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Abstract
In recent decades, cancer stem cells (CSCs) have been increasingly identified in
many malignancies. CSC-related signaling pathways and their functions provide
new strategies for treating cancer. The aberrant activation of related signaling
pathways (e.g., Wnt, Notch, and Hedgehog pathways) has been linked to
multiple types of malignant tumors, which makes these pathways attractive
targets for cancer therapy. CSCs display many characteristic features, such as
self-renewal, differentiation, high tumorigenicity, and drug resistance. Therefore,
there is an urgent need to develop new therapeutic strategies to target these
pathways to control stem cell replication, survival, and differentiation. Notable
crosstalk occurs among different signaling pathways and potentially leads to
compensatory escape. Therefore, multitarget inhibitors will be one of the main
methods to overcome the drug resistance of CSCs. Many small molecule
inhibitors of components of signaling pathways in CSCs have entered clinical
trials, and some inhibitors, such as vismodegib, sonidegib, and glasdegib, have
been approved. Tumor cells are susceptible to sonidegib and vismodegib
resistance due to mutations in the Smo protein. The signal transducers and
activators of transcription 3 (STAT3) inhibitor BBI608 is being evaluated in a
phase III trial for a variety of cancers. Structural derivatives of BBI608 are the
main focus of STAT3 inhibitor development, which is another strategy for CSC
therapy. In addition to the potential pharmacological inhibitors targeting CSC-
related signaling pathways, other methods of targeting CSCs are available, such
as nano-drug delivery systems, mitochondrion targeting, autophagy,
hyperthermia, immunotherapy, and CSC microenvironment targeting. In
addition, we summarize the latest advances in the clinical development of agents
targeting CSC-related signaling pathways and other methods of targeting CSCs.

Key words: Cancer stem cells; Cancer stem cell-related signaling pathways; Nano-drug
delivery system; Immunotherapy; Mitochondrion; Immunotherapy; Cancer stem cell
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Core tip: The review aims to introduce the field of cancer stem cells (CSCs) and the
important signaling pathways in CSCs and present approved inhibitors as well as
candidate drugs. Due to the complexity of the crosstalk among various signaling
pathways, current strategies involve the development of multitarget inhibitors,
combination therapy, and precision treatments based on the genetic characteristics of
patients. Other methods of targeting CSCs are introduced as well, including nano-drug
delivery systems, mitochondrion targeting, hyperthermia, immunotherapy, and CSC
microenvironment targeting. However, this field remains in its infancy, and considerable
research will be required to produce mature products that can contribute to curing cancer.

Citation: Du FY, Zhou QF, Sun WJ, Chen GL. Targeting cancer stem cells in drug discovery:
Current state and future perspectives. World J Stem Cells 2019; 11(7): 398-420
URL: https://www.wjgnet.com/1948-0210/full/v11/i7/398.htm
DOI: https://dx.doi.org/10.4252/wjsc.v11.i7.398

INTRODUCTION
The concept of cancer stem cells (CSCs) was first proposed in 1983[1], and CSC self-
renewal was posited as the core of tumor growth. Therefore, irreversible inactivation
of stem cells is the key to killing tumor cells. In 1994, Lapidot et al[2] identified and
isolated human acute myeloid leukemia (AML) cells expressing the stem cell surface
marker phenotype CD34+/CD38-[3].  Cell transplantation experiments showed that
compared with common tumor cells, CD34+/CD38- cells were tumorigenic and the
surface antigens of these cells were similar to those of normal hematopoietic stem
cells. In 2006, the American Association for Cancer Research clearly defined CSCs as a
reservoir of self-sustaining cells with the exclusive ability to self-renew and maintain
tumor growth[4].

In recent years, the existence of CSCs in solid tumors, including breast cancer[5,6],
central  nervous system tumors[7,8],  prostate  cancer[9,10],  pancreatic  cancer[11],  liver
cancer[12],  lung  cancer[13],  colon  cancer[14,15],  melanoma[16,17],  and  nasopharyngeal
carcinoma[18],  has  been  confirmed,  and  the  CSC  model  has  been  successfully
established. CSCs generally have the following features (Figure 1): (1) Unlimited self-
renewal[19]: CSCs are able to produce progeny cells that are identical to the parental
cells  and  maintain  continuous  tumors  through  self-renewal;  (2)  Differentiation
potential[20]: CSCs can produce different lineages of differentiated progeny tumor cells;
(3) High tumorigenicity[5]: A small number of CSCs cultured in vitro form colonies,
and few CSCs are required to form tumors in vivo upon injection into experimental
animals; this property is not shared by general tumor cells; and (4) Drug resistance[21].
The main factors for the development of drug resistance are as follows. First, most
CSCs are in a resting or dormant state and are not undergoing cell division[22]. Second,
CSCs mostly express ATP-binding cassette family membrane transporters[23], which
are responsible for the transport and efflux of metabolites, drugs, toxic substances,
endogenous lipids,  peptides,  nucleotides,  and sterols  and can render  these cells
resistant to many chemotherapeutic drugs. In addition, CSCs have a powerful DNA
repair ability[24]. Finally, the abnormal expression of signaling pathway components
and  the  diversification  of  the  CSC  microenvironment  are  also  related  to  drug
resistance.  At  present,  the  presence  of  CSCs is  believed to  be  the  main cause  of
chemotherapy and radiotherapy failure[25].

Currently,  researchers have not only confirmed the existence of CSCs but also
identified the specific surface markers of many types of CSCs[26,27] and their signal
transduction pathways. Many chemical agents of different classes targeting the Wnt,
Notch, Hedgehog, signal transducers and activators of transcription (STAT), bone
morphogenetic protein (BMP), Bmi, and PI3K/Akt pathways have entered clinical
trials  (Figure  1).  In  this  review,  the  approval  status  and  progress  of  these
investigational agents are summarized. In addition to the potential pharmacological
inhibitors targeting CSC-related signaling pathways,  other methods of  targeting
CSCs,  such  as  nano-drug  delivery  systems  (NDDSs),  mitochondrion  targeting,
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Figure 1

Figure 1  Targeting Wnt, hedgehog, notch, bone morphogenetic protein, B-cell-specific Moloney murine leukemia virus integration site, PI3K/Akt, and
signal transducers and activators of transcription signaling pathways and the characteristics of cancer stem cells. Bmi: B-cell-specific Moloney murine
leukemia virus integration site; STAT: Signal transducers and activators of transcription; BMP: Bone morphogenetic protein.

autophagy, hyperthermia, immunotherapy, and CSC microenvironment targeting, are
also summarized.

CSC SIGNALING PATHWAYS AND INHIBITORS
There are two main theories about the possible formation of CSCs: From normal stem
cells  and from non-stem cells.  Studies  have shown that  CSCs are  formed by the
transformation of adult stem cells caused by genetic mutations. Normal stem cells
have  activated  self-renewal  mechanisms,  have  longer  survival  time,  and  can
accumulate  more  mutations;  thus,  they  have  more  opportunities  to  mutate  into
CSCs[28-30]. Therefore, we hypothesize that gene mutations in normal adult stem cells
are caused by endogenous or exogenous stimuli, and then they enter the cell cycle,
rapidly divide, and transform into CSCs. Moreover, some differentiated cells may also
regain self-renewal capacity before canceration and mutate into CSCs[31,32]. Because
CSCs are derived from normal cells, their signaling pathways are similar to those of
normal cells. The main pathways affecting CSCs include the Wnt, Hedgehog, Notch,
BMP, Bmi, PI3K/Akt, and STAT pathways[33], which regulate CSC self-renewal and
differentiation. Among them, the Wnt, Hedgehog, and Notch pathways are the most
thoroughly studied[34].

Wnt signaling pathway and inhibitors
The Wnt signaling pathway regulates cell proliferation, differentiation, and apoptosis
and  cell-cell  interactions  and  plays  an  important  role  in  processes  involved  in
embryogenesis and tissue repair[35,36]. Extracellular Wnt protein can trigger different
intracellular signal transduction pathways, which are classified as Wnt/β-catenin
dependent (canonical pathway) or β-catenin independent (noncanonical pathway).
The canonical pathway is activated by the binding of Wnt ligands to the low-density
lipoprotein  receptor  (LRP)-5/6  receptor  and  the  Frizzled  (Fzd)  receptor.
Subsequently,  this  complex  activates  the  cytoplasmic  protein  disheveled  (Dvl),
resulting in the recruitment of protein complexes (axin, GSK-3β, casein kinase 1, and
adenomatosis polyposis coli protein) to the receptor[37-39]. The Wnt-Fzd-axin-LRP-5/6
complex sequesters cytosolic GSK-3β, blocking it from phosphorylating β-catenin. As
a result, unphosphorylated β-catenin accumulates in the cytoplasm and migrates to
the nucleus, thus leading to the transcription of target genes such as c-Myc and cyclin
D1[39], which promote the abnormal proliferation of tumor cells.

Examples of the β-catenin-independent pathway include the Wnt/Ca2+ pathway
and the planar cell polarity (PCP) pathway[40]. In the Wnt/Ca2+ pathway, Wnt5a and
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Wnt11 bind to and activate the Fzd receptor to activate Dvl, which in turn inhibits
cGMP-dependent protein kinase and activates phospholipase C (PLC), resulting in
increased Ca2+ release; moreover, PLC promotes the accumulation of Ca2+ through the
generation of inositol  1,4,5-trisphosphate (IP3).  Increased Ca2+  levels activate the
protein kinases calmodulin-dependent protein kinase II (CaMK-II), protein kinase C,
and calcineurin[41]. CaMK-II can phosphorylate T-cell factor (TCF) via transcriptional
growth factor β-activated kinase 1 and NEMO kinase, and phosphorylated TCF loses
the ability to bind β-catenin. Therefore, this pathway antagonizes the Wnt/β-catenin-
dependent pathway[42]. The PCP pathway can be initiated by the Wnt interaction with
Fzd receptors or the coreceptors receptor related to tyrosine kinase and retinoic acid-
related orphan receptor, which leads to Dvl activation[43]. Myosin and Rho-associated
kinase are activated by Rho GTPase and alter  actin activity and the cytoskeletal
arrangement. Tandem activation of Rac GTPase and Rac stimulates c-Jun N-terminal
kinase (JNK) activity[44].  In addition to its  regulation of  cell  proliferation,  JNK is
involved in a series of physiological processes, such as cell growth, differentiation,
migration, and cancer[45].

The canonical  Wnt signaling pathway may be involved in the development of
malignant breast  cancer,  which is  manifested by elevated β-catenin levels  in the
nucleus and cytoplasm. In breast cancer patients, elevated β-catenin often indicates a
poor  prognosis,  which  may  be  due  to  β-catenin  mutations[46].  Cyclin  Y  (CCNY)
promotes  the  proliferation  of  ovarian  cancer  cells  through  the  Wnt/β-catenin
signaling pathway. Overexpression of CCNY enhances the expression of the Wnt
downstream  target  genes  c-Myc,  cyclin  D1,  PFTK1,  and  N-acetylglucosamine
transferase[47].  Downregulation of  tumor necrosis  factor  α-induced protein 2  can
inhibit the proliferation of esophageal squamous cell carcinoma by downregulating
the downstream target genes of β-catenin (e.g., c-Myc and cyclin D1) and upregulating
E-cadherin  and  p-GSK-3β  levels[48].  Silencing  of  the  Golgi  phosphoprotein  3
(GOLPH3) gene can inhibit the proliferation of SW620 colon cancer cells, in which β-
catenin  is  downregulated  and  Wnt  pathway  activity  is  decreased.  Conversely,
overexpression of the GOLPH3 gene promotes colon cancer cell proliferation[49]. Reishi
inhibits the proliferation and migration of breast cancer cells by inhibiting the Wnt
signaling pathway, and the main mechanism of action is to block the Wnt pathway by
inhibiting  the  phosphorylation  of  the  Wnt  coreceptor  low-density  lipoprotein
receptor-related protein 6 (LRP6). Reishi can significantly reduce LRP6 phospho-
rylation and inhibit  the  Wnt3a-mediated expression of  the  target  gene Axin2 in
human and mouse  breast  cancer  cell  lines[50].  Breast  cancer,  melanoma,  prostate
cancer, lung cancer, and other cancers can be generated by altering the expression of
the CTNNB1 gene, which encodes β-catenin.

The increased expression of Wnt ligands, such as Wnt1, Wnt2, and Wnt7a, leads to
glioblastoma, esophageal cancer, and ovarian cancer, respectively[51]. Deregulation of
the Wnt signaling pathway has  been found to  be associated with many cancers,
making it an attractive target for anticancer therapies. The developed Wnt signaling
pathway inhibitors  are  mainly  monoclonal  antibodies,  β-catenin  inhibitors,  and
various small molecule inhibitors. The discovery of small molecule inhibitors has been
a research focus, with the main goal of finding small molecules that affect nuclear β-
catenin and Wnt signaling pathways through high-throughput screening of small
molecule compound libraries. Agents targeting the Wnt signaling pathway that are in
clinical trials are summarized below (Table 1, Figure 2).

Porcupine is an acyltransferase that plays an important role in the formation and
secretion of Wnt ligands[52]. Among the currently reported small molecule inhibitors of
porcupine, LGK974[53] and ETC-159[54] have successfully entered phase I clinical trials.
Studies  have  shown  that  LGK974  can  inhibit  Wnt  signaling  by  reducing  LRP6
phosphorylation  and  Wnt  target  gene  expression  both  in  vivo  and  in  vitro,  and
LGK974 has significant effects in both tumor models and human cancer cell lines in
mice.  However,  ETC-159,  the first  small  molecule for the treatment of  colorectal
cancer,  was subsequently discovered[54].  PRI-724 is  a  potent  inhibitor  of  the Wnt
signaling pathway that inhibits the binding and recruitment of β-catenin and its
coactivator  CBP[55].  PRI-724 specifically  binds to  CBP,  disrupting the  interaction
between CBP and β-catenin. PRI-724 selectively induces apoptosis and inhibits the
growth of colon cancer cell lines in vitro but has no effect on normal colonic epithelial
cells[56,57].

Tankyrase belongs to the poly(ADP-ribose) polymerase (PARP) family and has two
isoforms, tankyrase 1 (PARP5a) and tankyrase 2 (PARP5b), which are associated with
Wnt/β-catenin signaling. Both of these isoforms increase axin degradation through
the ubiquitin-proteasome pathways[58]. XAV939 specifically inhibits tankyrase PARP
activity[59]. Treatment with 1.0 μM XAV939 for 12 h reduced DNA-PKcs protein levels
to a minimum level,  and the relative expression was less than 25% of that in the
control group[60]. IWR-1 and XAV939 act as reversible inhibitors of the Wnt pathway

WJSC https://www.wjgnet.com July 26, 2019 Volume 11 Issue 7

Du FY et al. Targeting CSCs for thorough cancer treatment

401



Table 1  Agents targeting the Wnt signaling pathway in clinical trials

Compound Target/mechanism Tumor type Highest phase Organization

LGK974[53] Porcupine inhibitor Melanoma; breast cancer;
pancreatic cancer

Phase I Novartis

ETC-159[54] Porcupine inhibitor Solid tumors Phase I ETC/Duke-NUS

PRI-724[55] β-catenin/CBP Myeloid leukemia Phase I/II Prism/Eisai Pharmaceuticals

XAV939[59] Tankyrase 1 and 2 inhibitor - Preclinical Novartis

IWR1[61] Tankyrase 1 and 2 inhibitor - Preclinical Tocris Bioscience

JW74[70] Tankyrase 1 and 2 inhibitor - Preclinical Tocris Bioscience

NSC668036[71] Disheveled - Preclinical Tocris Bioscience

OMP-18R5[64] (Vantictumab) Frizzled receptor Solid tumors; breast cancer;
non-small cell lung cancer;
pancreatic cancer

Phase I/Ib OncoMed Pharmaceuticals

OMP-54F28[65] (Ipafricept) Fzd8-Fc fusion protein Solid tumors; hepatocellular
carcinoma; ovarian cancer;
pancreatic cancer

Phase I/Ib OncoMed Pharmaceuticals

and  have  similar  pharmacological  effects  in  vivo  and  in  vitro.  However,  IWR-1
functions through interacting with axin and XAV939 directly binds to TNKS[61].

Monoclonal antibodies against Wnt-1 and Wnt-2 have proven that Wnt inhibition
leads to tumor suppression in melanoma, sarcoma, colorectal cancer, non-small cell
lung cancer (NSCLC), and mesothelioma[62,63]. OMP-18R5 (vantictumab), developed by
OncoMed Pharmaceuticals/Bayer, is a monoclonal antibody that targets five of the
ten Fzd receptors. The safety and efficacy of these antibody therapeutics are being
assessed separately or in combination with chemotherapy in NSCLC, pancreatic
cancer, and breast cancer[64]. The first-in-class recombinant fusion protein ipafricept
(OMP-54F28) blocks Wnt signaling by binding to Wnt ligands[65]. Among this class of
therapeutics, for example, vantictumab[66], ipafricept[67], and ETC-159[68], which show
anti-CSC effects in preclinical model experiments, are in clinical trials to treat cancer
patients[69].

Notch signaling pathway and its inhibitors
The Notch signaling pathway is widespread and highly conserved in mammals, and
it has various functions and a relatively simple molecular structure[72-75]. The Notch
pathway is  mainly composed of  Notch receptors  (Notch 1-4)  and Notch ligands
(Jagged 1, Jagged 2, Delta-like ligand (DLL)-1, DLL-3, and DLL-4). The DNA binding
protein CSL [CBF1/RBP, Su(H)/Lag-1] is the primary effector of the Notch signaling
pathway.  CSL binds  to  activated Notch  to  form the  Notch  intracellular  domain
(NICD)-CSL complex.

The Notch signaling pathway is divided into the non-CSL-dependent pathway
(noncanonical Notch signaling pathway) and the CSL-dependent pathway (canonical
Notch signaling pathway)[76], and these pathways maintain the existence of stem cells
and initiate embryonic or fetal cell differentiation[77]. The Notch pathway affects the
normal growth and development of cells and tissues by regulating cell differentiation,
proliferation, and apoptosis, which play core roles in the development of malignant
tumors[78,79].

The  canonical  Notch signaling pathway involves  the  binding of  receptor  and
ligand, which releases the NICD via  metalloproteinase- and γ-secretase-mediated
protease hydrolysis. Then, the NICD enters the nucleus and forms a complex with
RBPJ, which mediates the transcription and expression of its downstream target genes
Hes and Hey, thus affecting cell differentiation, proliferation, and apoptosis. During
the activation and transduction of the Notch signaling pathway, enzymatic cleavage
by  γ-secretase  plays  an  extremely  important  role.  The  inhibition  of  γ-secretase
prevents  the  release  of  NICD,  thereby blocking the  Notch signaling pathway[80].
Treatment  strategies  directly  related  to  the  Notch  pathway  involve  γ-secretase
inhibitors  (GSIs)  and  inhibitors  of  Notch  receptors,  ligands,  or  other  pathway
elements.

Currently,  several  classes  of  Notch  signaling  inhibitors  are  being  clinically
researched, and they have significant differences in targets, mechanisms, and tumor
types (Table 2, Figure 3). A major class of agents targeting the Notch pathway is GSIs,
which  are  the  first  Notch  inhibitors  to  enter  clinical  studies[81].  Favorable  tissue
penetration, low cost,  ease of administration, and potential pan-Notch inhibitory
activity are the main advantages of GSIs[82,83]. However, the toxicity of these agents,
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Figure 2

Figure 2  Chemical structure of agents targeting the Wnt signaling pathway in clinical trials.

especially the serious toxicity in the gastrointestinal tract,  may affect  the further
development of this class of inhibitors[84]. Moreover, GSIs have a variety of substrates,
such as Notch receptors, cadherin, ERBB4, CD44, and amyloid precursor protein, and
some scholars believe that GSIs are not druggable[85]. RO4929097 showed insufficient
activity as a single agent against metastatic melanoma and platinum-resistant ovarian
cancer in clinical trials[86,87], which indicated that it has potential in combination with
other drugs to treat related diseases[88,89].

Nirogacestat (PF-3084014) is another GSI in phase II clinical trials for the treatment
of  desmoid tumors.  Long-term follow-up of  patients  with desmoid fibromatosis
treated with nirogacestat showed that it had promising activity (objective response
rate of 71.4%) at relatively low doses and high tolerability, thus leading to prolonged
disease  control[90,91].  Nirogacestat  was  also  reported  to  show  antitumor  and
antimetastatic  effects  in  hepatocellular  carcinoma[92].  Pretreatment  of  multiple
myeloma (MM) CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway
inhibitor, can reverse bruceantin-induced effects on MM-CSC proliferation[93].

BMS-906024,  a  potent  pan-Notch  inhibitor,  showed  robust  efficacy  in  vivo  at
tolerated doses in Notch-driven leukemia and solid tumors[94]. In one study, BMS-
906024 enhanced the efficacy of paclitaxel in lung adenocarcinoma and improved the
patient’s response to combination therapy[34]. Notably, whether a specific chemical
class of GSIs is preferable with regard to safety and efficacy remains unclear, and the
ongoing clinical and preclinical studies will provide valuable data.

DLL4 is the only Notch ligand specifically expressed in endothelial cells. The DLL4-
mediated Notch pathway plays a vital role in regulating angiogenesis, especially in
regulating  embryonic  vascular  development  and  tumor  angiogenesis[95,96].  The
DLL4/Notch pathway in adult vasculature mainly inhibits the activity, migration,
and  differentiation  of  endothelial  cells,  thereby  impeding  angiogenesis  and
maintaining vascular stability[97,98].  Generally,  vascular endothelial  growth factor
(VEGF) induces DLL4 production in endothelial cells, which promotes the activation
of the Notch signaling pathway, downregulates VEGF3, and promotes endothelial cell
sprouting[99].  Therefore,  targeting  DLL4  with  monoclonal  antibodies  is  another
strategy to  block  Notch  signaling,  and this  concept  is  being  tested  in  the  clinic.
Enoticumab is a fully human IgG1 antibody to DLL4 in phase I clinical development
for the treatment of advanced solid malignancies. Intravenous enoticumab was found
to  have  promising  clinical  activity  in  phase  I  safety,  dose-limiting  toxicity,  and
pharmacokinetics studies in patients with solid tumors[100].  However, it should be
noted  that  chronic  treatment  with  anti-DLL4  monoclonal  antibodies  causes
hemangiomas in animal models[101].

Hedgehog signaling pathway and its inhibitors
The  Hedgehog  signaling  pathway  plays  a  significant  role  in  mammalian
development,  is  involved  in  the  regulation  of  cell  proliferation,  survival,  and
differentiation[102,103], and is responsible for the formation of the neural tube, axial bone,
hair,  and teeth[104-106].  The  Hedgehog gene  is  inhibited in  most  adult  tissues  and
involved in the maintenance and repair of only certain tissues. Abnormally activated
Hedgehog signaling directly  regulates  various growth factors  and promotes  the
proliferation and survival of tumor cells.

When the Hedgehog ligand (Hh) is absent, Patched (Ptch) inhibits the activation of
Smoothened (Smo), glioma-associated oncogene homolog (Gli) is suppressed by a
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Table 2  Agents targeting the Notch signaling pathway in clinical trials

Compound Target/mechanism Tumor type Highest phase Organization

MK-0752 γ-secretase inhibitor Breast cancer Phase I Merck

LY-900009 γ-secretase inhibitor Metastatic cancer/lymphoma Phase I Perrigo and Lilly

Crenigacestat Notch signaling inhibitor T-cell acute lymphoblastic
leukemia

Phase I/II Lilly

CB-103 Notch signaling inhibitor Solid tumors; hematologic
cancers

Phase I/II Cellestia Biotech

LY-3056480 Notch signaling inhibitor Sensorineural hearing loss Phase I/II Lilly

RO4929097 γ-secretase inhibitor Kidney cancer; pancreatic
cancer; metastatic cancer;
prostate cancer; glioblastoma
multiforme; metastatic
melanoma

Phase II SpringWorks Therapeutics

BMS-906024 Notch signaling pathway Adenoid cystic carcinoma Phase II Bristol-Myers Squibb

Nirogacestat γ-secretase inhibitor Desmoid tumors Phase II SpringWorks Therapeutics

Enoticumab Anti-DLL4 Advanced solid malignancies Phase I Regeneron and Sanofi

protein  complex  mainly  composed  of  suppressor  of  fused  (Sufu),  and  Gli  is
phosphorylated and unable to enter the nucleus. In the presence of Hh, Ptch is bound
by Hh, which relieves Ptch-mediated Smo inhibition. Activated Smo promotes the
dissociation of the Sufu and Gli complex, allowing Gli to enter the nucleus and trigger
downstream target gene expression, which results in the activation of the canonical
Hedgehog signaling pathway[107].  To date, the most successful drugs targeting the
Hedgehog signaling pathway are the three Smo inhibitors vismodegib, sonidegib, and
glasdegib, which have been approved by the Food and Drug Administration (FDA)
for  the  treatment  of  basal  cell  carcinoma  (BCC).  Meanwhile,  many  other  Smo
inhibitors are being clinically researched and have therapeutic effects on a variety of
tumors. In addition, Gli inhibitors and Shh ligand inhibitors are in the preliminary
stage of research.

Smo inhibitors: Smo is a major target for Hedgehog signaling pathway inhibitors.
Inhibiting  Smo  activity  can  directly  block  the  activation  of  the  downstream
transcription factor Gli and thus inhibit the expression of genes downstream of the
Hedgehog signaling pathway. However, Smo-specific inhibitors are prone to drug
resistance. Currently, resistance to two launched Smo inhibitors has been observed,
and  ubiquitous  toxic  side  effects  limit  their  application.  The  following  agents
targeting the Smo protein are under development in clinical trials (Table 3, Figure 4).

Applications  for  the  approval  of  vismodegib,  a  first-in-class  small  molecule
inhibitor of Hedgehog signaling, were filed by Genentech in the United States and the
E.U. in 2011 for the treatment of advanced BCC. In 2012, vismodegib was approved
by the FDA and launched. Phase II clinical development is ongoing for the treatment
of  breast  cancer,  gastrointestinal  cancer,  pancreatic  cancer,  chondrosarcoma,
keratocystic odontogenic tumor, medulloblastoma, and meningioma. This drug is also
in phase I/II clinical trials for the treatment of prostate cancer and sarcoma. Treatment
of HCC38 cells, a triple-negative breast cancer (TNBC) stem cell line, with vismodegib
significantly decreased TNBC cell proliferation, cell invasion, and mammosphere
formation while  inducing cell  apoptosis  by  inhibiting  the  protein  expression or
phosphorylation of downstream signaling molecules. Tumor formation and growth of
HCC1806  cells  (another  TNBC  stem  cell  line)  pretreated  with  vismodegib  are
effectively suppressed in xenograft mouse models. Treatment with vismodegib may
provide a novel alternative therapeutic strategy against TNBC that targets breast
CSCs (BCSCs), and it could provide promising insights for clinical applications in
patients with TNBC[108].

A Smo mutation (D473H) was identified in tumor samples from a medulloblastoma
patient who relapsed after an initial response to vismodegib. Acquired mutations in a
serpentine  receptor  with  features  of  a  G  protein–coupled  receptor  can  lead  to
vismodegib resistance in human cancer[109]. Overall, vismodegib could represent an
important treatment option for patients with advanced BCC.

Sonidegib, the second Smo antagonist developed by Novartis, was launched in the
U.S. in 2015 for the treatment of advanced BCC. Phase II clinical trials are ongoing for
the treatment of MM, and phase I/II clinical trials are underway for the treatment of
pancreatic adenocarcinoma, myelofibrosis, and essential thrombocythemia. A variety
of murine Smo mutations that lead to sonidegib resistance have been found in mouse

WJSC https://www.wjgnet.com July 26, 2019 Volume 11 Issue 7

Du FY et al. Targeting CSCs for thorough cancer treatment

404



Figure 3

Figure 3  Chemical structure of agents targeting the Notch signaling pathway in clinical trials.

models of medulloblastoma[110].
Glasdegib,  developed  by  Pfizer,  is  a  Hedgehog  pathway  inhibitor  that  was

approved and launched in the U.S. in 2018 for the oral treatment of newly diagnosed
AML. Pfizer is also conducting phase II  clinical trials on the treatment of myelo-
dysplastic syndrome and chronic myelomonocytic leukemia.

As single-target agents, the approved Smo inhibitors have common drug resistance
problems.  For  example,  Smo  mutations  in  the  tumor  tissue  of  patients  with
medulloblastoma cause vismodegib to lose efficacy. A variety of drug-resistant Smo
mutants were found in a mouse tumor model treated with sonidegib, which further
indicates  the  limitations  of  sonidegib  for  cancer  treatment.  To  overcome  drug
resistance and the side effects of traditional Smo inhibitors, novel Hedgehog signaling
pathway inhibitors must be developed.

Gli  inhibitors:  The  Gli  transcription  factor  is  the  terminal  component  of  the
Hedgehog signaling pathway, and it is also regulated by other important signaling
pathways.  Activation of  Gli1  and Gli2  promotes  tumor growth,  survival,  angio-
genesis, and drug resistance[111].

Arsenic  trioxide  (ATO)  is  an  FDA-approved  drug  for  the  treatment  of  acute
promyelocytic leukemia, and ATO was later discovered to be a Gli transcription factor
inhibitor and entered as such into phase II clinical trials[112]. Studies have shown that
ATO inhibits  the  Hedgehog  signaling  pathway by  directly  binding  to  Gli1  and
Gli2[113].  GANT-61 is another Gli inhibitor developed by the U.S. National Cancer
Institute that significantly inhibits DNA binding to Gli1 and Gli2[114]. GANT-61 can
induce the apoptosis of AML cells, inhibit cell proliferation, and enhance the cytotoxic
effect of cytarabine on cancer cells[115]. This drug is currently under preclinical study.

Other signaling pathways and inhibitors
In addition to the well-studied Wnt, Hedgehog, and Notch signaling pathways, the
BMP, Bmi, PI3K/Akt, and STAT signaling pathways also harbor abnormalities that
can lead to tumor development. The STAT family is a group of cytoplasmic proteins
that are activated by cytokine receptors, and they act as a transducer in the process of
receptor-mediated cytokine signaling, and subsequently, extracellular signals are
transmitted to the nucleus to ultimately regulate downstream gene transcription[116].
There are multiple subfamilies of the STAT family; for example, STAT3 signaling
regulates the self-renewal, differentiation, and apoptosis of CSCs[117]. Napabucasin
(BBI608) is a first-in-class STAT3 inhibitor in phase III clinical trials sponsored by
Sumitomo Dainippon Pharma for the treatment of metastatic colorectal carcinoma
and pancreatic  cancer  (Figure  5).  In  one  study,  BBI608  inhibited  stemness  gene
expression,  depleted  CSCs,  and  overcame  cisplatin  resistance  in  NSCLC[118].
Napabucasin is effective in mice as a monotherapy or in combination with other
agents.

In 2015, Li et al[119] demonstrated that BBI608 has strong anti-CSC effects in vitro and
in vivo in a broad range of cancer types. Zhang et al[120] confirmed that BBI608 is able to
kill prostate CSCs, inhibit CSC properties, and inhibit the expression of stemness-
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Table 3  Agents targeting the Smoothened protein in clinical development

Compound Target/mechanism Cancer type Highest phase Organization

Vismodegib (GDC-0449) Smo Basal cell carcinoma Launched Roche

Sonidegib (NVP-LDE225) Smo Basal cell carcinoma Launched Novartis

Glasdegib Smo AML Launched Pfizer

Patidegib Smo Basal cell nevus syndrome;
skin cancer

Phase II PellePharm

BMS-833923 Smo Leukemia Phase II Bristol-Myers Squibb

Taladegib Smo Esophageal cancer;
gastroesophageal junction
cancer; solid tumors; small
cell lung carcinoma

Phase I/II Ignyta

G-024856 Smo Basal cell carcinoma Phase I Roche

LEQ-506 Smo Advanced solid tumors Phase I Novartis

Smo: Smoothened.

related genes. Currently, BBI608 is being assessed in clinical trials, and the results
suggest that BBI608 is a potent anti-tumorigenic and anti-CSC drug in different tumor
types[118,121-123]. To further improve the pharmacokinetic properties of BBI608 and its
antitumor activity, our research team designed and synthesized a series of BBI608
derivatives that display stronger inhibitory activity than BBI608 in HepG2 cells[124].

B-cell-specific  Moloney  murine  leukemia  virus  integration  site  1  (Bmi-1)  is  a
member of the PcG family and a nuclear chromatin regulatory factor. The encoded
protein  plays  an  important  role  in  tumorigenesis[125].  The  Bmi-1  gene  is  highly
expressed  in  many  malignant  tumors  and  closely  related  to  tumor  invasion,
metastasis, and recurrence. Decreased Bmi-1 gene expression in embryos and adults
leads to defects in stem cell proliferation and self-renewal[126]. Bmi-1 is required for the
self-renewal and maintenance of acute myelocytic leukemia stem cells[127]. PTC-596 is
an oral Bmi-1 inhibitor in phase I clinical development for the treatment of female
reproductive system cancer. Studies using mouse xenograft models demonstrated that
PTC-596 inhibited leukemia cell growth in vivo while sparing normal hematopoietic
cells[128].

BMP, an important member of the transforming growth factor-β (TGF-β) family,
represents a class of secreted glycoproteins that induce ectopic bone and cartilage
formation,  and  it  is  involved  in  many  important  biological  processes,  such  as
embryonic development, cell differentiation, and organ formation[129]. BMP-7 has been
shown to reduce macrophage infiltration and tissue damage in animal models of
acute and chronic renal failure[130]. BMP-7 was originally approved in 2001 for the
treatment of the nonunion of long bone fractures secondary to trauma, and it has also
been studied in phase II/III trials for the treatment of periodontal disease.

The PI3K/Akt signaling pathway is important in various types of cells, in which it
regulates  cell  growth,  proliferation,  differentiation,  apoptosis,  and  cytoskeletal
rearrangement. Akt, a downstream molecule of PI3K, is a serine/threonine protein
kinase. The PI3K/Akt signaling pathway is both a convergence and divergence point
for many cell signals that regulate the phosphorylation of signaling molecules, and
this pathway engages in crosstalk with the BMP/Smad and Wnt/β-catenin pathways,
among  others.  Then,  downstream  signaling  affects  the  expression  of  nuclear
transcription  factors,  ultimately  regulating  cell  proliferation,  self-renewal,  and
multidirectional differentiation potential[130,131]. GDC-0084 (Figure 5), a small molecule
inhibitor of the PI3K/AKT/mTOR pathway, is being studied in a phase II clinical trial
for the treatment of glioblastoma multiforme (GBM). GDC-0084, which is distributed
throughout the brain and intracranial tumors, potently inhibits the PI3K pathway[132].
In vitro and in vivo experiments showed that GDC-0084 can inhibit human cutaneous
squamous cell carcinoma cell growth by blocking PI3K-Akt-mTOR and DNA-PKcs
signaling[133].

Adverse effects of inhibitors
ETC-159  has  shown  dose-limiting  toxicities,  including  hyperbilirubinemia  and
skeletal fragility fractures[134]. The preliminary results of the clinical phase I trial are
available,  and  they  showed that  PRI-724  results  in  tertiary  reversible  hyperbil-
irubinemia with dose-limiting toxicity. An open phase I/II clinical study involving
PRI-724 dose escalation in patients with advanced malignant myeloid blood diseases
is still ongoing[51].
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Figure 4

Figure 4  Chemical structure of agents targeting the Smoothened protein in clinical development.

For enoticumab, the common severe adverse effects (AEs) are fatigue, headache,
hypertension, and nausea[135]. However, six treatment-related serious adverse events
were reported in four patients: Brain natriuretic peptide increase, troponin I increase,
right  ventricular  dysfunction and pulmonary hypertension,  and left  ventricular
dysfunction and pulmonary hypertension[135]. One patient had a dose-limiting toxicity
of grade 3 vomiting and diarrhea[136]. Fragility fractures were reported at an ipafricept
dose of 20 mg/kg. The hypophosphatemia and decrease in weight are grade III AEs
associated with ipafricept treatment[137]. A dose-limiting toxicity of grade III mucosal
inflammation was observed at the 30 mg dose level of LY-900009[138]. When patients
were treated with crenigacestat, the most frequent related AEs included diarrhea,
vomiting, nausea, decreased appetite, fatigue, asthenia, and hypophosphataemia[139].
In  the  phase  I  clinical  trial,  dose  escalation  of  LY3056480  confirmed that  trans-
tympanic injection at the highest dose of 250 μg is safe and well tolerated and safety
issues were not observed[140]. Patients with glioma were treated with RO-4929097 in
combination with radiotherapy and temozolomide, and the results were positive, safe,
and  effective[141].  Treatment  with  BMS-906024  was  found  to  be  relatively  well
tolerated, with minimal diarrhea observed in the subjects[142].

Moreover, the AEs commonly observed in vismodegib-treated patients, including
muscle spasms, ageusia/dysgeusia, alopecia, weight loss, and fatigue, lead to poor
clinical  outcomes  because  of  the  decreased  quality  of  life  and  treatment
discontinuation[143],  and the more severe AEs can lead to death[144].  In some cases,
treatment  with  vismodegib  resulted  in  the  development  of  squamous  cell
carcinoma[145],  amenorrhea[146],  and  persistent  alopecia[147].  Patient  treated  with
vismodegib for one month can develop severe nausea, jaundice, and cholestasis with
significantly elevated BUN, creatinine, and liver enzymes[148].

Sonidegib  shows  the  same  issues  of  drug  resistance  and  AEs  as  vismodegib.
However, a phase I trial demonstrated that sonidegib treatment is well tolerated and
effective.  The  maximum  tolerated  dose  is  800  mg  administered  once  daily[149].
Common grade 3/4 hematological AEs are thrombocytopenia (91%), followed by
neutropenia  (84%)  and  anemia  (77%).  The  ClinicalTrials.gov  Identifier  is
NCT02129101,  and  the  treatment  is  under  examination.  Patients  treated  with
glasdegib develop some adverse events, such as dysgeusia, muscle spasms, alopecia,
decreased appetite,  increased blood creatinine phosphokinase,  constipation,  and
diarrhea[147].

Treatment with patidegib results in fatigue, muscle cramps, and rash[150]. A phase I
study demonstrated that BMS-833923 administered to patients with cancer was safe
and  well  tolerated  at  all  doses [151].  Adverse  events  related  to  napabucasin
administration have been mostly mild, although some patients have experienced
grade 3 gastrointestinal adverse events. More severe adverse events can be alleviated
by dose  reduction,  discontinuation  of  napabucasin,  or  medication  to  reverse  or
manage  symptoms[122].  Patients  developed fatigue,  hyperglycemia,  nausea,  rash
hypertriglyceridemia,  mucositis,  hypophosphatemia,  decreased  appetite,  and
diarrhea after treatment with GDC-0084[152].
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Figure 5

Figure 5  Chemical structure of napabucasin and GDC-0084.

OTHER METHODS FOR THE TREATMENT OF CSCS

In  addition  to  the  potential  pharmacological  inhibitors  targeting  CSC-related
signaling  pathways,  other  methods  of  targeting  CSCs  are  available,  such  as
nanoparticles, mitochondria targeting, autophagy, hyperthermia, and antibodies.

NDDS targeting CSCs
A NDDS with a variety of properties is often used for targeted delivery and sustained
release drugs[153]. Due to the strong phagocytic ability of tumor cells, abundant blood
vessels in diseased tissues, and large gaps in vascular endothelial cells, NDDSs are
more likely to enter the capillary wall of a tumor and become enriched in tumor
tissues, which provides a new method for eradicating CSCs. The nanocarriers are
small  sized,  have a large specific  surface area,  and present high surface activity,
degradation in vivo, good biocompatibility, and no immunogenicity; moreover, the
drug  loading  and  pharmacokinetic  properties  can  be  improved  by  surface
modifications to achieve targeted delivery and sustained release of drugs[154,155].

Liu  et  al[156]  prepared  the  paclitaxel-loaded  nanoparticles  modified  by  cell-
penetrating peptide R8,  which specifically  target  CSCs,  block angiogenesis,  and
reduce nutrient and blood supplement, thus leading to the suppressed proliferation of
glioma CSCs. Han et al[157]  delivered gemcitabine to BCSCs using hyaluronic acid
(HA)-modified  liposomes,  and  this  modification  improved  the  drug  stability,
prolonged  the  half-life,  enhanced  cell  toxicity  and  anti-tumor  metastasis,  and
inhibited cell clone formation.

Cui et al[158] synthesized a gelatinase-sensitive polymer nanocarrier that was loaded
with miR-200c and acted on gastric cancer cells, and their results indicated that gastric
cancer cells were significantly sensitized to radiotherapy. In addition, the expression
of CD44 was down-regulated, the number of BGC823 cells (CD44+) was decreased, the
cell invasion, metastasis, and anti-apoptosis ability were weakened, and the resistance
characteristics of CSCs were decreased[158]. Moreover, other NDDSs have been used for
targeted therapy of CSCs, such as nano-loaded genes, nano-loaded siRNA[159], and
nano-compound both drugs[160].

Targeting mitochondrion to inhibit CSCs
Changes in the mitochondria in CSCs, including morphological changes, abnormal
activation  of  signaling  pathways,  dysfunction,  reactive  oxygen  species  (ROS)
generation, and mitochondrial autophagy, are key to regulating the proliferation and
apoptosis of CSCs and represent one of the causes of anticancer therapy failure. CSCs
exhibited significant anaerobic glycolysis characteristics, such as increased expression
of glycolytic enzymes, increased production of lactic acid, and decreased or rested
mitochondrial function[161].  These characteristics are similar to those of stem cells,
suggesting that the mitochondrial glycolysis pathway plays a key role in regulating
the proliferation and apoptosis of CSCs.

Liu et  al[162]  reported that  CSCs could utilize the glycolytic  pathway to supply
energy induced by glucose and increase the expression of hexokinase 1 (HK-1), HK-2
and pyruvate dehydrogenase kinase 1 (PDK-1), which can prolong the life of CSCs.
Dichloroethyl ester can inhibit PDK phosphorylation of pyruvate dehydrogenase and
promote the conversion of pyruvate to Acyl-CoA, which converts mitochondrial
metabolism from glycolytic  to  oxidative  phosphorylation,  thereby reducing cell
proliferation, promoting apoptosis, and inhibiting tumor growth[163]. In addition to
producing ATP, mitochondria are the main site for ROS production. BCSCs have been
reported to have a higher ability to scavenge ROS than the corresponding tumor cells,
thereby maintaining ROS at a relatively low level, although BCSCs die when the ROS
levels are too high[164]. Kawano et al[165] found that knocking out the CD44 variant gene
could reduce the defense ability of CSCs against ROS and enhance the killing ability
of CD44 variant strongly positive cells treated with cisplatin but not CD44 variant
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weakly positive cells. Increasing the ROS level and destroying the protective effect of
ROS on CSCs may also offer an alternative method for cancer treatment[166].

Autophagy and CSCs
Over  the  past  several  years,  autophagy  has  emerged  as  a  requirement  for  the
maintenance  of  stemness  in  both  normal  tissue  stem  cells[167]  and  CSCs[168,169].
Autophagy plays a vital role in promoting and inhibiting two different effects in
different stages of tumor and tumor development; therefore, activation and inhibition
of  autophagy  could  improve  the  therapeutic  effects  for  tumors[170].  Autophagy
maintains the function of different types of stem cells, such as microenvironmental
homeostasis and stem cell characteristics[171].

Some autophagy-related genes promote the survival of CSCs in the autophagy
process. Gong et al[172] discovered that Beclin1 and autophagy are also essential for
CSC maintenance and tumorigenesis in vivo. A key role for autophagy in maintaining
BCSCs has been identified according to two different shRNA screens, with Beclin-
1/ATG6 identified from an shRNA screen for genes that modulate the plasticity of
BCSCs[173] and ATG4A identified from a screen for genes required for mammosphere
formation[174].  Damage-regulated  autophagy modulator  1  (DRAM1)  and P62  are
abundantly expressed in adult glioblastoma, and glioma stem cells are regulated in
biological metabolism, tumor migration and invasion by specific siRNA acting on
DRAM1  and  P62  proteins[175].  When  knocking  out  LC3  and  ATG12  genes,  the
CD44+/CD24-/low  BCSCs are  inhibited.  The autophagy flux of  non-adherent  cells
(CD44+/CD24-/low) in TNBC is higher than that of adherent cells, and the expression
of CD44+/CD24-/low in TNBC is decreased after treatment with the autophagy inhibitor
chloroquine[176]. Jiang et al[177] found that CSCs from malignant gliomas cause cell death
due  to  the  accumulation  of  autophagy-related  proteins  and  autophagosomes.
Similarly,  the  activation  of  autophagy  under  hypoxic  conditions  promotes  the
dedifferentiation  of  non-pancreatic  CSCs  into  stem-like  cells,  suggesting  that
autophagy can affect the source transformation process of CSC[178].

Because autophagy changes the sensitivity of CSCs to conventional treatment or
directly destroys cells using the toxicity produced by CSC autophagy, autophagy
could be used as a treatment for CSCs. Conventional therapy presents difficulty in the
specific killing of tumor cells and shows many negative effects in patients. Although
autophagy therapy has milder effects on normal cells than conventional therapy, it
may also have unknown effects that remain to be explored.

Hyperthermia for CSCs
As a curative treatment for cancer, hyperthermia is attracting increasing attention and
recognition from doctors and patients. In hyperthermia treatment, tumor tissue is
directly heated through ultrasound, microwave, radiofrequency, infrared, visible
light, alternating magnetic fields, or heat-generating substances. This therapy does not
include ionizing radiation and thus avoids the damage from radiation to patients and
operators and pollution to the environment.

Tumor cells are more sensitive to heat, and the tumor area radiates more slowly;
therefore, the temperature in the tumor area can be changed by hyperthermia, which
leads  to  the  death  of  tumor  cells.  At  present,  the  temperature  range  of  the
hyperthermia method is 42-45 °C and the temperature of the thermal ablation is above
65 °C[179,180]. Hyperthermia can enhance the expression of apoptotic genes, such as P53
and FAS, thereby blocking the cell  cycle,  inhibiting tumor cell  proliferation,  and
leading to tumor cell apoptosis[181]. The expression of heat shock protein is increased
during hyperthermia, which stimulates the body's anti-tumor immune response[182].
The endothelial cells of the tumor microvessels proliferate and are more sensitive
under heat; thus, the microvessels in the tumor tissue are more susceptible to heat
damage than those of normal tissues.

Hyperthermia enhances the responses of the immune system to cancer, such as by
up-regulating the homing of immune cells and the function of adhesion molecules on
both immune cells and endothelial cells, activating cytotoxic T cells, dendritic cells,
and natural killer cell, and inhibiting immune suppression[183]. As an adjunct to cancer
therapy,  hyperthermia  plays  an  increasingly  important  role  in  the  treatment  of
tumors [184].  By  using  hyperthermia  in  combination  with  chemotherapy [185],
radiotherapy[186], immunotherapy[187], or surgery[188], the dose of these therapies may be
reduced to ease their side effects without reducing their therapeutic effects.

The AEs of acute or chronic periods of regional hyperthermia do not develop often
and are usually minor, and they include skin burns and pain; however, these events
usually heal spontaneously[189]. Overall, hyperthermia is considered an alternative
therapeutic method when it is used appropriately.

Immunotherapy targeting CSCs
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The CD44 receptor is a specific tumor antigen located on the surface of CSCs, and
hyaluronan (HA) is the ligand for all CD44 receptors or subtypes. CD44 receptor-
specific antigens play an important role in CSCs. Utilizing the monoclonal antibody
MEN-85 that binds to the C-terminus of the hyaluronate-binding domain of CD44
causes a conformational rearrangement that results in the CD44 receptor detaching
from the surface of CSCs, thereby blocking the signaling pathway of HA-CD44[190].
CD44 is a known marker of CSCs, and the CD44 gene splice isoforms are CD44s and
CD44v. Li et al[191]  reported that the CSC marker CD44s is up-regulated in human
pancreatic tumors and associated with patient survival time. CD44s is necessary for
the initiation, growth, metastasis, and postradiation recurrence of xenograft tumors in
mice. Antibodies targeting the CD44 receptor can eliminate bulk tumor cells and CSCs
from the tumors. CD44s is the predominant isoform expressed in BCSCs. Elimination
of  the  CD44s  isoform  impairs  CSC  traits.  However,  manipulating  the  splicing
regulator epithelial splicing regulatory protein 1 to shift alternative splicing from
CD44v to CD44s leads to the induction of CSC properties[192]. These results suggest
that  alternative splicing provides functional  gene versatility  that  is  essential  for
different  cancer cell  states  and thus cancer phenotypes.  CSCs can also express a
variety of specific antigens; for example, the CD44 receptor can also be expressed in
lung cancer cells as well as BCSCs[193]. BCSCs not only express CD44 receptor but also
express aldehyde dehydrogenase (ALDH)[194].

The Notch signaling pathway is abnormally active in the tumor microenvironment
(TME). Inhibitor targeting that blocks signal transmission can reduce the number of
CSCs and inhibit the development of tumors[195]. Blocking Wnt signaling can reduce
the expression of CD44 and ALDH on the CSC surface and inhibit tumor self-renewal
and metastasis[196]. ALDH1 is widely distributed in humans and highly expressed in
stem cells of normal tissues as a marker of normal stem cells. Notably, the activity of
ALDH1 is  increased in MM and myeloid leukemia[197].  Moreover,  ALDH1 is  also
expressed in most cancer tissues at different levels, such as breast cancer, lung cancer,
and colon cancer[198].

In 2019, Chen et al[199] demonstrated that the depletion of ubiquitin-specific protease
9X (USP9X) markedly downregulated ALDH1A3, thereby resulting in the loss of the
self-renewal and tumorigenic capacity of mesenchymal (MES) glioblastoma stem cells
(GSCs). Furthermore, the USP9X inhibitor WP1130 induced ALDH1A3 degradation
and showed marked therapeutic efficacy in MES GSC-derived orthotopic xenograft
models.

Humanized anti-CD47 antibody Hu5F9-G4 can safely and effectively treat five
invasive childhood brain tumors in mice[200].  Hu5F9-G4 demonstrated therapeutic
efficacy in vitro and in vivo in patient-derived orthotopic xenograft models; notably,
Hu5F9-G4 showed minimal activity against normal human neural cells. Advani et
al[201] confirmed that the macrophage checkpoint inhibitor Hu5F9-G4 synergized with
rituximab can safely and effectively eliminate aggressive and indolent lymphoma,
and no clinically  significant  safety  events  were  observed in  this  study.  Liu  and
coworkers indicated that CpG oligodeoxynucleotide, a toll-like receptor 9 agonist,
combined with CD47 inhibitors can rapidly induce tumor shrinkage and prolong
survival in mice[202]. It is worth noting that a number of new drugs targeting CD47 are
undergoing clinical trials, such as AO-176, CC-90002, NI-1701, IBI118, and TI-063.
Therefore,  macrophage  immunological  checkpoint  blocking  therapy  (e.g.,  CD47
antibody) is expected to provide a new cancer immunotherapy strategy.

Targeting the CSC microenvironment
Although tumors initiate from oncogenic changes in a cancer cell, subsequent tumor
progression and therapeutic responses depend on interactions between the cancer
cells and the TME[203,204]. The cells and molecules in the TME are in a dynamic process
that  leads  to  a  large  number  of  immunosuppressive  cells  (e.g.,  myeloid-derived
suppressor cells, regulatory cells, and tumor-associated macrophage), and a large
number of inflammatory related factors (e.g., chemokines, TGF-β, and interleukins)
assemble together in the TME. Then, they jointly promote tumor immune escape,
tumor growth, and metastasis[205].

Among the identified CXC chemokine receptors (CXCRs), CXCR4 is most closely
related to tumor cells, and it was first discovered as a co-receptor of HIV. Until now,
CXCR4 has been found in a  variety of  cancers,  including breast  cancer,  prostate
cancer,  lung cancer,  colon cancer,  and MM[206].  The  overexpression of  CXCR4 is
associated with a poor prognosis in GBM. Wu et al[207] indicated that anti-CXCR4 and
anti-programmed  cell  death  protein  1  (PD-1)  combination  immunotherapy  can
modulate  tumor-infiltrating populations of  the glioma microenvironment.  Some
CXCR4 antagonists (e.g., BL-8040 and X4P-001-IO) are used in combination with PD-
(L)1  drugs,  such as  Keytruda,  Tecentri,  and Opdivo.  CXCL12/CXCR4-mediated
desmoplasia  in  metastatic  breast  cancers  (mBCs)  promotes  immunosuppression;
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therefore, it is a potential target for overcoming therapeutic resistance to immune
checkpoint blockade in mBC patients[208,209].

Neutrophils are first-responders to sites of infection and tissue damage[210]. Powell
et  al[211]  demonstrated  that  the  chemokine  receptor  CXCR1 promotes  neutrophil
recruitment, CSC proliferation, and neoplastic mass formation. Therefore, neutrophil
recruitment signaling pathways, such as CXCL8-CXCR1, have the potential for use as
targets for anti-cancer therapies. Danhier et al[212] utilized the acidic TME as a target of
nano-theranostics to enable cancer-specific imaging and therapy, and this approach
showed advantages over conventional tumor targeting strategies. However, the acidic
TME not only plays an essential role in the initiation, progression, and metastasis of
tumors but also participates in the induction of treatment resistance. The TME is
related with oncogenesis, host genetics, the microbiome, and immune cell activity[213].
More  novel  therapies  targeting  CSCs  and  the  TME  require  further  exploration,
comprehensive analysis, and consolidation of both clinical and experimental data.

CONCLUSION
In recent decades,  numerous new agents and methods for treating patients with
cancer,  such as CSC-related singling pathway inhibitors,  monoclonal  antibodies,
hyperthermia, or NDDSs, have become available or are under clinical trial. The CSC
hypothesis  has  provided  an  explanation  for  the  failure  of  traditional  cancer
treatments. Targeting CSCs via the Wnt, Hedgehog, and Notch signaling pathways
has promise in preventing disease recurrence. However, the development of such
agents is hindered by many challenges. It is now clear that all signaling pathways do
not function in isolation but rather as a coordinated network. The output from the
entire  signaling  network  regulates  the  phenotype  of  CSCs.  Therefore,  the
development  of  CSC  inhibitors  will  require  an  understanding  of  the  stem  cell
signaling network. For example, combination therapy could pave the way for new
and innovative strategies for the pharmacological treatment of CSCs to increase the
efficacy and decrease the toxicity of individual agents.

However, NDDSs can effectively utilize the microenvironmental properties of CSCs
and  efficiently  deliver  anti-tumor  drugs  to  tumors,  which  can  improve  the
chemotherapy effect, reduce the toxicity and AEs, and improve patient compliance.
Therefore, NDDSs may provide a novel alternative therapeutic strategy targeting
CSCs. In addition, immunotherapy that targets the surface markers expressed by
CSCs (e.g., CD47, ALDH1, and CD44) demonstrates a remarkably inhibiting effect on
CSCs. Notably, a number of new drugs targeting CD47 are undergoing clinical trials,
such  as  AO-176,  CC-90002,  NI-1701,  IBI118,  and  TI-063.  Hence,  macrophage
immunological checkpoint blocking therapy is expected to provide a new method for
cancer immunotherapy.

As for the optimal time for the use of a CSC-specific therapy, there is no related
reference to clarify this key issue. However, once the related cancer is identified, the
therapy  targeting  CSCs  can  be  concurrently  proceeded  with  neoadjuvant
chemo/radiotherapy. Generally, conventional chemotherapy can only inhibit tumor
growth and lead to drug resistance, but cannot kill CSCs. However, the key to cancer
treatment is how to deracinate CSCs. Therapy targeting CSCs can effectively remove
CSCs  and  avoid  drug  resistance.  Moreover,  synergy  therapy  with  chemo/
radiotherapy may reduce the dosage and AEs while not changing the physiological
effect. However, when and how to use targeting CSCs to treat related cancers requires
clinical trials to determine.

Research  on  CSC-related  signaling  pathways  provides  new  avenues  for  the
development of related drugs. With further developments in science and technology,
CSCs will eventually be fully understood and cancer development and progression
and  the  underlying  signal  regulatory  mechanisms  will  be  thoroughly  clarified,
thereby laying the foundation for the treatment of malignant tumors. In addition,
clarifying the considerable crosstalk between cell signaling pathways is critical for
designing effective therapeutic approaches. The focus of future trials should be on the
use of combination therapies that affect multiple pathways in the tumor. However,
this field remains in its infancy, and considerable research will be required to produce
mature products. However, for the first time in medical history, we have the tools to
understand the fate of tumor cells and target them therapeutically.
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