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Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a deadly disease with no
efficacious treatment options. PDAC incidence is projected to increase, which
may be caused at least partially by the obesity epidemic. Significantly enhanced
efforts to prevent or intercept this cancer are clearly warranted. Oncogenic KRAS
mutations are recognized initiating events in PDAC development, however, they
are not entirely sufficient for the development of fully invasive PDAC.
Additional genetic alterations and/or environmental, nutritional, and metabolic
signals, as present in obesity, type-2 diabetes mellitus, and inflammation, are
required for full PDAC formation. We hypothesize that oncogenic KRAS
increases the intensity and duration of the growth-promoting signaling network.
Recent exciting studies from different laboratories indicate that the activity of the
transcriptional co-activators Yes-associated protein (YAP) and WW-domain-
containing transcriptional co-activator with PDZ-binding motif (TAZ) play a
critical role in the promotion and maintenance of PDAC operating as key
downstream target of KRAS signaling. While initially thought to be primarily an
effector of the tumor-suppressive Hippo pathway, more recent studies revealed
that YAP/TAZ subcellular localization and co-transcriptional activity is
regulated by multiple upstream signals. Overall, YAP has emerged as a central
node of transcriptional convergence in growth-promoting signaling in PDAC
cells. Indeed, YAP expression is an independent unfavorable prognostic marker
for overall survival of PDAC. In what follows, we will review studies implicating
YAP/TAZ in pancreatic cancer development and consider different approaches
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to target these transcriptional regulators.
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Core tip: The identification of signaling networks that underlie risk factor promoted
pancreatic cancer development and progression is of paramount importance to prevent or
intercept this lethal disease. Accumulating evidence suggests that several core signaling
pathways downstream of oncogenic Kras, augmented by environmental conditions, e.g.,
obesity, converge on Yes-associated protein (YAP) and WW-domain-containing
transcriptional co-activator with PDZ-binding motif (TAZ), transcriptional co-activators
in the Hippo pathway. Statins and metformin, widely used Food and Drug
Administration-approved drugs, show great promise to intercept this disease by
disrupting or inhibiting this amplifying network at multiple points converging onto
YAP/TAZ.
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INTRODUCTION
Despite  advances  in  our  understanding  of  genetics  and  basic  biology,  imaging,
surgical  treatments,  and  adjuvant  therapy,  pancreatic  ductal  adenocarcinoma
(PDAC), which represents 90% of all  pancreatic cancers, is a disease with dismal
prognosis with an overall 5-year survival rate of only about 7%[1]. The incidence in the
general  population  is  estimated  to  be  8  cases  per  100000  person-years,  and  the
worldwide mortality about 7 deaths per 100000 person-years[2,3]. PDAC is already the
3rd leading cause of cancer-related mortalities in the United States[4]. Indeed, deaths
due to PDAC are predicted to increase markedly. Indeed, the disease is expected to
become the 2nd leading cause of cancer-related mortality in the United States in the
next few years[5]. Given that only a minority of patients diagnosed with PDAC are
eligible for surgical intervention, the research is gradually shifting to identify novel
approaches in early diagnosis, prevention and interception, a novel concept, which
attempts  stopping  transformed  cells  from  progressing  to  frank  cancer[6-10].  The
elucidation of the molecular mechanisms of risk-factor associated PDAC promotion
will be of paramount importance to facilitate the discovery of novel targets and agents
for prevention and identify robust biomarkers to stratify patients for selective and
individualized therapeutics.

KRAS MUTATIONS AND PDAC
Oncogenic KRAS  mutations were first reported to be associated with PDAC more
than 30 years ago[11,12]. Although the genetic landscape of PDAC is complex, since the
initial reports extensive research in both humans and mice have substantiated the
critical significance of KRAS mutations in the early stages of PDAC. In fact, many
studies have confirmed that over 90% of PDAC harbors KRAS  mutations[13,14]  and
KRAS signaling is one of the core signaling pathways in human PDAC[13]. Most KRAS
mutations  in  PDAC  are  found  at  position  G12,  of  which  the  single  amino  acid
replacement G12D is the most predominant[15]. Mutations at position G13 or Q61 have
been detected at lower frequency, 21% or 28%, respectively[15].  Using deep whole
exome sequencing an integrated genomic characterization of PDAC revealed several
different KRAS mutations in a subset of tumors, with some PDACs showing biallelic
mutations[16].  Mechanistically, mutations at position G12 with a single amino acid
substitution induce conformational changes that interfere with the intrinsic GTPase
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activity of KRAS and prevent the interactions between KRAS and GTPase-activating
proteins (GAPs), which stimulate the conversion of KRAS-GTP (active state) to KRAS-
GDP (inactive state),  thereby ending KRAS activation. In this manner,  the KRAS
mutations  lead  to  its  prolonged  activation  and  consequently  to  the  persistent
stimulation of downstream signaling effectors[15,17]. It is becoming clear that different
mutations of G12 lead to different conformational states that differ in their affinity for
interacting effectors[18]. Although mutations in KRAS is an early and essential step in
PDAC, it is insufficient to stimulate development of frank, invasive PDAC. Activation
of other pathways by additional mutations (e.g., in tumor suppressor genes, including
p53, p16 and SMAD4) or environmental stimuli,  including obesity and metabolic
syndrome are required for the promotion of invasive PDAC[19-24].

In addition, the “efficacy” of oncogenic KRAS to initiate and promote PDAC is
influenced and modulated by the presence of common susceptibility genes. Recent
genome-wide association studies (GWAS) of PDACs in populations of European
ancestry have identified additional  common pancreatic  cancer  risk loci  carrying
pancreatic  cancer  risk  signals,  including  NR5A2,  PDX1,  AB0,  NOC2L,  HNF1B,
GRP[25-28].  Moreover,  an elegant study demonstrated that  variations in oncogenic
dosage have a critical role in PDAC biology and phenotypic diversification[29], with the
highest oncogenic Kras levels underlying aggressive undifferentiated phenotypes.
Activation of other pro-oncogenic pathways, including Myc, Yap1 or Nfkb2, which
collaborate  with  heterozygous mutant  Kras  in  driving tumorigenesis  have been
shown to have a lower metastatic potential[29]. It seems that evolutionary constraints
direct oncogenic dosage gain and variation along defined routes to drive the early
progression of PDAC and shape its downstream biology[29]. Integrated genomic and
global gene expression analyses have classified human pancreatic cancers into several
distinct subtypes that may dictate and predict  clinical  outcomes and therapeutic
responses.  Collison  and  colleagues  defined  three  subtypes:  classical,  quasi
mesenchymal,  and exocrine-like[30],  while  Bailey  et  al[31]  classified four  subtypes:
squamous,  pancreatic  progenitor,  immunogenic,  and  aberrantly  differentiated
endocrine exocrine (ADEX).  By separating tumor cells  and stromal  components,
Moffitt and colleagues identified two stromal subtypes: normal and activated, and
two  tumor-specific  subtypes:  classical  and  basal-like[32].  Using  whole  genome
sequencing and copy number variation analysis Waddell et al[33] categorized PDAC
into  four  subclasses  based  on  patterns  of  structural  variation  (variation  in
chromosomal structure): stable, locally rearranged, scattered, and unstable. Taken
together, these large genomic efforts clearly demonstrate that pancreatic cancer is a
genetically complex and heterogeneous disease, which has significant implications in
prognosis and therapeutic response, and classifying pancreatic cancers into subtypes
may assist and pave the way to more efficacious personalized treatment strategies.

PROGRESSION MODEL OF PDAC
It is estimated that PDACs develop over many years from non-invasive precursor
lesions. The non-cystic lesion is called pancreatic intraepithelial neoplasia (PanIN) and
is usually diagnosed in histological preparation of tissue removed during surgery or
in  biopsy  specimens[34-37].  These  PanINs  progress  from early  PanIN-1  lesions  to
advanced PanIN-3 (carcinoma in situ) and finally to frank invasive PDAC. Besides this
classical view of gradual step-wise PanIN progression and PDAC formation, in at
least  a  subset  of  PDACs  there  seem  to  be  catastrophic  genetic  events  (e.g.,
chromothripsis)  necessary for  the transition from preinvasive to invasive PDAC
(punctuated equilibrium)[38-41].  The pathological characteristics of cystic precursor
lesions,  including  intraductal  papillary  mucinous  neoplasm  (IPMN)  have  been
recently reviewed elsewhere[42].  Most low-grade PanIN lesions contain oncogenic
KRAS mutations[43]. This finding provided further evidence in support of the step-wise
carcinogenesis  model,  in  which  KRAS  mutations  are  envisioned  as  initiating
events[15,44,45].

Genetically  engineered  mouse  models  of  PDAC  have  corroborated  this
paradigm[46-49]. In the KC model, mutated Kras is expressed from its endogenous locus
(by crossing LSL-KrasG12D mice with PDX-1-Cre or p48-Cre mice, i.e., KC model)[48-50].
This  KC mouse model shares similar histopathologic and genetic  features to the
human disease including the development and progression of PanINs[46]. In addition
to the role of oncogenic KRAS in the initiation of PDAC, Kras mutations have also
been shown to be important for PDAC maintenance[51,52]. In line with the notion that
mutated Kras is necessary but not fully sufficient for the development of invasive
PDAC, only few animals  (5%-10%) in the KC model  (without additional  genetic
alterations) develop frank PDAC very late (usually after 9 mo)[46]. Cell senescence has
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been proposed as a barrier to the malignant progression of tumors[53]. The formation of
PDAC can be greatly accelerated by the presence of another mutation (e.g., Trp53)[47,54].

Besides  additional  genetic  mutations,  several  studies  have  convincingly
demonstrated  that  environmental,  nutritional,  and  metabolic  factors,  including
obesity, type-2 diabetes mellitus (T2DM) and inflammation efficiently promote PDAC
formation[55-59]. This notion is substantiated by several preclinical studies. Expression
of physiologic levels of oncogenic Kras in murine models efficiently transformed only
a small percentage of cells[60]. KRAS downstream signaling molecules, including the
ERKs were not activated when oncogenic Kras was expressed from its endogenous
locus[61]. Accordingly, cell culture studies have shown that incubating PDAC cells in a
serum-free medium failed to display activated ERK despite the presence of KRAS
activating mutations in these cells. However, ERK activation could be induced by
adding growth factors to the culture medium[62-64]. In mouse models, oncogenic Kras in
adult  mice  was  insufficient  to  induce  PDAC,  while  concomitant  induction  of
pancreatic  inflammation  (e.g.,  by  administration  of  the  cholecystokinin  analog
cerulein) stimulated the formation of PanINs and cancers[65]. Our own studies have
clearly demonstrated that an obesogenic diet accelerated early PanIN progression and
PDAC development in KC mice, which was associated with metabolic disturbances
(e.g.,  hyperinsulinemia), increased pancreatic inflammation, and desmoplasia[55,56].
Taken together, the current evidence indicates that oncogenic Kras is indispensable
but  not  sufficient  to  induce  malignant  pancreatic  cells.  Additional  genetic  or
environmental factors (obesity, T2DM, inflammation) are required to elevate KRAS
activity[52]  and/or  stimulate  additional  signaling  pathways  to  promote  PDAC
formation[66].

Recent elegant gene-environment interaction studies have demonstrated that the
increased risk of developing PDAC by environmental stimuli and conditions may be
influenced by the presence of common genetic variations. A GWAS data analysis has
found that genetic variations in inflammatory responses and insulin resistance may
affect the risk of obesity- and diabetes-related pancreatic cancer[67]. It is apparent that a
detailed understanding of the gene-regulatory networks that integrate signaling by
KRAS and cooperating pathways to drive an oncogenic program in pancreatic cancer
is of fundamental importance to design novel strategies to target this aggressive
disease. Recent exciting studies from different laboratories indicate that the activity of
the  transcriptional  regulators  yes-associated  Protein  (YAP)  and  WW-domain-
containing transcriptional co-activator with PDZ-binding motif (TAZ) play a critical
role in the promotion and maintenance of PDAC. In what follows, we will review
studies  implicating  YAP/TAZ  in  pancreatic  cancer  development  and  consider
possible  approaches  to  target  these  transcriptional  regulators  with  emphasis  in
repurposing drugs that are currently in clinical use.

YAP/TAZ IN PANCREATIC CANCER

The Hippo pathway
The highly conserved Hippo pathway, originally identified and characterized as
potent growth-suppressive pathway in Drosophila[68], is a key regulatory mechanism in
development, organ-size, tissue regeneration and tumorigenesis[68,69]. Canonical Hippo
signals  are  transmitted  via  the  serine/threonine  kinases  mammalian  Ste20-like
kinases 1/2 (Mst1/2), in complex with the scaffold protein salvador homolog 1 (Sav1),
phosphorylate and activate large tumor suppressor 1/2 (Lats1/2), in complex with its
regulatory protein Mps One binder 1/2 (MOB1/2)[69]. As shown in Figure 1, Lats1/2
then phosphorylates the transcriptional co-activators YAP and TAZ which also can
function as novel sensors of the mevalonate and glycolytic pathways[70-72].

The residues Ser127 and Ser397 of YAP are positioned within a consensus sequence
(HXRXXS) phosphorylated by Lats1/2. The phosphorylation of YAP at these sites,
restricts its cellular localization to the cytoplasm, reduces its stability, and inhibits its
co-transcriptional  activity.  In  addition  to  Lats1/2,  YAP  and  TAZ  can  be
phosphorylated by other protein kinases[68]. Although YAP and TAZ have very similar
structural topologies, share nearly half of the overall amino acid sequence, and are
thought to be largely redundant, they may differ in their regulation and downstream
functions[73].

When the Hippo pathway is not functional, YAP localizes to the nucleus where it
interacts  with  the  TEA-domain  DNA-binding  transcription  factors  (TEAD  1-4).
YAP/TEAD-regulated genes encode for proteins implicated many critical cellular
processes, e.g., autocrine/paracrine proliferation via EGFR (AREG) and G protein-
coupled receptors (EDN2), and interact with other developmental pathways activated
in PDAC, including Wnt, Notch, and Hedgehog[74]. YAP/TAZ also induces epithelial-
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Figure 1

Figure 1  Yes-associated protein and WW-domain-containing transcriptional co-activator with PDZ-binding motif is a point of convergence in signaling
pathways. A network that involves activated Ras, G protein-coupled receptors (GPCRs) and tyrosine kinase receptors positively regulates Yes-associated protein and
WW-domain-containing transcriptional co-activator with PDZ-binding motif (YAP/TAZ) activity via Rho/PKD/organization of the actin cytoskeleton and
PI3K/AKT/mTORC1. The interaction of mTORC1 and YAP is explained in the text. In addition, the localization and activity of YAP/TAZ is negatively impacted by the
Hippo pathway which mediates phosphorylation of YAP and thereby its cytoplasmic sequestration. Metformin and statins inhibit YAP/TAZ activity at different sites in
the network. Stimulatory effects are shown by black arrows whereas inhibitory effects are indicated by red arrows. YAP/TAZ: Yes-associated protein and WW-domain-
containing transcriptional co-activator with PDZ-binding motif; GPCR: G protein-coupled receptor.

to-mesenchymal  transition  (EMT)  and  induces  a  more  undifferentiated  state  to
malignant  cells.  Accordingly,  YAP/TAZ  play  an  important  role  in  pancreas
development,  which  has  implications  for  pancreatic  regeneration,  cancer,  and
diabetes[75]. It is accepted that YAP/TAZ acts as a potent oncogene in multiple cell
types,  including PDAC[76]  and also contributes to the strong immunosuppressive
microenvironment characteristic of mouse and human pancreatic cancer[77]. Recent
findings indicate that YAP/TAZ opposes Ras-induced senescence by increasing the
expression of the key enzymes involved in deoxyribonucleotide biosynthesis which
are critical for DNA replication[78].

As  indicated  above,  YAP  and  TAZ  do  not  bind  directly  to  DNA  but  act  by
enhancing the activity of transcription factors or other proteins that interact with
DNA.  Although  TEAD  family  members  are  the  major  DNA-binding  partners,
YAP/TAZ can also bind to other transcription factors, e.g., RUNXs, p73, Smad1, Klf4,
AP-1 to elicit context-specific functions[74,79,80]. It is important to point out that YAP and
TAZ not only act as co-activators of transcription factors that bind to promoter sites
contiguous  to  the  gene that  they control  but  exert  regulatory  effects  via  distant
enhancer elements[81,82]. Furthermore, recent studies indicate that YAP/TAZ-bound to
enhancers  mediate  the  recruitment  of  the  general  coactivator  bromodomain-
containing protein  4  (BRD4)  and RNA polymerase  II  at  promoters  regulated by
YAP/TAZ, thereby enhancing expression of multiple growth-regulating genes[83]. It is
evident that YAP and TAZ control gene-regulatory programs through a variety of
mechanism, further supporting their fundamental role in cell signaling.

Regulation of YAP/TAZ in PDAC
Recent studies demonstrated that YAP is required for acinar-to-ductal metaplasia
(ADM), an early event that precedes PanIN progression into PDAC in genetically
engineered mouse models[84,85]. In addition, YAP is a major mediator of pro-oncogenic
mutant p53[86]  and p53 deficiency promotes YAP signaling trough Ptpn14[87].  Also,
YAP confers resistance to RAF/MEK inhibitors[88]  and chemotherapy in PDAC[89].
While initially thought to be primarily an effector of the tumor-suppressive Hippo
pathway, more recent studies revealed that YAP/TAZ subcellular localization and co-
transcriptional activity is regulated by multiple upstream signals including those
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mediated by various G protein-coupled receptors (GPCRs), tyrosine kinase receptors
(EGFR, MET, Insulin/IGF-1 receptor), integrins, PI3K, mTOR, PKC, PKD, RHO and
actin cytoskeleton,  all  of  which stimulate  YAP/TAZ transcriptional  co-activator
activity[66,69,76,90-92]. Recently, Src kinases, downstream of KRAS, have been shown to
inhibit  the Hippo pathway by directly phosphorylating Lats1 thereby activating
YAP[93]. Interestingly, some of the tumor suppressive effects of wild type p53 appear
to be exerted via inhibition of YAP1 function[87].

In human PDAC cells, YAP functions as a downstream effector of the crosstalk
between  insulin/IGF-1  receptor  and  GPCR  systems [94]  (Figure  1).  We  have
demonstrated  that  stimulation  with  insulin  and  the  GPCR  agonist  neurotensin
induced rapid YAP nuclear import and markedly augmented the mRNA levels of
YAP/TEAD-regulated genes, including CTGF and Cyr61. The growth-promoting
agonists regulated YAP activity via PI3K and PKD in PANC-1 and MiaPaCa-2[94],
human cell lines that correspond to the squamous/quasi mesenchymal/ basal-like
sub-type of PDAC. In other cell types, several studies have also been shown that PI3K
activation inhibits the Hippo pathway[95,96] thereby promoting YAP activity, and PKD
mediates YAP nuclear localization and activation of  YAP/TEAD-regulated gene
expression[90].  Overall,  YAP  has  emerged  as  a  central  node  of  transcriptional
convergence in growth-promoting signaling in PDAC cells (Figure 1). In addition to
rapid  regulation  via  phosphorylation  and  sub-cellular  localization,  additional
pathways and epigenetic stimuli modulate YAP/TAZ protein expression. In this
context,  it  has  been  shown that  the  RAS pathway,  independently  of  the  Hippo
cascade, enhances YAP1 stability through downregulation of the ubiquitin ligase
complex  substrate  recognition  factors  SOCS5/6[97].  Moreover,  the  eukaryotic
translation initiation factor 5A (eIF5A), which is up-regulated by KRAS in PDAC,
interacts with the tyrosine kinase PEAK1 leading to enhanced YAP expression[98].

The nutrient sensor mTORC1, a central downstream component of the PI3K/AKT
and RAF/MEK/ERK pathways, is implicated in the development of multiple types of
cancer, including PDAC[99]. Interestingly, YAP and mTORC1 form a positive feedback
loop that leads to enhanced YAP protein expression. Specifically, YAP stimulates
mTORC1 via increasing the activity of the PI3K pathway[100] and augmented amino
acid transport[101,102]. In turn, mTORC1 activation leads to YAP accumulation at least in
part, via decreased autophagy[103]. Importantly, amplification and overexpression of
YAP has been shown to bypass the need of mutant Kras in murine PDAC[104] and other
cancer cell types[105] though the mechanism(s) differ(s), probably reflecting cell-context
factors[106]. These finding indicates that YAP not only acts downstream of KRAS but
also that YAP can sidestep the need of KRAS mutant expression in PDAC[107].

Several  studies  in  different  cell  types  demonstrated  that  an  increase  in  the
intracellular level of cAMP inhibits YAP activation, at least in part through activation
of protein kinases of the Hippo pathway[108,109]. Interestingly, concomitant expression
of mutated (R201C) GNAS, which encodes for stimulatory G-protein alpha subunit
that increases cAMP synthesis, with oncogenic Kras in mice, induced the formation of
pancreatic  cystic  neoplasms,  resembling  human intraductal  papillary  mucinous
neoplasms (IPMN), a less aggressive histological subtype of pancreatic tumors, by
inhibiting YAP signaling[110]. These recent findings underscore the importance of YAP
activation in the development of  specifically PDAC. In this  regard,  it  is  of  great
interest  that  YAP  function  has  been  associated  with  the  squamous/quasi
mesenchymal/basal-like sub-type of PDAC (discussed above), considered the most
clinically aggressive form. The significance of YAP expression in human PDAC is
discussed in the next section.

An important feature of human and murine PDAC is an extensive desmoplastic
stroma[111] that increases the stiffness of the extracellular matrix (ECM) surrounding
the epithelial cancer cells[42]. The Hippo/YAP pathway has been recognized to play a
critical role in mechano-transduction[112,113] and in sensing ECM stiffness[114] but the
mechanisms involved are not fully understood. Recently, the Ras-related GTPase
RAP2 has been identified as a major sensor of mechanical cues from the ECM. At low
stiffness, RAP2 activates the Hippo kinases Lats1/2 thereby inhibiting YAP/TAZ
activity[115].  Therefore,  high  stiffness  leads  to  inhibition  of  the  Hippo  tumor
suppressive pathway,  thus enhancing the co-activator  activity of  YAP and TAZ.
Reciprocally,  increased expression of  a  number  of  YAP/TEAD-regulated genes,
including CTGF, Cyr61 and CXCL5 contribute to shaping the stroma of PDAC, thus
establishing an important amplification loop involving the tumor microenvironment
leading to the stimulation of PDAC development.

YAP and human PDAC
Several studies reported that YAP and TAZ are over-expressed and over-active in
human PDAC[104,116,117] and identified YAP expression as an independent prognostic
marker for survival of PDAC[118]. We have examined the prognostic value not only of
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YAP but also of upstream and downstream components of the YAP-driven network
in pancreatic cancer[119]. We confirmed that higher expression of YAP is significantly
associated with unfavorable prognosis (survival) in PDAC[120]. Indeed, none of the
patients of the population with higher levels of YAP mRNA expression survived for 5
years while 32% of the subset with the lower levels of YAP mRNA survived for 5
years  or  more.  In  addition,  multiple  genes  regulated  by  YAP/TEAD,  including
AJUBA,  ANLN, AREG,  ARHGAP19,  ARHGAP29,  AURKA,  BUB1,  CCND1,  CDK6,
CXCL5,  DKK1,  JAG1,  NOTCH2  and RHAMM  were  significantly  associated  with
unfavorable prognosis in PDAC[120]. In a further analysis of the data, we verified that
the expression of each of these genes was positively and significantly correlated with
the expression of YAP in PDAC. In contrast, genes in pathways, e.g., LKB/AMPK and
cAMP/PKA, that oppose YAP action, including STRAD, MARK1, PKA, are associated
with favorable prognosis in PDAC patients[120]. Similar results were obtained using
other web-based tools, such as Gene Expression Profiling Interactive Analysis[121].

YAP and obesity
Besides its  recognized role in the regulation of  growth and development,  recent
studies show that Hippo kinases and YAP/TAZ transcriptional coactivators,  are
regulated by metabolism and conversely that  the Hippo/YAP pathway controls
metabolic processes in physiological and pathologic conditions, including obesity and
T2DM[122,123]. In fact, cellular metabolites and metabolic pathways, e.g., glucose and free
fatty acids, regulate the Hippo pathway. Glucose metabolism through the glycolytic
pathway activates  phosphofructokinase 1  (PFK1),  a  key rate-limiting enzyme of
glycolysis.  In  turn,  PFK1  interacts  with  TEAD,  thereby  regulating  YAP/TEAD
complex formation and expression of YAP/TEAD-regulated genes[70]. Furthermore, O-
linked β-N-acetylglucosamine (O-GlcNAc) is another post-translational mechanism
by which a sugar is attached to serine residues of nuclear or cytoplasmic proteins and
modifies protein activity[124]. Indeed, the attachment of O-GlcNAc to Ser109 of YAP
stimulates its transcriptional co-activator activity by interfering with the interaction of
YAP  with  Lats1/2,  thus  protecting  YAP  from  inhibitory  phosphorylation  and
providing a novel mechanism linking glucose availability to YAP activity[125]. This
multilayered  regulation  of  YAP  activity  by  glucose  metabolism  is  potentially
important in the obese state, which often is accompanied by insulin resistance and
elevated glucose levels.

A characteristic and defining feature of obesity is the enlargement of adipose tissue
depots,  which  is  often  accompanied  by  adipose  tissue  (AT)  inflammation[126].
Dysfunctional adipose tissue with alterations of adipokine production, ectopic fat
storage, and AT inflammation are thought to be critical, pathophysiological processes
underlying the development of insulin resistance. Adipocytes and adipose tissue
macrophages  are  central  cellular  players  of  AT  inflammation[127-132].  The  Hippo
pathway has been shown to modulate adipocyte proliferation and differentiation,
with  YAP/TAZ  nuclear  localization  stimulating  proliferation  and  suppressing
adipogenesis[133-136].  As depicted in Figure 1, nuclear YAP/TAZ interacts with and
inhibits PPAR-γ, a major pro-adipogenic transcription factor, thereby suppressing
adipocyte differentiation[133,137]. In that context, hyperglycemia and advanced glycation
end products impair adipogenesis by upregulating and activating YAP[138].

There are few studies investigating the importance of YAP/TAZ in macrophage
polarization[139].  It  has been shown that  the cell  shape,  independent of  cytokines
present in the micromilieu, has a profound influence on macrophage polarization via
the actin cytoskeleton[140], which strongly suggests an important role of YAP/TAZ in
this  process  due  to  the  critical  function  or  YAP/TAZ  as  mechano-sensors  and
mechano-transducers [112,113].  In  addition,  adipose  tissue  in  obese  subjects  is
characterized by peri-adipocyte fibrosis with elevated levels of CTGF (connective
tissue growth factor)[141], a recognized product of YAP/TEAD transcriptional activity.
Our own studies have shown that YAP is overexpressed in mesenteric adipose tissue
of obese KC mice (unpublished). Taken together, an important role of YAP/TAZ in
adipose tissue inflammation during obesity emerges, which might have important
implications in the PDAC promoting effects of obesity[142,143].

Strategies to inhibit YAP/TAZ in pancreatic cancer
As indicated  above,  YAP hyper-activation  can  evade  the  need of  KRAS mutant
expression in  PDAC[107].  Thus,  even if  Ras  could be effectively  inhibited by new
therapies, YAP amplification could provide a potential pathway to tumor recurrence.
Given  that  YAP  is  as  a  key  element  not  only  downstream  of  Ras  but  also  an
alternative  route  to  bypass  the  need of  this  oncogene for  tumor relapse,  YAP is
emerging as a fundamental target in PDAC. Although targeting transcription factors
or their co-activators has proven difficult, recent studies suggest novel approaches to
inhibit YAP/TAZ activity with drugs in clinical use, including statins and metformin

WJG https://www.wjgnet.com April 21, 2019 Volume 25 Issue 15

Rozengurt E et al. YAP/TAZ in pancreatic cancer

1803



in PDAC and other malignancies.

Statins
Several  studies  demonstrated  activation  of  the  pathway  leading  to  mevalonate
biosynthesis in epithelial cancers through mutant p53[144-146] and AKT/mTORC1[146].
Statins,  which have been used to  treat  dyslipidemia and prevent  heart  diseases,
selectively inhibit  3-hydroxy-methylglutaryl  (HMG) CoA reductase[147],  the  rate-
limiting enzyme in the generation of mevalonate (Figure 2). Mevalonate is a precursor
for the generation of important lipids and lipid intermediates, including farnesyl
pyrophosphate (FPP), geranylgeranyl pyrophosphate (GG-PP) and cholesterol. The
function and activity of small GTPases of the Rho family, including Rho A and C,
depend on the transfer of the geranylgeranyl moiety of GG-PP to a cysteine in their
COOH-terminal  region.  Active  Rho plays  a  critical  role  in  YAP/TAZ activation
through actin  remodeling  in  several  cell  populations[69]  (Figure  2).  Accordingly,
increased expression of RHOA and RHOC is associated with unfavorable prognosis
in patients with PDAC.

Numerous epidemiological studies have concluded that statin use is correlated
with  beneficial  effects  in  PDAC[148-156],  especially  in  men[151,152].  A  large  study
demonstrated that statins were associated with a significantly reduced PDAC risk (by
34%) with a stronger effect in males[151]. The beneficial effects of statins depend on the
type of statins used, with several reports showing positive associations with lipophilic
(and not hydrophilic) statins and reduced cancer risk[157-160]. However, a recent study,
in which statin use was self-reported and the type of statins was not documented in
early cohorts, failed to detect an effect of statins in lowering PDAC risk[161]. The same
authors published a follow up study of the same dataset, in which they reported an
increased survival in PDAC patients with regular pre-diagnosis use of statins[162].
Recently, a meta-analysis of PDAC risk that included more than 3 million participants
and 170000 pancreatic cancer patients has been published[163]. This study indicates a
significant decrease in pancreatic cancer risk with statin use, thus reinforcing the
conclusion that statin administration is associated with beneficial effects in PDAC
patients. In addition to their potential efficacy in primary prevention and interception,
statins may improve the outcome of patients after surgical removal of their primary
PDAC[148,149,164],  indicating  a  possible  role  of  statins  in  the  prevention  of  PDAC
recurrence.

In preclinical studies[165,166], statins delayed progression of PDAC in mice harboring
KrasG12D. Statins were identified as potential YAP inhibitors by screens of molecules
that changed the nuclear/cytoplasmic distribution of YAP[167]. Our own experiments
using PDAC cells also indicated that lipophilic statins induce cytoplasmic localization
of  YAP and markedly  inhibited YAP/TEAD-regulated genes,  proliferation,  and
colony  formation  by  PDAC  cells  (submitted  for  publication).  Taken  together,
converging  evidence  from  epidemiological  and  preclinical  studies  indicates  a
protective effect of statins in PDAC.

Metformin
1,1-dimethylbiguanide hydrochloride (metformin) is the most widely administered
drug for the treatment of T2DM worldwide[168,169]. The anti-diabetic, i.e., lowering the
blood glucose levels, actions of metformin are mediated systemically by a reduction of
hepatic  glucose production and output  into the circulation and improvement of
insulin sensitivity via increasing cellular uptake of glucose in skeletal muscles and
adipose tissue[170]. In addition to lowering blood glucose levels, metformin decreased
the  levels  of  insulin  and  IGF-1  in  both  diabetic  and  non-diabetic  patients[171,172].
Multiple epidemiological studies showed an association of metformin with reduced
incidence, recurrence and mortality of cancer in patients with T2DM[173-182]. However, a
therapeutic efficacy of metformin has not been observed in all studies[183], in particular
in  late-stage,  advanced  cases  of  cancer.  In  that  context,  recent  meta-analyses
supported the notion that the beneficial effects of metformin depend on the stage of
the  tumor,  with  a  substantially  enhanced  survival  in  patients  with  local,  non-
metastatic, disease[178,184]. Further reports indicated that metformin administered to
T2DM patients  could be also beneficial  in  secondary chemoprevention,  i.e.  after
surgical resection of the cancer in the pancreas[185,186].

The mechanism of action of metformin remains incompletely understood. Besides
its  systemic (glucose lowering)  effects,  at  the cellular  level  metformin indirectly
activates AMP-activated protein kinase (AMPK)[187], though other AMPK-independent
mechanisms are also operational[188,189]. AMPK is activated by phosphorylation by the
tumor suppressor LKB-1/STK11 in the activation loop[190] when cellular ATP levels
decrease and 5’-AMP and ADP concentrations increase[169]. It generally thought that
metformin  leads  to  AMPK  activation  by  directly  inhibiting  complex  I  of  the
mitochondrial respiratory chain[191,192],  which leads to a decrease in ATP synthesis
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Figure 2

Figure 2  Schematic overview of the mevalonate pathway. The scheme illustrates the site of action of statins,
metformin and bromodomain and extra-terminal domain inhibitors (see text for details). BET: Bromodomain and
extra-terminal domain; AMPK: AMP-activated protein kinase; GG-PP: Geranylgeranyl pyrophosphate.

resulting in increased AMP and ADP thereby leading to AMPK activation. AMPK
suppresses  cellular  proliferation by inhibiting the function of  mTORC1 through
several mechanisms. AMPK activates TSC2 by phosphorylation on Ser1345[193-195], which
leads to an accumulation of inactive Rheb-GDP thereby inhibiting mTORC1. AMPK
can also inhibit mTORC1 function by phosphorylation of Raptor, which disrupts its
complex with mTOR[196]. In addition, mTORC1 activation induced by insulin/IGF-1
signaling  is  also  inhibited  via  phosphorylation  of  IRS-1  on  Ser794  by  AMPK,  a
phosphorylation that impedes PI3K activation[197,198]. We demonstrated that metformin,
at low concentrations, activates AMPK in PDAC cells[199,200] and inhibits mTORC1, ERK
and DNA synthesis via AMPK[199-201]. Metformin also reduced the rate of growth of
PDAC xenografts[202,203]. Furthermore, we recently reported that oral administration of
metformin strikingly prevented the increase in PDAC incidence in KC mice with diet-
induced obesity[204]. This effect was associated with an increase in pancreatic AMPK
activity  (as  measured by  ACC Ser79  phosphorylation),  and decrease  in  phospho
MEK1/2 (Ser217/221), phospho S6 (Ser235/236), and phospho ERK1/2 (Thr202, Tyr204)[204]. In
that context, berberine, a natural compound that activates AMPK and inhibits ATP
production,  also  inhibited  mTORC1,  ERK,  DNA  synthesis  and  proliferation  of
pancreatic cancer cells and reduced the growth of PDAC xenografts[201].

Recent  evidence indicates  that  AMPK also  opposes  YAP activity  via  multiple
mechanisms, including direct YAP phosphorylation on Ser94[205,206], a residue that is
important for the interaction of YAP with TEAD. In addition, AMPK has been shown
to phosphorylate HMG-CoA reductase (Ser872),  thereby inhibiting its activity and
reducing mevalonic  acid  synthesis[207].  Furthermore,  AMPK phosphorylates  and
activates upstream regulators of the Hippo pathway[208].  The inhibitory effects of
AMPK on the YAP/TAZ pathway is illustrated in Figure 2. These studies suggest an
important  direct  link  among  adenine  nucleotide  levels,  AMPK  and  YAP/TAZ
activity. In studies from our laboratories, we found recently that diet-induced obesity
markedly increased pancreatic TAZ expression in KC mice and that oral metformin
prevented the increase in YAP/TAZ[204]. Given that statins and metformin inhibit YAP
activation through different mechanisms, it is logical to speculate that administration
of a combination of these FDA-approved drugs will suppress YAP/TAZ activity and
exerts PDAC-protective activity. The scheme presented in Figure 1 dramatizes this
notion by showing that statins and metformin reach YAP through different pathways.

Inhibitors of BRD4: A new approach for targeting YAP/TAZ
BRD4, which interacts with acetyl-lysine, acts as a critical regulator of the expression
of  selected  subsets  of  genes.  Bromodomain  and  extra-terminal  domain  (BET)
inhibitors interfere with the proliferation of PDAC cells, raising the possibility that
BET proteins  may be  new targets  for  PDAC therapy[209].  A  recent  elegant  study
demonstrated  a  direct  physical  interaction  between  YAP or  TAZ and  BRD4,  as
revealed by co-immunoprecipitation experiments. The data imply that YAP, TEAD
and BRET-containing proteins (e.g., BRD4, BRD2) form a multi-molecular complex in
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the nucleus[83]. Consistent with the notion that BRD4 plays a critical role in YAP/TAZ
function, the BET cell-permeable inhibitor JQ1[210] downregulates the expression of
YAP/TAZ-regulated genes[83]. Considerable efforts are being made to develop new
inhibitors of BRD proteins and thus this field will develop rapidly[211].  These new
findings suggest  a  novel  approach to target  YAP/TAZ that  remains to be tested
experimentally  in  vivo,  using  models  of  PDAC.  As  suggested  by  Figure  2,  the
possibility of using BET inhibitors in combination with statins and/or metformin is
attractive and warrants further experimental work.

Feedback loops and effect of pathway inhibitors
Most  signaling pathways  are  subjected to  potent  feedback loops  that  adjust  the
activity and function of the signaling network. There is evidence that besides their
stimulating effects on mitogenic signaling the mTORC1/S6K and RAF/MEK/ERK
pathways also mediate robust negative feedback loops that restrict the activity of
insulin/IGF-1,  EGFR,  and other  tyrosine kinase receptors[99].  In  that  context,  the
mTORC1/S6K pathway inhibits the function of IRS-1 by phosphorylating several
residues (Ser636/639 by mTORC1 and Ser307/636/1001 by S6K)[212]. Inhibitors of mTORC1/S6K
or MEK/ERK suppress these feedback loops, which in turn causes a compensatory
activation  of  upstream signaling  molecules,  e.g.,  PI3K,  AKT,  and ERK that  as  a
consequence  strongly  counteract  the  anti-proliferative  actions  of  these
inhibitors[99,200,213]. The up-regulation of these pathways conceivably can promote YAP
activity leading to drug resistance. Therefore, a detailed understanding of feedback
mechanisms  that  regulate  upstream  signaling  is  critical  and  will  enable  the
identification of rational drug combinations that will  circumvent drug resistance
produced by unleashing the activity of alternative pathways.

CONCLUSION
Despite major advances in defining the molecular mutations driving PDAC, this
disease remains universally lethal with an overall 5-year survival rate of only about
7%-8%. More efficacious therapeutic strategies are clearly needed but given the late
presentation and early dissemination of the disease, substantial efforts should be
concentrated on prevention and interception. Hereby, detailed knowledge of the
molecular mechanisms underlying risk-factor promoted PDAC will surely facilitate
and  enable  the  discovery  of  novel  molecular  targets  and  agents  for  primary  or
secondary prevention. Epidemiological studies convincingly demonstrate that obesity
is a risk factor for PDAC development, the importance of which takes an added level
given the epidemic proportions of metabolic diseases. It is also recognized that almost
all  PDACs harbor an oncogenic  KRAS  mutation,  which seems necessary but  not
sufficient for complete PDAC formation. Besides additional mutations, which greatly
accelerate PDAC progression in mice, environmental conditions, including obesity,
T2DM, and inflammation, have been shown to also promote PDAC in murine models.
As illustrated in Figure 1, we propose that PI3K/mTORC1 and PKD/ERK are critical
nodes  in  the  network activated by GPCRs,  EGFR and insulin/IGF-1  receptor  in
PDAC. These signaling modules are responsive to obesogenic signals and reinforce
KRAS signaling.  In  turn,  oncogenic  KRAS  mutations  potentiate  the  intensity  of
signaling network emanating from GPCRs, EGFR, and insulin/IGF-1 receptors by
activating  PI3K/AKT  and  Raf/MEK/ERK,  the  most  prominent  downstream
pathways of oncogenic KRAS.

We also postulate that  YAP/TAZ transcriptional  co-activators are central  and
critical players in this amplification network, further intensifying positive feedback
loops. GPCRs, EGFR, and insulin/IGF-1 receptor signaling rapidly stimulate nuclear
import and transcriptional co-activator activity of YAP/TAZ, while oncogenic KRAS
increases  the  levels  of  YAP  protein.  In  turn,  YAP  stimulates  signaling  via
autocrine/paracrine stimulation of EGFR via increased production of EGFR ligands
(e.g., amphiregulin), thereby further propagating and enhancing KRAS activity, as
well  as creating an immunosuppressive microenvironment.  We hypothesize that
oncogenic KRAS potentiates a signaling network that is stimulated and sustained by
environmental factors. As YAP/TAZ play a central role in the signaling network,
targeting this network at different sites with FDA-approved drugs, including statins
and metformin (Figure 2), is therefore a compelling approach, especially in obese
patients at higher risk of developing PDAC.
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