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Abstract
Liver fibrosis is characterised by excessive deposition of extracellular matrix that
interrupts normal liver functionality. It is a pathological stage in several
untreated chronic liver diseases such as the iron overload syndrome hereditary
haemochromatosis, viral hepatitis, alcoholic liver disease, non-alcoholic fatty liver
disease, non-alcoholic steatohepatitis and diabetes. Interestingly, regardless of the
aetiology, iron-loading is frequently observed in chronic liver diseases. Excess
iron can feed the Fenton reaction to generate unquenchable amounts of free
radicals that cause grave cellular and tissue damage and thereby contribute to
fibrosis. Moreover, excess iron can induce fibrosis-promoting signals in the
parenchymal and non-parenchymal cells, which accelerate disease progression
and exacerbate liver pathology. Fibrosis regression is achievable following
treatment, but if untreated or unsuccessful, it can progress to the irreversible
cirrhotic stage leading to organ failure and hepatocellular carcinoma, where
resection or transplantation remain the only curative options. Therefore,
understanding the role of iron in liver fibrosis is extremely essential as it can help
in formulating iron-related diagnostic, prognostic and treatment strategies. These
can be implemented in isolation or in combination with the current approaches to
prepone detection, and halt or decelerate fibrosis progression before it reaches the
irreparable stage. Thus, this review narrates the role of iron in liver fibrosis. It
examines the underlying mechanisms by which excess iron can facilitate fibrotic
responses. It describes the role of iron in various clinical pathologies and lastly,
highlights the significance and potential of iron-related proteins in the diagnosis
and therapeutics of liver fibrosis.
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Core tip: Excess iron is observed in several liver pathologies, where it can accelerate the
progression of liver fibrosis to cirrhosis and hepatocellular carcinoma, regardless of
disease aetiology. This review narrates the role of excess iron in liver fibrosis. It
examines the mechanisms by which iron enhances fibrogenic responses and describes
various iron-related clinical pathologies. Furthermore, it evaluates the significance of
iron and iron-related proteins in the diagnosis and therapeutics of liver fibrosis. The
review is unique in that it includes both, cellular mechanisms and clinical aspects of liver
fibrosis pertaining to iron. This makes it distinct from previous published reviews.

Citation: Mehta KJ, Farnaud SJ, Sharp PA. Iron and liver fibrosis: Mechanistic and clinical
aspects. World J Gastroenterol 2019; 25(5): 521-538
URL: https://www.wjgnet.com/1007-9327/full/v25/i5/521.htm
DOI: https://dx.doi.org/10.3748/wjg.v25.i5.521

INTRODUCTION
Liver fibrosis is a pathological state, which is attained due to an overactive wound
healing  response  to  persistent  liver  injury.  This  subsequently  disrupts  liver
architecture and hinders its functions leading to organ failure and death[1]. Fibrotic
liver is frequently observed in several untreated chronic liver diseases (CLDs) such as
haemochromatosis, viral hepatitis (hepatitis B and hepatitis C infections), alcoholic
liver  disease  (ALD),  non-alcoholic  fatty  liver  disease  (NAFLD),  non-alcoholic
steatohepatitis (NASH) and diabetes. Elevated iron level is a common feature of all
these fibrosis-promoting conditions[2], suggesting that iron loading may pose a risk for
disease progression and aggravate liver pathology.

While iron is essential for normal physiology, excess iron is toxic as it can accelerate
the Fenton reaction that generates noxious reactive oxygen species (ROS) and severely
damage cells and tissues. Thus, maintenance of body iron homeostasis is crucial,
particularly because there is no physiological pathway for removal of excess iron from
the  body[3].  Under  normal  physiological  conditions,  systemic  iron  regulation  is
mediated  via  the  liver-secreted  iron  hormone  hepcidin[4].  Hepcidin  binds  to
ferroportin (transmembrane iron-exporter protein) on the iron-storing macrophages
and  hepatocytes,  degrades  ferroportin  and  thereby  hinders  iron-entry  into  the
circulation[5]. Hepcidin also binds to ferroportin on the enterocytes and decreases the
expression of divalent metal transporter (DMT)-1 protein on the apical surface of
enterocytes that mediates non-haem iron uptake, and thus reduces intestinal iron
absorption[6]. Lack of, or resistance to hepcidin due to mutations leads to excessive
iron absorption from the duodenum, unregulated iron release from the macrophages
into the circulation and excessive iron deposition in various organs. These features
manifest  as  hereditary haemochromatosis[7].  However,  in non-hereditary fibrotic
CLDs, the basis for iron-loading is not fully understood and whether iron-excess is the
cause, a consequence, or a mediator of pathological progression remains unknown.
Therefore, it is imperative to understand the role of iron in liver fibrosis and study its
mechanism of action to aid in the early diagnosis and therapeutics of myriad of non-
hereditary iron-loading CLDs.

HEALTHY FIBROGENESIS TO PATHOLOGICAL FIBROSIS:
LOSE CONTROL
Liver fibrogenesis is a normal process of tissue repair. It is mediated via a complex
network of interrelated and regulated signalling interactions between the resident
parenchymal cells (hepatocytes), non-parenchymal cells [hepatic stellate cells (HSCs),
liver sinusoidal endothelial cells, Kupffer cells, biliary epithelial cells, liver associated
lymphocytes], and the non-resident infiltrating immune cells. The HSCs located in the
space of Disse between the hepatocytes and the liver sinusoids play a pivotal role in
liver development and regeneration via fibrogenesis[1]. In addition, the quiescent HSCs
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store 50%-80% of total vitamin A in the body[8].
Acute liver injury stimulates the non-parenchymal cells to secrete several pro-

fibrogenic cytokines including the most potent activator of fibrosis, transforming
growth factor beta (TGF-β)[9]. This signals the quiescent HSCs to differentiate into
myofibroblasts-like cells to produce components of extracellular matrix (ECM) such as
pro-collagen-1 α-1, alpha smooth muscle actin (α-SMA), fibronectin, laminin, elastin
and proteoglycans along with mesenchymal proteins like vimentin and desmin, and
cause tissue scaring. Upon removal of the stimulus (during recovery), excess ECM is
degraded by matrix metalloproteinases (MMPs). In turn, MMP-activity is inhibited
and modulated by tissue inhibitors of metalloproteinase (TIMPs) produced by the
activated HSCs. Subsequently, the activated HSCs either undergo apoptosis and/or
revert to their original quiescent phenotype, thereby terminating a well-regulated and
reversible healing process[10].

Prolonged liver injury via chronic inflammation, infection and/or oxidative stress
leads to continuous stimulation of the wound healing mechanism whereby the HSCs
remain persistently activated. These activated HSCs become the main source and
target of TGF-β, which greatly increases the proliferation and dedifferentiation of
HSCs into ECM-producing myofibroblasts. Regulatory processes are disregarded
leading  to  excessive  deposition  of  ECM  that  can  rise  up  to  8-fold  higher  than
normal[11]. This, along with insufficient degradation of ECM gradually distorts the
normal architecture of the liver, thereby entering the pathological fibrotic stage.

Removal of stimulus, followed by sufficient time for recovery and treatment can
revert the myofibroblasts to an inactive state, reverse fibrosis and restore normal liver
functionality[12-14] However, untreated fibrosis often progresses to cirrhosis, which is
characterised by further deposition of collagen, nodule formations and restricted
blood supply (hypoxia). This increases liver stiffness and portal hypertension, and
further distorts hepatic architecture[15]. Unattended, it leads to organ failure and death.
As the pathology progresses to cirrhosis, regression becomes increasingly difficult,
although possible. Advanced cirrhosis may terminate in hepatocellular carcinoma,
where resection or transplantation remain the only curative options.

EXCESS IRON PROMOTES LIVER FIBROSIS

The HSCs
Persistent HSC-activation is the early and key event in fibrosis, and the progression
from fibrosis to cirrhosis is a crucial step in determining the fate of liver.  In iron
loading pathologies, HSC-activation and excessive ECM deposition are cumulative
consequences of direct and indirect effect of iron on the HSCs. First, we review the
direct effect of iron on HSCs. Normal liver iron concentration (LIC) is lower than 35
μmol/g  of  dry  weight[16].  When  LIC  crosses  a  threshold  of  60  µmol/g,  HSC-
functionality begins to derail, and when it exceeds 250 µmol/g, cirrhosis becomes
inevitable[17]. Several studies have reported the fibrosis-enhancing effects of iron. For
example,  iron  elevated  collagen  gene  expression  in  HSCs  and  increased  TGF-β
expression in rats[18], induced collagen deposition in gerbil[19] and promoted cirrhosis
in mice[20]. For the first time, Ramm et al[21], demonstrated a correlation between LIC
and HSC-activation in humans,  resulting in increased expression of  α-SMA and
collagen deposition in patients with haemochromatosis. Similar results were observed
in  rat  HSCs,  where  iron  increased  HSC-cell  proliferation,  selectively  increased
collagen  synthesis  without  affecting  non-collagen  proteins[22],  and  increased
expression  of  α-sma  and  col-1  α-1 [23].  Rat  HSCs,  when  treated  with  ferritin,
demonstrated a pro-inflammatory cascade by nuclear factor kappa-B signalling (NF-
k)-B[24].  Likewise,  recent  studies  in  murine  HSCs  showed  transferrin-induced
elevations in α-sma, collagen secretion and vimentin[25].

Hepatocytes and macrophages
The HSCs do not function independently.  Their  role in fibrosis  is  informed by a
network  of  events  between other  non-parenchymal  cells  and hepatocytes.  Iron-
loading in CLDs predominantly occurs in the hepatocytes and Kupffer cells, and this
underpins the indirect effect of iron on HSCs whereby iron-damaged hepatocytes and
macrophages release humoral factors that activate the HSCs.

Loading begins in the hepatocytes located in Rappaport zone 1 and progresses
towards the hepatocytes in zones 2 and 3. Subsequently, when iron is co-loaded in the
Kupffer cells, it is believed to trigger fibrosis[17]. The hepatocytes make majority of the
liver mass, therefore, iron-loaded hepatocytes substantially affect fibrosis initiation
and progression[26].  Wood et  al[27]  observed that  in hereditary haemochromatosis,
hepatocyte senescence positively correlated with LIC, serum ferritin and oxidative
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stress. In the Kupffer cells (largest non-parenchymal cell population in liver), iron
deposition causes the secretion of proinflammatory cytokines and thereby promotes
fibrosis.  Interestingly,  phagocytosis  of  necrotic  hepatocytes  promotes  a  pro-
inflammatory/pro-fibrotic environment, whereas phagocytosis of collagen-producing
cells promotes anti-inflammatory/anti-fibrotic environment. Thus, Kupffer cells play
opposing roles; in the progression and regression of liver fibrosis, likely in the early
and later stages of fibrosis, respectively.

Essentially, these cells collectively produce a pool of elevated levels of proliferative,
proinflammatory and profibrogenic mediators including TGF-β[1,28] (Figure 1). While
TGF-β ensures a self-sustained HSC-alteration to ECM-producing myofibroblasts[17],
other factors sensitize the hepatocytes to produce more proinflammatory factors
causing liver inflammation, as seen in haemochromatosis patients[29]. This provokes
early HSC-activation in areas of liver that are remote from regions of heavy iron-
loading[21] and cause infiltration of circulating immune cells, thereby upholding an
inflammatory  state.  Such  an  inflammatory  liver  microenvironment  and
overexpression of TGF-β is commonly observed in fibrotic livers[1,28].

MECHANISMS OF ACTION
The fibrotic responses are collectively mediated by multiple mechanisms involving
excess-iron induced Fenton reaction, cell-signalling pathways, contribution to HSC-
activation by iron-related proteins, and possibly, iron-mediated ECM remodelling
(Figure 1).

Impact of Fenton chemistry on liver biology
The Fenton-Haber-Weiss reaction highlights the ability of iron to freely donate and
accept electrons while altering between Fe2+ and Fe3+ states. The reactions encompass
iron-catalysed generation of hydroxide ions, along with hydroperoxyl and hydroxyl
radicals.  Normally,  limited amount  of  excess  free-radicals  are  generated during
cellular metabolism, which are quenched by inherent cellular antioxidant mechanisms
and electron-donating moieties such as vitamins A, C and E[30]. Moreover, the tight
binding  of  iron  to  cellular  proteins  (e.g.,  ferritin)  and  circulating  proteins  (e.g.,
transferrin)  limits  the  amount  of  free  iron available  to  feed the  Fenton reaction.
Hepcidin also offers indirect protection from excess-iron-induced toxic effects by
inhibiting iron entry into the circulation[5,6,31]. However, under iron-loading conditions
such as haemochromatosis, levels of non-transferrin bound iron (NTBI) (free iron
circulating in plasma and iron loosely bound to moieties such as albumin, citrate and
acetate) increase[32].  Here, the availability of water-soluble free Fe2+  iron forms the
foundation  for  iron  toxicity[33]  as  it  accelerates  the  Fenton  reaction  to  generate
unquenchable  levels  of  ROS,  which can saturate  the  antioxidant  systems.  These
electron-scavenging free radicals attack biomolecules and promote the formation of
other free radicals such as thiyl and peroxyl radicals, thereby initiating a perpetual
free radical chain reaction[34].

ROS can oxidize lipids, proteins and nucleic acids, thereby promoting fibrosis-
initiation  and/or  fibrosis-progression.  ROS-induced  lipid  peroxidation  of  cell
membranes  and the  membranes  of  cellular  organelles  contributes  to  hepatocyte
apoptosis and necrosis. This also enhances fibrogenic responses; for example, lipid
peroxidation stimulated the expressions of col-1 α-1 and TGF-β in iron-loaded rats[18].
The by-products of lipid peroxidation such as malondialdehyde (MDA), isoprostanes
and 4-hydroxynonenal (4-HNE), detected in the liver of iron-loaded rats[35], act as pro-
fibrogenic  stimuli.  Isoprostanes,  the  peroxidation  products  of  arachidonic  acid
enhanced HSC-proliferation, HSC-collagen-production and TGF-β release from the
Kupffer cells[36], while 4-HNE upregulated the expressions of col-1 α-1 and TIMP-1 in
HSCs[37].

Cross-connection between iron-related and fibrotic pathways
TGF-β signalling is the key fibrosis-mediating pathway and its role in regulating pro-
fibrogenic gene expression and ECM deposition is well established[38]. Notably, TGF-β
belongs  to  the  TGF-β  super-family  of  molecules,  which  also  includes  the  bone
morphogenetic  proteins  (BMPs)  that  induce hepcidin[39],  the  master  regulator  of
systemic iron homeostasis. These molecules participate in several signalling pathways
and function by binding to a complex of receptors (type II and type I serine threonine
kinase receptors) and induce phosphorylation of receptor-SMADs (small mothers
against decapentaplegic).  The phosphorylated receptor-activated SMADs bind to
SMAD-4 to form a heterodimer and this complex translocates into the nucleus to
modulate the transcription of several genes that determine germ-line specification,
embryonic  development  and  cellular  differentiation.  While  TGF-β-mediated
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Figure 1

Figure 1  Intercellular network of events in fibrosis. The figure shows the interactions between hepatocytes, Kupffer cells and hepatic stellate cells that initiate and
drive fibrosis progression. The pool of pro-fibrogenic and pro-inflammatory mediators include C-C motif chemokine ligand 5, macrophage inflammatory proteins 1 and
2, monocyte chemoattractant protein-1, tumor necrosis factor alpha, transforming growth factors alpha and beta, platelet-derived growth factor, interleukin (IL)-1β, IL-
6, inducible nitric oxide synthase, and protein adducts of malondialdehyde and 4-hydroxynonenal. HNE: Hydroxynonenal; HSC: Hepatic stellate cell; MDA:
Malondialdehyde; NF-κB: Nuclear factor kappa B; RBCs: Red blood cells; ROS: Reactive oxygen species; TFR1: Transferrin receptor 1; αSMA: Alpha smooth muscle
actin; ECM: Extracellular matrix; TGF-β: Transforming growth factors beta.

activation of TGF-β receptor (R)II/RI -SMAD-2/3-SMAD-4 is the canonical fibrosis
pathway, BMP (6)-mediated activation of ALK-2/3 receptor-SMAD-1/5/8-SMAD-4 is
central to iron-dependent induction of hepcidin[40,41] (Table 1).

Since excess  iron in liver  induces both,  TGF-β[29]  and BMP-6[40,42],  a  connection
between  the  TGF-β-induced  fibrosis  pathway  and  the  BMP-induced  hepcidin
induction was envisaged and investigated. Wang et al[43] showed the significance of
SMAD-4  in  hepcidin  induction  by  iron,  TGF-β  and  BMP,  while  liver-specific
disruption of SMAD-4 abrogated the hepcidin response. This not only demonstrated
positive regulation of hepcidin by SMAD-4 and its contribution to iron homeostasis,
but also identified overlap between the iron-related and fibrotic pathways based on
the common role of SMAD-4 in the two pathways. Moreover, Chen et al[44] showed
that TGF-β-induced hepcidin induction occurred via TGF-β-RII/RI and SMAD-1/5/8
phosphorylation, the transient non-canonical TGF-β signalling response[45,46].  This
further demonstrated common mediators (TGF-β receptors) between TGF-β signalling
and hepcidin induction (iron-regulation). Recently, Mehta et al[25] (2018) demonstrated
iron-induced activation of  TGF-β signalling in  murine HSCs.  Collectively,  these
studies reiterate the connection between the iron-related and fibrotic pathways and
highlight  the  contribution  of  TGF-β  towards  hepcidin  synthesis,  and  thereby,
potential regulation of iron homeostasis under iron-loaded conditions (Figure 2).

Signalling pathways such as the Wnt, Hedgehog and Notch that orchestrate the
developmental processes during embryogenesis are also active during fibrogenesis to
mediate survival, proliferation, differentiation and polarity of their target cells. These
pathways function via a cross-talk with each other and with TGF-β pathway[47-49]. Their
inhibition has shown to reverse liver fibrosis in vitro and in vivo[50-52]. The effect of iron-
induced modulation of  these  pathways  on liver  fibrosis  was  examined in  a  few
studies. Data showed that iron deficiency stimulated Notch signalling, but not TGF-β
and Wnt signalling[53]. Recently, in response to iron-loading, a protective role of β-
catenin (component of cadherin complex that stimulates Wnt signalling) against liver
fibrosis was observed, where hepatocyte-specific β-catenin-knockout mice fed with an
iron-overloaded diet developed higher degree of fibrosis and inflammation compared
to controls[54]. Further studies are required to better understand the effect of iron on
these pathways and how this alters fibrosis.
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Table 1  Iron-related characteristics and components of transforming growth factor-β pathway and bone morphogenetic protein
signalling

Stimulant Pathway Type II receptors Type I receptors Receptor-SMADs
phosphorylated Common SMAD Significance/featu

re of pathway

BMPs (Belong to
TGF-β superfamily)

Canonical BMPR2, ACVR2A,
ACVR2B

ALK 1,2,3,6 SMAD-1/5/8 SMAD-4 Growth,
differentiation, and

developmental
processes

BMP-6 induced by
iron-loading (Liver

specific)[133]

BMPR2, ACVR2A ALK-2/3 SMAD-1/5/8 SMAD-4 Iron-dependent
hepcidin induction,
modulated by HJV,
HFE and TFR2[44]

TGF-β Canonical TGF-β-RII ALK-5 (TGF-β-RI) SMAD-2/3
(Stimulation is stable

over time)[44]

SMAD-4 Growth,
differentiation,
developmental
processes and

fibrotic responses.

Non-canonical TGF-
β1 induced by iron-

loading[29]

TGF-β-RII ALK-5 (TGF-β-RI) SMAD-1/5/8
(Transient

stimulation,
independent of cell

type)[44]

SMAD-4 Hepcidin induction,
independent of

modulation by HJV,
HFE and TFR2[44]

and independent of
BMP6-mediated

activation of
hepcidin

Activins (Belong to
TGF-β superfamily)

Canonical[134] ACVR2A, ACVR2B ALK-4/7 SMAD-2/3 SMAD-4 Differentiation,
proliferation and

determine functions
of several cell types

Non-canonical
Activin B induced

by inflammation[134]

ACVR2A, ACVR2B ALK-2/3 with HJV
as co-receptor

SMAD-1/5/8 SMAD-4 Hepcidin induction
during

inflammation[135]

ACVR: Activin receptor; ALK: Activin receptor-like kinase; BMP: Bone morphogenetic protein; BMPR: Bone morphogenetic protein receptor; HFE: High
iron protein; HJV: Hemojuvelin protein; SMAD: Small mothers against decapentaplegic protein; TFR: Transferrin receptor; TFR: Transferrin receptor; TGF-
β: Transforming growth factor beta; TGF-β-R: Transforming growth factor beta receptor.

Iron-related proteins modulate fibrosis
Several  iron-related  protein-receptor  complexes  either  cause  HSC-activation  or
contribute to iron movement in pre-activated HSCs. One such association is via the
ferritin receptor. Unlike quiescent HSCs, activated HSCs express a specific receptor
for H-ferritin and thereby internalise ferritin that is supposedly released from Kupffer
cells following degradation of haemoglobin from senescent RBCs[55,56]. Ferritin can
upregulate the genes involved in HSC-activation via PKCζ and p44/p42-MAP-kinase
signalling resulting in activation of NF-κB, which elevates hepatic proinflammatory
mediators[24].  H-ferritin from Clonorchis sinensis,  which causes liver fibrosis and
cholangiocarcinoma,  has  shown  to  generate  free  radicals  that  activate  NF-κB-
signalling by promoting nuclear translocation of NF-κB subunits p65 and p50 and
increasing the expression of proinflammatory cytokines IL-6 and IL-1β in HSCs[57].
Thus, ferritin and its receptor contribute to both proinflammatory and profibrogenic
effects  in  HSCs.  Another  iron-related  protein-receptor  association  of  interest  is
between transferrin and transferrin receptor-1 (TFR1). Transferrin is the iron carrier
protein that transports iron throughout the body and binds to TFR1 present on cell
surfaces to form a complex of transferrin-TFR1. This complex is then internalised into
a vesicle and iron is released from this complex into the cytoplasm[58]. Interestingly,
only activated HSCs express TFR1[23]. Binding of transferrin to TFR1 contributes to
HSC-activation, as demonstrated via increased expressions of α-SMA and procollagen
α1(I) mRNA in rat HSCs[23] and supported by similar studies in murine HSCs[25]. Thus,
transferrin is  an important  factor  in  HSC-activation,  and transferrin-bound-iron
uptake may be an important route for iron acquisition by activated HSCs. Hepcidin
also plays a role in fibrosis modulation, as discussed in the subsequent section.

Iron and ECM remodelling
In addition to excess ECM, fibrosis is characterised by altered composition of ECM,
which includes maturation of collagen via crosslinking. Crosslinked collagen is more
resistant to proteolytic degradation by MMP-1[59] and is therefore the most challenging
therapeutic target for fibrosis resolution. Collagen cross-linking is catalysed by the
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Figure 2

Figure 2  Schematic of mechanistic cross-connection between the transforming growth factor beta pathway and bone morphogenetic protein signaling.
Shared signalling components between transforming growth factor beta (TGF-β) (fibrosis-related) and bone morphogenetic protein (iron-related) pathways have been
shown in hepatic stellate cells and hepatocytes. Previous study demonstrated TGF-β-induced hepcidin expression in human macrophages, while Chen et al[44]

showed that this occurred through TGF-β-RII/RI in mouse and human hepatocytes via the non-canonical pathway involving small mothers against decapentaplegic
protein-1/5/8 phosphorylation. ALK: Activin receptor-like kinase; BMPR: Bone morphogenetic protein receptor; HFE: High iron protein; HSC: Hepatic stellate cell;
mHJV: Membrane-bound hemojuvelin protein; P: Phosphorylation; SMAD: Small mothers against decapentaplegic protein; TFR: Transferrin receptor; TGF-β-R:
Transforming growth factor receptor.

enzymes prolyl hydroxylase and lysyl hydroxylase that require vitamin C and iron as
cofactors.  Hence,  it  is  possible  that  during  iron-loading,  excess  iron  may  be
channelized  to  promote  collagen  crosslinking.  Along  this  line,  a  study  showed
increased  activities  of  the  aforementioned  enzymes  in  rat  models  of  carbon
tetrachloride-induced  liver  injury[60]  and  in  iron-deficient  rats,  lower  levels  of
procollagen  type  I  N-terminal  pro-peptide  and  increased  systemic  levels  of
degradation  products  from  C-terminal  telopeptides  of  type  I  collagen  were
reported[61]. However, a previous in vitro study excluded iron as a major participant in
collagen crosslinking since the iron chelator deferoxamine did not alter collagen
modifications[62]. Thus, the exact effect of iron on collagen maturation is unclear and
needs further investigation. Elastin is yet another important component of ECM. Iron
appears  to  modulate  elastogenesis  in  cultured human skin  fibroblasts,  where  it
increased the levels of insoluble elastin protein and elastin mRNA levels by 3-fold[63].
Further studies are required to ascertain the role of iron in elastogenesis in the HSCs,
as it is a potential target for fibrosis therapy.

IRON LOADING AND FIBROSIS IN DIFFERENT LIVER
PATHOLOGIES
In haemochromatosis, iron loading can be very severe. However, in ALD, NAFLD,
NASH and viral  hepatitis,  low to moderate levels of  excess iron are sufficient to
support the pathological progression. Some iron-related parameters in these CLDs are
summarised in Table 2.

Haemochromatosis
Pietrangelo  (2010)  defined  haemochromatosis  as  a  syndrome  characterised  by
excessive deposition of iron in the parenchymal cells of several vital organs, and
which is caused by mutation in single or multiple genes that regulate iron import into
the circulation. It overarches the mutations in the genes HFE, TFR2, HJV (encoding
hemojuvelin), HAMP (encoding hepcidin) and SLC40A1 (encoding ferroportin)[64]. In
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Table 2  Iron-related parameters in various fibrosis-promoting chronic liver diseases

Normal Hereditary
hemochromatosis ALD NAFLD/NASH Viral hepatitis Diabetes

Iron
level/accumulation

In body: 3-5 g[7]; In
RBCs: about 2.5 g; In
liver: 300 mg to 1 g[7]

Can be severe;
Gradual increase,

can reach up to 25-
30 g in liver[7]

Moderate Mild-moderate Mild-moderate Mild-moderate

Serum ferritin 24-300 µg/L[109]; 15-
200 µg/L[101]; < 300
ng/mL in men, <

200 ng/mL in
women[2]

Mostly high, but can
be normal[101]

High[69,136] High[104,105] but
1st/3rd NASH

patients can be iron
deficient[86]

High[116,137] High[138], associated
with pre-diabetes

Serum hepcidin 0.4-23.3 nmol/L[139] Low[64] Low[69,71,140] High[80,141]; Can be
low in iron

deficiency[86]; High
in obesity, but not in
NAFLD[142]; High in

obesity with
NAFLD[143];

Alterations can
occur without iron-

overload[111]

Low in hepatitis C
infections[144]; High

in hepatitis B
infections without

cirrhosis and normal
in those with
cirrhosis[145]

No major alteration
in type 1[146]; Low in

type 2
diabetes[147,148]

Transferrin
saturation

20%-45%[101] > 45%[101,109] High[69,136] Slightly raised, but
can be normal or

sub-normal[7]

Mostly raised[88,149],
but occasionally

may not statistically
differ from the

norm[150]

Low[138], associated
with pre-diabetes

Approximate values and percentages for adults have been shown. These include ranges for both genders. ALD: Alcoholic liver disease; NAFLD: Non-
alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; RBCs: Red blood cells.

these cases, insufficient or lack of hepcidin production causes excessive duodenal iron
absorption,  while  mutations  in  ferroportin  reduce  cellular  iron  export  or  cause
hepcidin  resistance.  Whereas  normal  hepatic  iron  ranges  from  300  mg  to  1  g,
haemochromatosis patients can show up to 25-30 g[7],  clearly elevating the risk of
fibrosis. A study in untreated haemochromatosis showed increased LIC in cirrhotic
(378 ± 144 μmol/g) and fibrotic patients (331 ± 168 μmol/g) compared to non-fibrotic
patients (237 ± 108 μmol/g)[65]. Interestingly, non-genetic factors like age, gender and
alcoholism modulated fibrosis development in these patients. For example, those with
fibrosis  were  significantly  older  than  non-fibrotic  patients  and  alcoholic  males
demonstrated hepatic fibrosis more frequently than non-alcoholic counterparts[65]. In a
study of HFE gene C282Y mutation homozygotes, a higher percentage of men versus
women showed increased LIC and biopsy-proven fibrosis and cirrhosis[66].

Normally, liver progenitor cells (LPCs) are activated during chronic liver injury as a
backup repair mechanism to generate hepatocytes and cholangiocytes to compensate
for the inability of damaged cells to replicate[67].  Activation of LPCs has also been
implicated  in  fibrosis  progression.  Wood  et  al [26]  suggested  that  in  patients
homozygous  for  the  HFE  C282Y  mutation,  LPCs  are  activated  early  in  disease
progression because excessive iron deposition in the hepatocytes hampers their ability
to replicate and causes hepatocyte senescence. Reason for the iron-induced derailment
of  the  LPC-repair-mechanism  and  how  it  contributes  to  predisposition  to
hepatocellular carcinoma in haemochromatosis patients remains unknown.

ALD
ALD  exhibits  liver  iron  loading  in  about  half  of  all  patients  where  serum  iron
biomarkers are raised in alcohol consumers from an early stage[68]. Alcohol-mediated
suppression of  hepcidin expression[69-71],  upregulation of  TFR1 expression in  the
hepatocytes by habitual alcohol drinking[72] and a concomitant increase in duodenal
DMT-1 and ferroportin expression[70] collectively explain the reason for systemic and
macrophage iron loading in ALD[68]. In addition, alcohol induces TGF-β expression
and phosphorylates SMAD-2[73]. Such an increased availability of activated SMAD-2/3
can reduce TGF-β-induced hepcidin regulation[44]. Also, alcohol inhibits the activation
of BMP receptor and SMAD-1,5, and attenuates the binding of SMAD-4 to hepcidin
promoter[73]. Together, this reduces hepcidin expression and dysregulates liver iron
metabolism.

Since iron and alcohol can independently cause oxidative stress, haemochromatosis
patients that consume alcohol show cumulative liver damage, where alcohol-induced
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damage, together with elevated intestinal iron absorption leads to more deleterious
damage to  the  liver  than either  condition alone[74].  Resultantly,  the  pathological
progression to cirrhosis is accelerated together with an increased predisposition to
hepatocellular carcinoma. Haemochromatosis patients whose daily alcohol intake
exceeds more than 60 g are at 9-fold higher risk of cirrhosis than those who consume
lesser amount of  alcohol[75].  Thus,  the British Liver Trust  recommends that  these
patients should completely refrain from alcohol consumption.

NAFLD, NASH and diabetes
While genetic polymorphisms in patatin-like phospholipase domain-containing 3 or
transmembrane 6 superfamily member 2 pose a risk for NAFLD[76], high calorie intake
combined with a sedentary lifestyle make NAFLD a common liver disease in affluent
countries. It is characterised by insulin resistance, high serum triglyceride levels, low
serum high-density lipoprotein and excessive fat deposition in the liver. The latter
remains undiagnosed in the early stages and quietly progresses to the high-lipid-
induced  inflammatory  state  NASH,  which  can  advance  to  cirrhosis  and  organ
failure[77].

Elevated  LIC  is  observed  in  about  33%  of  adult  NAFLD  patients[2]  and  it  is
suggested to be associated with increased fibrosis[78]. LIC can catalyse the pathological
progression by causing oxidative and endoplasmic reticulum stress, activation of
macrophages  and  HSCs,  reduced  export  of  very  low  density  lipoprotein  and
increased synthesis of cholesterol[79]. NAFLD patients also exhibit elevations in serum
hepcidin (typically)[80], white-adipose-tissue hepcidin and DMT-1 expression. Also,
upregulated TFR1 has been observed in mice on high fat diet[79]. Overall, these factors
potentiate  cellular  iron accumulation and can accelerate  fibrosis  progression.  A
combination of excess iron and lipids (which initiates an inflammatory cascade via
lipid peroxidation[81]), may exacerbate fibrosis, as the excess of both, lipids and iron
can distinctly cause oxidative damage. Accordingly, iron-loaded patients with NASH
exhibit higher fibrosis grade and more elevated liver function test results compared to
those without NASH[81]. Thus, iron has a pathogenic role in NAFLD and is amongst
the many factors that determine progression from NASH to fibrosis[79].

However, in some NAFLD/NASH cases, LIC may not be associated with increased
fibrosis[82]. Along the same line, in haemochromatosis patients heterozygous for the
compound C282Y/H63D HFE mutation, fatty liver and metabolic syndrome were not
directly associated with hepatic fibrosis[83].  Such observations are confounded by
conflicting opinions on the significance of hepatocellular and macrophagic iron in
NAFLD-related fibrosis. Some studies suggest that increased macrophagic iron cause
macrophage and HSC activation, and it is primarily responsible for increased risk of
advanced fibrosis in NAFLD[2,84]. Others suggest that hepatocellular iron, rather than
macrophagic iron, poses a higher risk of fibrosis[85].

Nonetheless,  a  link between increased iron stores (ferritin),  insulin resistance,
diabetes and NAFLD is well established, where insulin resistance is central to NAFLD
pathogenesis. Iron may promote insulin resistance in the adipose tissue, which in turn
may trigger lipolysis of triglycerides; a process that produces most of the free fatty
acid influx into the liver[79]. Probably, increased dietary iron in the form of red meat
causes predisposition to insulin resistance and type II diabetes[79]. Predictably, type II
diabetes  is  prevalent  in  iron  loading  pathologies  like  HFE-related  hereditary
haemochromatosis  and β-thalassemia major[79].  This partly explains why glucose
intolerant  patients  demonstrate  more  severe  fibrosis  than glucose  tolerant  ones,
indicating that glucose intolerance is a risk factor for hepatic fibrosis in C282Y/H63D
patients[83]. Also, iron deficiency has been associated with obesity and NAFLD. About
33% of NAFLD patients show transferrin saturation below 20%[79,86]. Thus, the role of
iron in NAFLD is multi-dimensional and can differ between NAFLD cases.

Viral hepatitis
Unlike the aforementioned conditions, increased liver iron in viral hepatitis may be a
combined consequence of dysregulated liver iron homeostasis and normal defensive
processes adopted during infections, which involves sequestration of iron by hepatic
cells to limit access to pathogens to inhibit their proliferation. This may explain the
differences in LIC during the early and late phases of infection; low in the early stage
and gradual increase after 2 wk[87].

About 30%-40% of chronic hepatitis  C patients demonstrate elevated levels  of
serum iron, transferrin saturation and ferritin[88]. In these patients, rapid progression
of tissue scarring is observed in those with excess iron, compared to those without[2].
Here, LIC correlates positively with HSC number, where iron could play a crucial role
in HSC-activation and fibrosis progression[89]. Although the reason for iron loading in
these patients has been attributed to the reduction in hepcidin due to virus-induced
oxidative stress, there have been some discrepancies in clinical studies, where no
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causal  relationship between iron overload and hepcidin inhibition was noted[90].
Interestingly,  in a  case-control  study,  patients  with chronic hepatitis  C infection
showed lower expression of hepcidin mRNA and more frequent hepatocyte iron
deposition than hepatitis B infected patients[91]. Hepatitis B infected patients also show
elevated LIC, where high iron is speculated to increase disease severity[92]. Iron can
increase hepatitis B virus mRNA expression in HepG2 cells[93], which may contribute
to sustenance of infection and inflammation, thereby potentiating fibrosis.

IRON-ASSISTED ASSESSMENT OF LIVER FIBROSIS
Early diagnosis of liver fibrosis is crucial for preventative, prognostic and therapeutic
purposes. Liver biopsy is often considered a gold standard for definitive diagnosis,
but it presents limitations such as sampling errors variability, invasive nature of the
procedure and risk of life-threatening complications[94].  Recent advent of reliable
serum-based markers and tools have drastically reduced the need for liver biopsy; for
example  magnetic  resonance  imaging  (MRI)  that  accurately  measures  LIC,  and
transient elastography and MRI elastography that assess liver stiffness[94,95]. Note that
in haemochromatosis,  elevated LIC is  the main driver  of  pathology,  but  in  non-
hereditary low-moderate iron-loaded CLDs, neither elevated LIC nor the altered iron-
related markers are necessarily the main drivers of pathology per se, though these
alterations are believed to accelerate the pathological progression to and through
fibrosis. Thus, assessment of hepatic iron is not a routine part of CLD evaluation,
except  for  haemochromatosis.  However,  it  is  useful  to  review  the  iron-related
parameters that aid /may aid in prediction, diagnosis, staging and prognosis of liver
fibrosis, when used in combination with the routine markers of liver dysfunctionality.
Here, we specifically discuss LIC, ferritin, hepcidin and transferrin.

In haemochromatosis patients, LIC correlates significantly with the risk of fibrosis
and cirrhosis[66]. Similarly, in chronic hepatitis C infections, hepatic iron accumulation
increases  with  fibrosis  stage[96,97].  In  NAFLD,  hepatocellular  siderosis  has  been
associated with higher risk of fibrosis than the absence of siderosis[85]. Thus, regardless
of  disease aetiology,  hepatic  iron is  considered as a surrogate marker of  fibrosis
severity and not only a fibrogenic factor[98]. Historically, liver iron was assessed by
histological  staining  of  iron  granules  on  samples  from  liver  biopsy.  However,
presently, serum-based markers are used in combination with MRI, which not only
detects and quantifies liver iron, but also helps in the staging of high degree fibrosis
(F3-F4)[95]. Although LIC determination is important as it correlates with total body
iron, it may not reflect iron deposition in extra-hepatic organs. Likewise, low LIC does
not exclude the probability of iron loading in extra-hepatic organs[99].

An iron-related protein of immense clinical significance is ferritin. Serum ferritin is
shown to  be  derived primarily  from macrophages  in  mice  models[100].  In  C282Y
homozygotes, serum ferritin > 1000 μg/L with elevated alanine transaminase (ALT)
or  aspartate  transaminase  (AST)  predicted  cirrhosis [101],  and  with  transient
elastography, it  accurately classified the severity of fibrosis in more than 50% of
patients[102].  Thus,  in  C282Y  homozygotes,  serum  ferritin  proved  to  be  a  better
predictor of hepatic fibrosis than LIC[103]. In NAFLD, elevated serum ferritin not only
acted as an independent predictor of advanced fibrosis, but it was also associated
with disease severity. Essentially, serum ferritin greater than 1.5 times the upper limit
of normal (> 300 ng/mL in women and > 450 ng/mL in men) was associated with
hepatic iron deposition and proved to be a useful marker in identifying NAFLD
patients with increased risk for NASH and fibrosis[104]. Also, increased serum ferritin
was associated with advanced fibrosis, high NAFLD activity scores and increased
mortality in NAFLD patients[105], while it also predicted early mortality in patients
with decompensated cirrhosis[106]. Moreover, elevated serum ferritin has been strongly
associated with the development of  diabetes and increased risk of  the metabolic
syndrome. It is a marker of histologic damage and has been used in a clinical scoring
system for NAFLD patients[79].  However,  a few studies could not observe a clear
association  between  serum ferritin  and fibrosis.  Groups  such  as  Valenti  et  al[85],
Chandok et al[107] and Chitturi et al[108] noted that serum ferritin could not effectively
predict  fibrosis  stage  and could not  independently  predict  advanced fibrosis  in
NAFLD/NASH. Another discrepancy is related to the cell-specific accumulation of
iron. While serum ferritin levels were 2-fold higher in NAFLD patients with non-
parenchymal  iron  loading  than  those  with  parenchymal  iron  loading,  non-
parenchymal  siderosis  was  not  found  to  be  associated  with  moderate-severe
fibrosis[85]. Notably, elevated ferritin marks inflammation and can be observed in the
absence of iron overload[109].

Like ferritin, hepcidin is also affected by both, inflammation and iron excess[110] and
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holds diagnostic  significance in fibrosis  assessment.  Its  levels  decreased in CLD
patients and were the lowest in cirrhosis patients[111]. Moreover, the hepcidin:ferritin
ratio was lower in CLD patients and further decreased as fibrosis progressed[112].
Similarly, another study showed that in children with CLD, as the severity of fibrosis
increased,  hepcidin:ferritin  ratio  decreased,  while  serum ferritin  and transferrin
saturation remained high[113]. These studies present hepcidin as a valuable marker of
fibrosis progression. Serum hepcidin:ferritin ratio is a potential marker for cirrhosis
too[112], where, in addition to the primary insult, oxidative stress may further supress
hepcidin synthesis[114].

Yet another iron-related protein of significance in fibrosis evaluation is transferrin.
In hepatitis C infection, while ferritin was the only independent predictive factor of
severity, transferrin saturation was found to be associated with advanced fibrosis[96].
Also,  since  the  survival  estimates  were  low  in  patients  with  transferrin<  180
mg/dL[115], transferrin could act as a predictor of survival in cirrhosis patients. This is
in line with observations in chronic hepatitis B infection where serum transferrin
reduced  as  fibrosis  progressed  from  mild  to  advanced  stage  and  was  lower  in
cirrhotic patients than non-cirrhotic patients[116]. With regards to TFR1, no relationship
was observed between its expression and the degree of fibrosis in hepatitis C patients.
Levels were upregulated regardless of the degree of liver iron deposition, which
suggest that elevated TFR1 may contribute to hepatic iron accumulation in chronic
hepatitis C infection[97].

Whether the exclusive usage of such iron-related proteins would be sufficient to
predict, diagnose and stage fibrosis/cirrhosis in all liver pathologies remains to be
fully answered. However, based on studies hitherto, serum ferritin and hepcidin-
ferritin ratio appear to be able to significantly and sufficiently contribute to fibrosis
evaluation.

IRON-RELATED THERAPEUTICS FOR LIVER FIBROSIS
Presently, there are no clinically-approved treatments for fibrosis[117]. For decades,
several studies have been conducted on animal models and via human clinical trials
that evaluated the anti-fibrotic efficacy of herbal and pharmacological agents, but
none have translated into established protocols for human use till  date. While in
clinical settings, fibrosis management is considered holistically, here, we specifically
review the iron-related strategies.

Phlebotomy is commonly used as a treatment for haemochromatosis. It not only
removes  excess  systemic  iron,  but  also  triggers  haematopoiesis  that  utilises  the
ongoing high absorption of iron for synthesis of new RBCs, thereby controlling the
excess-iron-induced pathology. Thus, it controls the excess iron-induced liver damage
in haemochromatosis patients, and has shown to effectively reverse liver fibrosis[14,66],
reduce the complications of portal hypertension and restore normal life expectancy in
these patients[2]. Long-term phlebotomy along with subsequent maintenance of low
iron  levels  can  reverse  even  cirrhosis,  but  this  data  needs  to  be  supported  by
randomized trials[2]. Similarly, in NASH patients, phlebotomy significantly reduced
the staining for 7,8-dihydro-8-oxo-2’ deoxyguanosine, a product of oxidative damage
to DNA due to iron excess[118]. It improved glucose tolerance, insulin sensitivity in
type II diabetics with hyperferritinemia, and liver histology in majority of NAFLD
patients in a randomised controlled trial[79]. It also improved ALT levels and glucose-
induced-insulin-response in carbohydrate-intolerant non-iron-overloaded NAFLD
patients[119],  insulin  resistance  in  NAFLD  patients  without  impaired  glucose
tolerance[120] and ALT, AST and liver histology in NAFLD with hyperferritinemia[121].
In contrast, phlebotomy showed no effect on liver enzymes, hepatic fat or insulin
resistance  in  a  study in  NAFLD patients[122].  Also,  it  was  not  fully  successful  in
dysmetabolic iron overload syndrome, where there was a subtle increase in iron
stores (ferritin) in insulin resistant patients[79]. Here, it did not improve the metabolic
features, but improved insulin resistance[123].

Iron chelation has been considered for haemochromatosis patients that could not
undergo phlebotomy,  where  the  iron chelator  deferoxamine  (DFO)  successfully
removed liver iron[124] and thereby contributed to fibrosis control. However, to tackle
fibrosis in non-hereditary mild-moderately iron-loaded CLDs, where phlebotomy is
not  the  norm,  the  iron  chelation  strategy  is  not  fully  developed  yet,  although
promising  results  are  in  sight.  Studies  in  various  cell  lines  and  animal  models
revealed that iron chelation decreased the stability of procollagen mRNA in human
foetal fibroblasts[125], and reduced elastin mRNA and elastin deposition in human skin
fibroblasts[63]. In another study, DFO inhibited and reversed HSC-activation, induced
apoptosis of activated rat HSCs, and reduced the expressions of α-sma, procollagen
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and TIMPs[126].  More recently, a combination of DFO with pegylated interferon-α
showed better antifibrotic effects than either treatment alone and increased hepcidin
expression  in  concanavalin  A-induced  liver  fibrosis  in  rats[127].  This  shows  the
potential for combining iron-chelation with antifibrotic agents to accelerate fibrosis
recovery.  Oxidative  stress  degrades  apolipoprotein  B100  (apoB100),  a  major
component  of  very-low density  lipo-protein  (VLDL)  that  transports  cholesterol
throughout  the body.  This  hinders  the secretion of  VLDL and thereby enhances
steatosis. In primary rodent hepatocytes, DFO could restore ApoB100 and increase
VLDL secretion[128].  In contrast,  deferasirox (another iron chelator)  showed some
inconsistent anti-fibrotic effects in cell lines and animal models[129]. Thus, the benefits
need to be ascertained via clinical trials before drawing final conclusions.

In  addition  to  phlebotomy  and  iron-chelation,  attempts  have  been  made  to
modulate  iron-related  proteins  to  ameliorate  fibrosis.  Wang  et  al [130]  (2013)
demonstrated that inhibition of haem oxygenase-1 (the rate-limiting enzyme in haem
catabolism) reduced hepatic iron accumulation, improved portal vein pressure and
attenuated rat liver fibrosis. Hepcidin is yet another promising therapeutic agent.
Previously, intraperitoneal injections of mini-hepcidin to mice models of hereditary
haemochromatosis showed reduced iron loading[131]. Later, Han et al[132] conducted
elaborate studies and demonstrated that hepcidin expression inversely corelated with
the fibrosis severity in human and rodent models. Also, over-expression of hepcidin
in rodents attenuated fibrosis, as demonstrated via reduced expressions of α-SMA,
collagen type 1 and other markers. Cell based assays showed a mechanism whereby
exogenous hepcidin hindered TGF-β1-induced SMAD-3 phosphorylation in HSCs
and  inhibited  HSC-activation[132].  Thus,  hepcidin  therapy  may  be  capable  of
modulating liver fibrosis in the future.

The significance of formulating novel iron-related therapies emerges from the iron-
imposed acceleration of fibrosis progression. Even after liver transplantation in CLD
patients, iron loading can increase the probability of post-operative infections and can
show  poor  survival ,  as  demonstrated  by  the  HFE-related  hereditary
haemochromatosis  patients  following  transplantation[2].  Thus,  targeting  iron
metabolism for fibrosis resolution is a valuable and promising adjunctive strategy.
Note that all CLDs do not necessarily trigger fibrosis, so fibrosis may not be present in
all patients. Likewise, the levels of iron loading and other iron related parameters may
differ between patients and between stages of the disease[111].

CONCLUSION
Excess  iron  is  toxic.  It  is  frequently  observed  in  CLDs  and  can  accelerate  the
progression of liver fibrosis to cirrhosis and hepatocellular carcinoma, regardless of
disease aetiology. From an iron-perspective, mechanisms that promote liver fibrosis
include the free-radical generating Fenton reaction, direct or indirect HSC-activation
by  iron  or  iron-related  protein-receptor  complexes,  iron-induced  intercellular
interactions that provide an inflammatory milieu, cross-connection between iron and
TGF-β  signalling,  and  a  putative  role  of  iron  in  ECM remodelling.  Iron-related
proteins  such  as  ferritin,  hepcidin  (hepcidin:ferritin  ratio)  and  transferrin  have
successfully contributed to disease prognosis and acted as markers of fibrosis severity
and  progression  in  certain  liver  pathologies.  Presently,  there  are  no  approved
antifibrotic  protocols  for  CLDs with mid-moderate iron-loading.  Although iron-
chelation and modulation of iron-related proteins show potential therapeutic benefits,
these  need  to  be  tested  rigorously  in  clinical  trials  before  drawing  definitive
conclusions on their  anti-fibrotic  effects.  The aim would be to design adjunctive
strategies to halt, decelerate and/or reverse fibrosis progression, before it reaches the
irreversible stages of advanced cirrhosis and hepatocellular carcinoma.
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