidenced by the increased
VEGF mRNA decay in TTP-overexpressing CRC cells (i.e., KM12C, HT-29, SW620 and
Colo320 cell lines)[117]. This effect involves the dephosphorylation of p38 MAPK by
MAPK  phosphatase-1,  which  is  activated  by  casein  kinase  2  (CK2).  The
dephosphorylation of p38 MAPK prevents the inhibition of TTP activity and thus
promotes VEGF mRNA decay[142]. Moreover, TGFβ increases CK2 (Casein Kinase 2)
activity and, consequently, increased TTP mRNA decay activity in Colo320 cells[142].

Another important role of TTP in angiogenesis has been associated with an ability
to prevent  K-homology splicing regulator  protein (KSRP)-induced iNOS mRNA
decay[48]. iNOS is a critical enzyme involved in NO synthesis, which promotes tumor
angiogenesis in CRC[143]. KSRP is another AUBP that promotes iNOS mRNA decay.
However, TTP interacts directly with the KSRP protein and prevents its binding to the
iNOS 3’UTR in colorectal adenocarcinoma cells[48].

Regulation of TTP expression/activity in CRC and potential therapeutic strategies
Several mechanisms contribute to the silencing of TTP expression in CRC. Among
them, an epigenetic mechanism involving the silencing of the transcription factor
EGR1 by histone deacetylases (HDAC) has been described[144]. Accordingly, EGR1 and
TTP  expression  could  be  restored  in  various  colon  cancer  cell  lines  by  HDAC
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inhibitors (i.e., SAHA, Trichostatin-A, sodium butyrate)[144]. In line with these findings,
a study by Krishnan et al[145] has reported that HDAC inhibitors increase the binding of
TTP to claudin-1 3’UTR in SW480 and SW620 cells. Therefore, it appeared from these
studies  that  HDAC  inhibitors  represent  an  efficient  approach  to  restore  TTP
expression. Several HDACs inhibitors have been shown to decrease cell proliferation
and promote cell apoptosis in CRC[146], and are currently being used in clinical trials.

Some pathways deregulated in colon cancer,  such as Wnt/β-catenin, may also
contribute to TTP loss. Indeed, an inverse relationship between TTP and the TCF/β-
catenin pathway has been reported in colon cancer cell lines (i.e., SW480, HCT116 and
SW620).  Furthermore,  the  treatment  of  these  cell  lines  with  an  inhibitor  of  this
pathway (i.e., FH535) was associated with an increase in TTP expression, suggesting a
role for this pathway in regulating TTP expression[118].

Other mechanisms leading to the silencing of TTP expression in CRC have been
described.  Of  note,  one  study  demonstrated  that  p53  can  directly  activate  TTP
transcription in CRC cell lines following doxorubicin (DOX) treatment. Accordingly,
the decreased TTP expression observed in human colonic adenocarcinoma tissues is
partially linked to the loss of p53[131]

Finally, EGFR/ERK signaling has been implicated in TTP loss, since Gambogic acid
from the Indian Gambodge tree induces TTP expression through the downregulation
of EGFR/ERK pathway signaling[137]. Other compounds of natural origin have also
been  reported  to  induce  TTP  expression  in  colon  cancer  cells.  In  this  regard,
resveratrol from red grapes promotes apoptosis and inhibits both cell proliferation
and metastasis by increasing TTP expression in HCT116 and SNU81 cells[135]

T Cell-Restricted Intracellular Antigen-1
TIA1 was originally identified in activated T lymphocytes, where it plays a nucleolytic
role against T cell targets. TIA1 is comprised of three RRMs involved in binding to
ARE in the 3’UTR of  target  mRNA transcripts[147,148].  TIA1 acts  as  a  translational
repressor and, during stress conditions (i.e., hypoxia, oxidative stress), interacts with
various co-factors (e.g., TIAR) to promote the sequestration of target mRNAs into non-
membranous cytoplasmic SG[149]. Therefore, target mRNAs are held translationally
silenced and can re-enter translation or proceed to mRNA decay in P-bodies. This
mechanism  allows  cancer  cells  to  survive  in  stressful  conditions  (e.g.,  hypoxia,
oxidative stress, chemotherapy). Therefore, SG formation represents a post-cellular
stress response that allows cancer cells to re-launch mRNA translation without the
high-energy demand of de novo transcription[150]. Stress granule formation has been
proposed to be a survival mechanism for cancer cells, thus suggesting that targeting
SG components may represent an appealing therapeutic approach in combination
with chemotherapy/targeted therapy[151,152].

Role of TIA1 in CRC development
The role of TIA1 in cancer is currently unclear. Depending on the cancer type, TIA1
behaves either as a TS or an ONC[153,154]. TIA1 possesses pleiotropic functions and, in
addition to its ability to regulate mRNA translation, also contributes to the alternative
mRNA splicing of  various cancer factors  (e.g.,  SIRT1,  CD95)[155,156].  While  limited
studies have been conducted to decipher the role of TIA1, TIAR and SGs in CRC,
COX-2 overexpression in CRC has been associated with a deficiency of TIA1 binding
to the COX-2 3’UTR[16]. This study suggests a tumor suppressive function of TIA1 in
CRC, and provides further evidence that COX-2 overexpression in CRC is mediated
through the deregulation of several AUBPs (i.e., TTP loss, HuR overexpression). The
idea of a tumor suppressive role of TIA1 is further supported by survival analysis of
CRC patients, showing that high-expressing TIA1 patients display a better prognosis
(TCGA/human protein atlas database). Paradoxically, TIA1 has been associated with
SG assembly[157], while SG formation has been associated with chemoresistance to 5-
FU in CRC cells (HT-29 and HCT-116 cells)[158]. Together, the data currently available
are more in favor of a tumor suppressive role of TIA1, yet are still insufficient to fully
understand the role of TIA1/TIAR/SGs function in CRC development. Thus, further
studies are required to identify TIA1-regulated mRNA targets in CRC.

Regulation of TIA1 expression/activity in CRC
The mechanisms involved in TIA1 silencing are still poorly known. To date, only one
study has involved the overexpression of miR-19a, which directly targets the TIA1
3’UTR in  CRC tissues  and cell  lines[159].  Nevertheless,  other  miRNAs have  been
involved in TIA1 silencing in other cancers, such as miR-487a in gastric cancer[160]. The
role of these miRNAs in TIA1 silencing remains to be investigated in the context of
CRC. Moreover, many other miRNAs are potential regulators of TIA1 expression
(TargetsScan analysis: http://www.targetscan.org/vert_72/), such as miR-199-3p,
which is upregulated in CRC[161].
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Butyrate response factor 1 (TIS11b, ERF-1, cMGI, Berg36, ZFP36L1)
The butyrate response factor 1 (BRF1) encoded by the ZFP36L1 gene, also known as
TIS11B,  belongs  to  the  ZFP36  zinc  finger  protein  family[96,97].  The  BRF1  gene  is
localized on chromosome 14q22-q24[162]. Similarly to TTP, BRF1 contains a tandem zinc
finger domain bearing a double zinc finger motif (Cys-Cys-Cys-His) and can target
mRNAs bearing AREs to P-bodies[106]. BRF1 has mostly been associated with tumor
suppressive functions[96] due to its ability to target and promote the mRNA decay of
key mediators of angiogenesis (i.e., VEGF)[163] or apoptosis (i.e., cIAP2)[164]. However,
information addressing its expression and role in CRC remains limited. To date, only
one  study  has  suggested  that  17beta-oestradiol  induces  an  ensemble  of  genes
involved in apoptosis, including BRF1 in COLO205 colon cancer cells[165].

ARE/poly(U)-binding/degradation factor-1 (HNRNPD)
ARE/poly(U)-binding/degradation  factor-1  (AUF1)  is  an  RBP  implicated  in
promoting mRNA decay[66]. Moreover, AUF1 can antagonize HuR function[166], and
may thus also indirectly regulate the expression of HuR targets. Cancer studies have
revealed differential  expression and functions of  AUF1 that is  dependent on the
cancer type[167-169]. In CRC, one study has reported the interplay between HuR and
AUF1 in the regulation of ATX expression[66]. ATX is a key enzyme involved in the
regulation  of  lysophosphatit ic  acid  (LPA)  synthesis ,  which  converts
lysophosphatidylcholine (LPC) into LPA. Importantly ATX is involved in cancer cell
migration[170]. AUF1 promotes the decay of ATX mRNA in Colo320 cells[66], while HuR
mediates its stabilization by preventing AUF1 binding.

KSRP
KSRP is a RNA-binding protein involved in mRNA stability regulation and miRNA-
mediated regulation. KSRP displays pleiotropic functions, such as regulation of pre-
mRNA splicing,  transcription,  and miRNA biogenesis/maturation[171-173].  Current
studies in cancer suggest that this protein may exert a tumor suppressive function,
such as in lung cancer[174]. In colon cancer, one study has shown that KSRP impairs
Wnt/β-catenin signaling by directly binding to the CTNNB1 3’UTR and mediating its
degradation[175]. KSRP is also a negative regulator of NO synthesis by promoting the
decay of iNOS[48]. Increased NO synthesis has been associated with several oncogenic
properties (e.g., inflammation, proliferation, migration, angiogenesis) in CRC, and the
inhibitory effect of KSRP on iNOS reinforces the idea of a tumor suppressive function
of KSRP. Importantly, KSRP can compete with HuR for binding to the iNOS 3’UTR in
colorectal adenocarcinoma cells[176]. Moreover, the binding of KSRP to iNOS mRNA
can  be  impaired  by  a  direct  protein-protein  interaction  with  TTP[48].  Therefore,
considering the importance of HuR and TTP in the pathophysiology of CRC, the
deregulation of many ARE-containing genes may result from a complex interplay
between KSRP, TTP and HuR.

CUG triplet repeat-binding protein 2 (CUGBP2)
CUGBP2 is a member of the CUGBP-ETR-3-like factors family, which is ubiquitously
expressed. This protein is comprised of two N-terminal RRMs and one C-terminal
RRM[177].  CUGBP2  is  involved  in  mRNA  alternative  splicing,  RNA  editing  and
translation inhibition[178]. CUGBP2 is mostly considered as a TS and its expression is
lost  in  various  cancers  (e.g.,  breast  cancer)[179,180].  In  CRC,  the  loss  of  CUGBP2
expression is mediated by PGE2 and contributes to the radiation-induced mitotic
catastrophe  in  CRC  cells[181].  Moreover,  HCT-116  cells  stably  overexpressing
CUGBP2[178] display a cell cycle arrest in G2/M and an induction of apoptosis. This
effect was notably associated with the downregulation of the anti-apoptotic protein
Mcl-1 through the direct binding of CUGBP2 to the 3’UTR of Mcl-1 mRNA and a
blockade of its translation[178].

RNA-binding motif-containing protein 3 (RBM3)
RBM3 belongs to a family of glycine-rich RBP and is comprised of a single RRM[182].
RBM3 is a cold shock protein induced by both hypothermia as well as other cellular
stresses like hypoxia[183]. RBM3 plays an important role in various cellular processes,
including neural differentiation[184], cell cycle progression[185] and DNA-induced innate
immune response, as evidenced in RBM3 KO mice[186]. In cancer, RBM3 is primarily
considered as a proto-oncogene[187], but studies have documented the role of RBM3 in
CRC.  RBM3  is  overexpressed  in  CRC  and  displays  potent  oncogenic  activities,
specifically  by  stabilizing  several  mRNA  transcripts  such  as  COX-2[187],  IL-8  or
VEGFα[185].  Accordingly, silencing of RBM3 in colon cancer cells triggers caspase-
dependent apoptosis and mitotic catastrophe[185], indicating that RBM3 is essential for
cancer cell growth. Moreover, overexpression of RBM3 in CRC cells is associated with
stem cell  characteristics  through increased β-catenin signaling[188].  Paradoxically,
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RBM3  expression  in  patients  with  colon  cancer  is  associated  with  a  better
prognosis[189,190],  thus  suggesting  a  potential  tumor  suppressive  function.  These
discrepancies might be explained by the fact that oncogenic functions of RBM3 were
mostly  demonstrated  in  vitro  in  colon  cancer  cells  and  thus  outside  of  their
physiological context. Moreover, the localization of the protein might be associated
with its different functions, as demonstrated for HuR or TTP. However, the molecular
mechanisms involved in RBM3 activity/localization are currently unknown in CRC.
Taken together, these data indicate that although RBM3 has been associated with
oncogenic functions in CRC, some clarifications are still required to fully establish the
role of this protein in vivo, as well as its clinical relevance.

RNPC1
RNPC1 (encoded by the RBM38 gene) belongs to the RRM-containing RBP family,
which includes HuR and Musashi proteins[191].  RBM38 is located on chromosome
20q13[192] and is expressed in several tissues (including breast, colorectal, lung, skin
and ovarian tissue)[193]. RNPC1 plays an important role in the regulation of various
biological  processes,  including  cell  proliferation,  cell  cycle  and  myogenic
differentiation[193].  Deregulation of RNPC1 expression/activity was reported in a
variety  of  malignancies,  such  as  prostate [ 1 9 3 ] ,  ovarian [ 1 9 4 ] ,  esophageal
adenocarcinoma[195]  and  breast  cancer[196].  Mice  deficient  for  RNPC1  display
accelerated aging and spontaneous tumor development[197]. However, depending on
the  cancer  type,  this  protein  may  perform  oncogenic  or  tumor  suppressive
functions[192,198-200]. In CRC, this protein is a potent inhibitor of p53 translation through
its binding to TP53 3’UTR[201], thus suggesting an oncogenic function. This effect can
be inhibited by phosphorylation of RNPC1 by GSK3 at serine 195. Moreover, RNPC1
promotes the translation of the p53-inactivating phosphatase Protein Phosphatase,
Mg2+/Mn2+ Dependent 1D (PPM1D), which in turn dephosphorylates RNPC1 at
serine 195, thus creating a positive feedback loop that impairs p53 translation.

CONCLUSION
In this review, we summarized the current knowledge related to AUBPs in CRC
development and progression. Current studies indicate that these proteins are critical
not only for the post-transcriptional control of key inflammatory genes, but also for
ONC and TS genes (Figure 1). Importantly, these findings highlight the role post-
transcriptional  regulation  of  these  genes  plays  in  influencing  major  oncogenic
pathways  associated with  CRC (Figure  2).  Therefore,  early  alterations  of  AUBP
expression/activity observed in preneoplastic conditions may provide some clues to
better understand the development of neoplastic phenotypes and ultimately serve as
biomarkers of early-stage CRC. While most studies have focused on the roles of HuR
and TTP in CRC, further research will expand our knowledge of the roles of other
AUBPs in CRC etiology and in many other cancers. The development of suitable in
vivo models will be an indispensable tool to understand the role of these factors in
tumor  progression.  Finally,  these  proteins  may represent  appealing  therapeutic
targets for the treatment of CRC due to their pleiotropic functions influencing the
various hallmarks of cancer, as evidenced by small molecule targeting of HuR (Figure
2).
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Figure 1

Figure 1  Network of deregulated adenylate-uridylate-rich elements binding proteins and their targets in colorectal cancer. Adenylate-uridylate-rich elements
binding proteins (AUBPs) regulate a large variety of mRNA transcripts involved in cell proliferation, cell death, cancer cell migration, angiogenesis and inflammation at
the post-transcriptional level. Some AUBPs interact with each other or compete for the same targets, thus forming a complex network involved in colorectal cancer
development. Blue lines indicate positive regulation. Black lines indicate negative regulation. Dashed lines indicate a potential link. microRNAs are represented in red.
ABCG2: ATP Binding cassette subfamily G member 2; ALDH1: Aldehyde dehydrogenase 1; ATX: Autotaxin; β-cat: Beta-catenin; BCL2: B-cell lymphoma 2; Bcl2l2:
BCL2 like 2; Casp2: Caspase-2; CLDN1: Claudin-1; cIAP2: Cellular inhibitor of apoptosis 2; COX-2: Cyclooxygenase-2; DNMT3a: DNA methyl-transferase 3a;
DNMT3b: DNA methyl-transferase 3b; E2F1: E2F transcription factor 1; HIF1a: Hypoxia inducible factor alpha; ICAM1: Intercellular adhesion molecule 1; IL (1β, 6,
23): Interleukins 1β, 6, 23; iNOS: Inducible nitric oxide synthase; LATS: Large tumor suppressor kinase; MACC1: Metastasis associated in colon cancer 1; Mad2L:
Mitotic arrest deficient 2 like 1; MDM2: Mouse double minute 2; miR: MicroRNA; NEK2: Nima related kinase 2; PLAGL2: Pleomorphorphic adenoma gene-like 2;
PPM1D: Protein phosphatase 1D; SOX9: SRY Box 9; TNFα: Tumor necrosis factor alpha; TP53: Tumor protein 53; VEGF: Vascular endothelium growth factor. XIAP:
X-linked inhibitor of apoptosis; Zeb1: Zinc finger E-box binding homeobox 1.

Figure 2

Figure 2  Adenylate-uridylate-rich elements binding proteins are critical regulators of colorectal cancer-associated pathways. Deregulated pathways
associated with colorectal cancer development can be regulated by adenylate-uridylate-rich elements binding proteins. Conversely, these pathways can also influence
the expression and activity of these proteins. Blue lines indicate positive regulation. Black lines indicate negative regulation. Dashed lines indicate a potential link.
AKT: Protein kinase B; ATX: Autotaxin; β-cat: Beta-catenin; COX-2: Cyclooxygenase-2; HDAC: Histone deacetylase; IL6: Interleukin-6; JAK: Janus kinase; LPA:
Lysophosphatidic acid; MAPK: Mitogen-activated protein kinase; NFκB: Nuclear factor kappa B; PGs: Prostaglandins; PI3K: Phosphoinositide 3-Kinase; STAT: Signal

WJGO https://www.wjgnet.com February 15, 2019 Volume 11 Issue 2

Legrand N et al. AUBPs in CRC

82



transducer and activator of transcription; TGFβ: Transforming growth factor beta; YAP: Yes-associated protein.
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