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Abstract
Colorectal cancer (CRC) is the third most common cancer in men (746000 cases
per year) and the second most common cancer in women globally (614000 cases
per year). The incidence rate of CRC in developed countries (737000 cases per
year) is higher than that in less developed countries (624000 cases per year). CRC
can arise from genetic causes such as chromosomal instability and microsatellite
instability. Several etiologic factors underlie CRC including age, diet, and
lifestyle. Gut microbiota represent a proven cause of the disease, where they play
pivotal roles in modulating and reshaping the host epigenome. Several active
microbial metabolites have been found to drive carcinogenesis, invasion, and
metastasis via modifying both the methylation landscape along with histone
structure in intestinal cells. Gut microbiota, in response to diet, can exert both
beneficial and harmful functions in humans, according to the intestinal balance of
number and types of these bacteria. Although the intestinal microbial community
is diverse among individuals, these microbes cumulatively produce 100-fold
more proteins than the human genome itself, which calls for further studies to
elaborate on the complicated interaction between these microorganisms and
intestinal cells. Therefore, understanding the exact role that gut microbiota play
in inducing CRC will help attain reliable strategies to precisely diagnose and treat
this fatal disease.

Key words: Colorectal; Cancer; Colorectal cancer; Epigenetics; Gut; Microbiota

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Colorectal cancer is serious disease that affects males and females late in their
lives. Several etiologic factors trigger colorectal cancer; however, the gut microbiome is
responsible of most of the cases. Gut bacteria can produce a variety of chemical
compounds that affect intestinal cells and might transform them into malignant ones. In
this review, we describe the main mechanisms by which gut microbiota exert these
functions.
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INTRODUCTION
Colorectal  cancer  (CRC)  is  one  of  the  primary  causes  of  cancer-related  deaths
globally[1].  It  occurs  as  a  result  of  complicated  sequences  involving  mutation
accumulation that is either genetic or epigenetic[2]. The process of CRC carcinogenesis
is a quite slow, starting with minor inflammation followed by adenomatous polyps in
the epithelium, and finally adenocarcinoma[3].  Given the crucial role of epigenetic
changes in developing CRC, 95% of cases are sporadic i.e. appear in patients with no
family history for the disease. Meanwhile, minor ratio (3%) is attributed to hereditary
nonpolyposis CRC, and 2% of cases are caused by other hereditary disorders such as
MYH-associated polyposis and familial adenomatous polyposis[2,4].

Microorganisms occupy almost every part of the human body, armed with a huge
number of genes, where it could interact, modulate, or disrupt a wide array of human
genes especially in colonic cells[5]. Interestingly, the human microbiome encodes for
approximately 100-fold more proteins than the human genome itself. This microbiota
comprise 1000 to 1500 bacterial species, and the composition of the microbiome is
significantly diverse among individuals[6]. These species belong to just a few phyla:
Firmicutes, Bacteroidetes (most prevalent), Proteobacteria, Verrucomicrobia, Actinobacteria,
Fusobacteria, and Cyanobacteria[7]. Although distribution of the microbiota in terms of
types  and  number  is  common  in  healthy  individuals,  it  differs  significantly  in
diseased persons. In addition to bacteria that compose the gut microbiome, eukaryotic
fungal species have recently been found to co-exist with bacterial species, the major
component of the microbiome[8].

It is well established that gut microbiota play critical roles in the progression of
CRC either via  their metabolites or interaction with their host intestinal epithelial
cells[9].  Imbalance  of  this  microbiota  has  been  associated  with  several  disorders
including inflammatory bowel disease and CRC[10]. Nonetheless, several studies have
related the changes in microbiota to a cause of disease, while others have indicated
that  these  changes  are  merely  a  result;  however,  this  issue  demands  further
investigation[11].  In this review, we highlight the recent studies that addresses the
causal link between gut microbiota and CRC onset and progression. Meanwhile, the
epigenetic changes underlying CRC and its microbial root will also be described.

CRC
CRC is one of the most prevalent malignant tumors and the third most common cause
of cancer-related death worldwide[12].  It  is the third most common malignancy in
males and the second in females,  with a lifetime risk of about 6%[13].  Being well-
developed, CRC can metastasize -even after operation- to distant organs such as the
liver and lungs, forming secondary CRC[14]. The common risk factors underlying CRC
involve genetics[15], environmental pollution[16], diet[17], age[18], alcohol consumption[19],
smoking[20], obesity[21], and physical inactivity[22], with gut microbiota standing alone as
a  potent  risk  factor[23]  (Figure  1).  It  is  well  established  that  CRC  arises  due  to
accumulation of genetic mutations. Large studies showed that approximately 13000
mutations in 67 genes correlate with CRC. Among them, only 12 genes were found to
be closely related to CRC[24]. Different types of genomic instability predispose patients
to CRC including microsatellite instability (MSI), in which frequent insertions and
deletions are prevalent, and chromosomal instability (CIN), in which gain or loss of
chromosomes prevail[25]. CIN is responsible for about 85% of CRC cases, where loss of
chromosomal segment/arm includes 15q11-q21, 17p12-13, and18q12-21 and gain of
chromosomal segment/arm includes 1q32, 7p, 7q, 8q, 13q, 20p, and 20q[26,27].

Several genes are directly correlated with CRC. Examples include APC in which
inactivation leads to triggering the Wnt signaling pathway to initiate colon polyps
which can be benign (e.g., hyperplastic polyp), pre-malignant (e.g., tubular adenoma)
or malignant (e.g., colorectal adenocarcinoma)[28]. Furthermore, transforming growth
factor receptor 2 TGFBR2 is involved in almost 30% of CRC cases. The downstream
effector of this genes, i.e. KRAS was found to be activated in 55%-60% of CRC cases.
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Figure 1

Figure 1  The way gut microbiota induces CRC. Several factors affecting the normal behavior of microbiota such as low fiber and high-fat diets. This change might
affect the number/types of gut bacteria or cause them to express different kinds of proteins and metabolites. A category of these metabolites could be oncogenic
(oncometabolites) and trigger inflammation in gut epithelial cells leading to cancer initiation. Bacterial metabolites also could enhance cancer spreading and
metastasis. CRC: Colorectal cancer.

Mismatch repair genes such as MLH1, MSH6, MSH2, and PMS2 causing frameshift
mutations were found to induce MSI, triggering the development of CRC[29] (Figure 2).

Epigenetic regulation of gene expression analysis is a validated tool to correlate
gene expression changes with cancer development[2,30]. Through the last three decades,
solid common knowledge has been established to indicate that the perturbation of
epigenetic mechanisms leads to cancer initiation and progression[29,31]. Identification of
CRC  epigenetic  changes  has  revealed  that  almost  all  CRCs  have  abnormally
methylated genes. Although rare data have been provided to highlight the pattern of
specific  histone  modifications  in  CRC,  certain  histone  modifications  (such  as
acetylation, methylation, and phosphorylation) have been found to work in harmony
with DNA methylation to regulate CRC-related gene expression that is involved in
cancer initiation and progression[1,32]. Therefore, a deep understanding of epigenetic
changes  related  to  CRC  pathogenesis  might  help  develop  epigenetic-based
biomarkers for CRC diagnosis and prognosis, and hence, epigenetic-based therapy[29].

GUT MICROBIOME

Function
In the normal adult person, the gut microbiota comprise approximately 1014 bacterial
cells  that live in commensalism with the host,  where they substantially facilitate
various aspects in the host health and disease[33]. The normal gut microbiota are rich in
anaerobic bacteria, which are 100- to 1000-times more than aerobic and facultative
anaerobic bacteria, respectively[34]. The colon has a reductive environment devoid of
oxygen, which allows Bacteroidetes and Firmicutes to be the dominant phyla followed
by Actinobacteria and Verrucomicrobia[35]. For bacteria, the colon represents a suitable
niche as it provides them with elevated pH, nutrients, and low concentration of bile
salts and pancreatic secretions. These conditions, indeed, are favored by bacteria to
flourish and proliferate[10]. Commensal bacteria start colonization of the host during
birth and continue to variate in number and type along with the host development[36].
It  is  well  established that our gut microbiome is responding to any dietary shift,
where switching from polysaccharides-rich diets to that high in animal fat eventually
leads to a hasty shift in the gut microbiome[37]. Commonly in the gut, the prevailed
microbial product is lipopolysaccharide (LPS), produced by Gram-negative bacteria,
function to stimulate the innate immunity, thus, protecting against inflammation that
leads to cancer[38] (Table 1).

Protective role
Gut microbiota is crucial for numerous characteristics of host biology[10,39]. They enable
the host to digest and metabolize indigestible polysaccharides[40]. The gut microbiota
plays an important role in maintaining gut homeostasis[41]. Furthermore, gut microbial
community also participates effectively in the normal cellular proliferation. To keep
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Figure 2

Figure 2  Different pathways through which CRC develops. CRC: Colorectal cancer.

its habitat for millions of years, several gut microbiota essentially protect the host
against  CRC[42].  Reports  have indicated that  enterotoxigenic  Bacteroides  fragilis  is
capable  of  induce  apoptosis  in  CRC  cells[42].  Generally,  diet  is  metabolized  by
microbiota into potent oncometabolites and tumor-suppressive metabolites. Whereas,
the same microbiota can digest fiber into short-chain fatty acids (SCFAs)[43]. It is well
known that SCFAs have anti-inflammatory properties and can increase the level of
colonic regulatory T cells (Tregs) and protect the host against colitis[43,44]. The most
common SCFAs produced in the gut are acetate, propionate, and butyrate[45]. Butyrate
is one of the important sources of energy, where it provides the cells with 5%-15% of
its caloric requirements. Faecalibacterium prausnitzii and Eubacterium rectale are the
main  gut  bacterial  species  that  produce  butyrate[44,46].  Butyrate  controls  cell
proliferation, differentiation, and apoptosis among other functions in colon cells[23,47]. It
exerts also a preventive role where it ameliorates the harmful effects of N-nitroso
compounds, a product that accumulates in the colon upon intake of heat-treated and
processed meat[48] (Figure 3). It has been indicated that Clostridium species enhances
Treg  cell  abundance  by  increasing  the  production  of  potent  anti-inflammatory
molecules such as cytokine interleukin 10 (IL-10)[49].  Lactic acid bacteria have also
shown protective  properties  against  CRC via  different  mechanisms that  include
strengthening  the  mucosal  barrier  and  altering  luminal  secretions,  resulting  in
underpinning of the host immune system. Ursodeoxycholic acid (UDCA, ursodiol) is
a metabolic byproduct of intestinal bacteria, with a chemical structure that resembles
deoxycholic  acid  (DCA)[50].  While  DCA  promotes  the  initiation  of  CRC,  UDCA
function to prevent the disease. It was reported that UDCA inhibits the expression of
cyclooxygenase-2 (COX-2) by Ras-dependent and RAS-independent mechanisms in
CRC cells[51]. UDCA prevents colon cells from the harmful effect of DCA via inhibiting
the DCA-induced extracellular signal-regulated kinase and Raf-1 kinase activity and
the activation of epidermal growth factor receptor (EGFR)[52].

Pro-carcinogenic role
Microbiota-mediated carcinogenesis is a complex process that takes place through
changing  host  cell  proliferation,  influencing  the  host  cell  immune  system,  and
metabolizing  dietary  factors[53].  A  plethora  of  research  has  suggested  that  an
imbalance in normal intestinal microbiota can trigger inflammatory conditions by
producing carcinogenic metabolites that lead to cancer formation, and about 16% of
human  cancers  are  triggered  by  bacteria[36,53].  Gut  bacteria  can  attack  intestinal
epithelial cells to cause inflammation, that in turn, increase the risk of developing
CRC[54].  For CRC to occur,  the microbiota-host  interaction must be dysregulated,
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Table 1  Gut microbiota are involved in CRC carcinogenesis

Microorganism Role in CRC initiation/progression Ref.

Lactobacillus casei BL23 Immunomodulatory effect via downregulation of
the IL-22, and an antiproliferative effect, via
upregulation of caspase-7 and caspase-9

[109]

Escherichia coli NC101 Production of colibactin that induces CRC
[110]

Fusobacterium nucleatum Activation of β-catenin signaling and induction of
oncogenic gene expression that promotes growth
of CRC cells via the FadA adhesion virulence facto.
It produces also the autotransporter protein, Fap2,
that has been shown to potentiate the progress of
CRC via inhibiting immune cell activity

[111]

Eubacterium rectale Production of butyrate to induce IL-10, the anti-
inflammatory cytokine

[112]

Bacteroides fragilis Production of Enterotoxigenic Bacteroides fragilis
(ETBF) toxin that promotes CRC by modulating
the mucosal immune response and inducing
epithelial cell changes. ETBF stimulates E-cadherin
cleavage and facilitates cell tumor metastasis

[113]

Streptococcus bovis Triggering of inflammations, bacteremia, and
endocarditis, that leads ultimately to colorectal
cancer

[114]

Clostridium septicum Production of alpha toxin that binds GPI-anchored
cell surface receptors including the human folate
receptor as well as the neuronal molecules
contactin and Thy-1 (CD90)

[115]

Enterococcus faecalis Damaging the colonic epithelial cell DNA
[116]

Bifidobacterium Production of β-galactosidases, which has
antitumor activity

[117]

Helicobacter pylori Induction of inflammatory responses, alteration of
gut microflora and release of gastrin, which may
contribute to tumor formation

[118]

Faecalibacterium prausnitzii Production of butyrate to induce IL-10, the anti-
inflammatory cytokine that protects against cancer
formation

[119]

Enterotoxigenic bacteroides Induction of early-stage carcinogenic, that might
lead to early colorectal carcinogenesis

[113]

Clostridium nexile Contribution to the anticancer effect of
Pseudomonas aeruginosa. It improves also
malnutrition in infants

[120]

Fusobacterium varium Activate the E-cadherin/β-catenin signaling
pathway and association with epigenetic
phenotype, such as microsatellite instability and
hypermethylation, via its strong adhesive and
invasive abilities resulting in malignant
transformation of epithelial cells

[121]

Actinomyces odontolyticus Causes colon actinomycosis only when the
epithelial barrier was perished

[122]

Veillonella dispar Might be able to enhance the dosage response to
CRC chemotherapeutic agents or reduce the side
effects of these drugs

[123]

CRC: Colorectal cancer; ETBF: Enterotoxigenic Bacteroides fragilis.

resulting in disruption of cellular homoeostasis[55]. The major component of the gut
immune system, Peyer’s patch, is robustly influenced by gut microbiota[56]. The host
diet  can  trigger  gut  microbiota  to  be  involved  in  the  early  stages  of  CRC
carcinogenesis[57]. Upon metabolism of saturated fatty acid- and sugar-rich diets, gut
bacteria produce harmful procarcinogenic products including polyamines hydrogen
sulfide, secondary bile acids such as DCA and lithocholic acid (LCA), and reactive
oxygen species (ROS), which induce chronic inflammation, and hence elevate the
susceptibility of cells to develop CRC[58]. DCA is a metabolite of the gut microbiota
that  induces  cancer  stemness  by  regulating  the  muscarinic  3  receptor/Wnt
intracellular signaling pathway[59]. It can also trigger the production of Nur77 protein,
which is  positively correlated with CRC when upregulated[60].  Meanwhile,  DCA
induces CRC via  downregulation of miR-199a-5p that degrades CAC1,  the tumor
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Figure 3

Figure 3  Different functions of butyrate in protecting against CRC. CRC: Colorectal cancer; HDAC: Histone
deacetylase.

suppressor gene plays a role in CRC[61]. LCA (aka 3α-hydroxy-5β-cholan-24-oic acid), a
secondary bile acid synthesized by gut microbiota, is verified to a promoter of CRC[62].
Gut bacteria produce LCA by utilizing DCA[63].  Both LCA and DCA can enhance
cancer stemness[64]. Furthermore, LCA and DCA activate the EGFR signaling pathway,
inducing  DNA damage,  and  causing  oxidative  stress,  apoptosis,  mutation,  and
activation of the protein kinase C pathway[59].

Trimethylamine (TMA) is solely synthesized by gut microbiota (in humans) from
various dietary nutrients including choline and carnitine (found in red meat)[65]. It
reacts with flavin monooxygenase to produce trimethylamine-N-oxide (TMAO), a
microbial metabolite involved in CRC progression[66]. A high incidence rate of CRC
was noticed in omnivorous individuals, as they produce more TMAO compared to
vegans and vegetarians who show low incidence rate[67].  The genetic pathway by
which TMAO triggers CRC remains unclear.

Furthermore, specific gut bacteria such as Enterococcus faecalis was found to induce
COX-2, that generates pro-proliferative signals through prostaglandin E(2) (PGE2)[68].
Several Gram-negative bacteria produce LPS that activates TLR4, COX-2, and then
PGE2 leading to inhibition of programmed cell death and increase cell proliferation[69].
Moreover,  there  is  an  increased  resistance  to  macrophage  killing  and  MAPK
activation in those who have the pks (polyketide synthase) island in E. coli isolated
from CRC patients[70]. Activated TLR also enhances angiogenesis through MAPK and
NF-κB signaling networks[71] (Figure 4).

Other CRC-related bacterial metabolites were highlighted including fragilysin[72].
This extracellular 20 kDa zinc-dependent metalloproteinase metabolite, produced by
B. fragilis, could hydrolyze the extracellular domain of E-cadherin and activate the β-
catenin nuclear signaling, leading to induction of CRC[73]. Meanwhile fragilysin can
damage  the  tight  junction  of  the  intestines,  increases  intestinal  permeability[74].
Colibactin is a bacterial-derived genotoxin first reported in 2006 by Nougayrede and
colleagues. It is a hybrid polyketide-non ribosomal peptide produced through an
intricate biosynthetic mechanism and encoded by the pks pathogenicity island[75]. E.
coli  strains  harboring  this  pks  island  were  found  to  be  associated  with  CRC[76].
Moreover, colibactin, a kind of bacterial toxin synthetized by the pks genomic island
can trigger chromosomic instability and DNA damage that might lead eventually to
CRC[77].

GUT MICROBIOTA AND EPIGENETIC MODIFICATION
Several epigenetic changes are common in CRC including DNA methylation, histone
modification, and miRNA-mediated post-transcriptional regulation[28,78]. Abnormal
epigenetic modifications (AKA epimutations) occur in the promoter regions of tumor-
suppressor genes and proto-oncogenes. These epimutations were reported in several
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Figure 4

Figure 4  Different gut microbiota generate different oncometabolites. Bacteroides expresses specific signaling
substances to activate toll-like receptor 2 (TLR 2), which functions in two different ways; activation of FOX3 to trigger
Treg activation leading to inflammation. The other way is the activation of T helper 17 cells that also triggers
inflammation. Flagellin, a product of flagellated bacteria, activates also TLR 5 to activate innate lymphoid cells 3 and
then IL 17 and 22 that initiate inflammation. TLR 5 also works on nuclear factor κB to activate miR-21 that has a role
in initiating cancer carcinogenesis (CRC). Meanwhile, Fusobacteria can stimulate a specific type of TLR that activates
nuclear factor of activated T cell via calmodulin-based calcineurin to initiate CRC. CRC: Colorectal cancer; IL:
Interleukin; ILC: lymphoid cells; NF-κB: Nuclear factor-κB; NFAT: Nuclear factor of activated T cell; TLR: Toll-like
receptor; Treg: T regulatory cell.

malignancies  including  CRC,  where  many  genes  such  as  MLH1,  LKB1,  APC,
p16INK4a, and GATA4 represent common targets[2,40,79]. Microbial community in our
guts are armed with an arsenal of genes that produces millions of proteins, let alone
their outpouring of metabolites[67,80]. This microbiota produces low-molecular-weight
substances  that  interact  within  the  human cells  with  different  targets  to  trigger
genomic  and  epigenomic  changes[81].  Research  teams  everywhere  highlight  the
association between gut microbiota and human diseases;  thus,  all  these diseases
should  be  revisited  once  again  to  elucidate  the  actual  role  played  by  microbial
community. Being very stable, DNA might not be affected by microbial metabolites,
and this is pointing to a more fragile component in our cells; epigenome.

DNA methylation
Linking diseases to epigenetic changes was first addressed in 1983[82]. Based on that
first  note,  numerous  researches  indicated  that  cancer  cells  undergo  global
hypomethylation along with  site-specific  hypermethylation in  the  promotors  of
cancer-related  genes[83].  A  bunch  of  reports  have  indicated  that  the  microbial
metabolites can modulate epigenetic landscape of the host gut’s cells via modifying
the methylation pattern of cancer-related genes, as they represent a validated source
of  microbial-induced  epigenetic  change.  Thus,  the  deep  understanding  of  how
epigenetic modifications influenced by the gut microbiota take place could offer
possible therapeutic targets to prevent and treat CRC[10,80].

In DNA methylation, DNMTs add methyl group (CH3) to the fifth carbon atom in
the cytosine residue using the intracellular methyl substrate S-Adenosyl methionine
(SAM) as a methyl donor to convert the normal cytosine into 5-methylcytosine (5-
mC)[84]. Meanwhile, ten-eleven translocation enzyme can reverse this process via the
oxygenation of 5-mC to produce 5-hydroxymethylcytosine[85]. It is well known that
folate  is  the  main  source  of  SAM,  and  this  vitamin  could  be  produced  by
Bifidobacterium and Lactobacillus, common probiotic bacteria[86]. Folate is required for
DNA  methylat ion  (5-methyl tetrahydrofolate)  or  DNA  synthesis  (5-
formyltetrahydrofolate and 5, 10-methenyltetrahydrofolate)[87]. A study indicated that
volunteers administered Bifidobacterium showed a high concentration of folate in their
feces, meaning that these probiotic bacteria were capable to generate it and hence,
affect DNA methylation pattern[88]. On the other hand, deficiency of folate synthesis
might contribute to DNA hypomethylation, which is an established phenomenon in
CRC[89].  Meanwhile, pathogenic bacteria such as Helicobacter pylori  that infects the
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stomach and causes gastritis or gastric ulcers or in severe infection gastric cancer can
induce several epigenetic changes[90]. A comparison between gastric biopsies excised
from patients  with gastritis  (upon infection with Helicobacter  pylori)  and healthy
individuals  showed  that  chronic  gastritis  was  associated  with  promoter
hypermethylation  of  E-cadherin  (CDH1),  MGMT,  WIF1,  and  MLH1[91].  Although
studies that address the relationship between the microbiome and epigenetic changes
in CRC are rare, a population-based study reported that Fusobacterium nucleatum was
associated  with  genomic  hypermutation  independent  of  CIMP  and  BRAF
mutations[92]. Other study indicated that Fusobacterium was correlated with the CIMP
phenotype,  wild-type  TP53,  hMLH1  methylation,  genomic  hypermutation,  and
CHD7/8 mutation[93]. These studies strongly suggest the contribution of F. nucleatum to
the epigenetic changes.

Histone modification
In addition to DNA methylation changes,  histone modification patterns are also
altered in human cancers[84,94]. Some bacterial metabolites such as short chain fatty
acids  (butyrate  and  acetate)  can  induce  epigenetic  changes  in  colonic  cells[23,45].
Butyrate,  a  byproduct  of  the  fermentation  process  of  undigested  dietary
carbohydrates and proteins carried out by Firmicutes, has been shown to regulate over
4000 genes including many involved in apoptosis and cell cycle regulation[95]. It is
known also to inhibit histone deacetylases and induce hyperacetylation of histones,
that lead to changes in the expression of critical cell cycle regulatory genes such as
CCND3 and CDKN1A in intestinal cells. Butyrate triggers epithelial generation of ROS
and  function  also  to  suppress  NF-kB,  the  protein  complex  controls  DNA
transcription[44,96]. Furthermore, Bacteroides thetaiotaomicron stimuli the inflammatory
signaling by inhibiting NF-κB pathway through binding to IkB (inhibitor  of  κB),
inhibitory component of the NF-κB pathway[97]. It was reported that infection with
Listeria monocytogenes (L. monocytogenes) can cause deacetylation of histone H3K18 in
many genes  in  colonic  cells  such as  SMAD1,  IRF2,  SMARCA2  and CXCL12[98].  L.
monocytogenes execute the deacetylation process by translocating NAD-dependent
deacetylase sirtuin 2 to the host nucleus. By doing so, L. monocytogenes epigenetically
regulates cell cycle-related genes and modulate the host immune response to enable
its invasion[99].

MICRORNAS (MiRNAs) AND CRC
MiRNAs are a class of small single-stranded non-coding RNA molecules that are
evolutionarily conserved and encoded by nearly 1% of the genome in most species[100].
MiRNAs were found to be involved in initiation, progression, and metastasis of CRC,
where it regulate of various cancer-related gene expression at the post-transcriptional
level[101]. Deregulated miRNAs identified in different types of cancers might put us a
step forward towards understanding the tumor microenvironment, which necessitate
deep  investigation  of  their  actual  role  in  cancer  progression  and  spreading[102].
Numerous miRNAs were found to be associated with CRC, such as miR-21, Let-7,
miR-145, miR-221, miR-17-19 cluster,  and miR-143[103].  Table 2 highlights some of
miRNAs related to CRC development, progression, and metastasis. Studies addressed
the expression levels of different miRNA in CRC, reported that miR-31, miR-20, miR-
25, miR-223, miR-133b, miR-92, miR-93, miR-135a, miR-203, miR-183, and miR-17
were upregulated in CRC, while miR-26b, miR-192, miR-145, let-7a, miR-143, miR-215,
miR-16, and miR-191 were downregulated in patients with CRC[13,104]. Some miRNAs
were suggested to serve as diagnostic markers for CRC, including miR-133a, miR-145,
miR-484-5p,  miR-139,  miR-143,  and miR-106a[105],  while  another  study indicated
different set of miRNAs that could be used as biomarkers, including miR-125b, miR-
125a, miR-143miR-30a-3p, and miR-145[106]. However, this variation in miRNA list
might be attributed to the samples used in the identification process (cell line, tissue,
blood or stool) and to the techniques employed. Reports also highlight the role of
human diet in modulating the expression of miRNA[107]. For example, butyrate was
found to regulate the expression of Let-7, miR-18-106a, miR-25-106b, and miR-17-92a
in CRC[96]. The later miRNA cluster (miR-17-92a) was found to be associated with c-
Myc to inhibit the activity of PTEN and promotes PI3K-Akt-mTOR axis raising the
cell survival in early stage adenoma in CRC[108].

CONCLUSION
Gut microbiota is an enhancer to our second brain; the intestine. With millions of
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Table 2  A list of representative miRNAs identified in tumor tissues that are of prognostic value in CRC patients

miRNA Role in CRC Ref.

miR-15a/miR-16 Their low expression levels were associated with
poor disease-free survival and overall survival

[124]

miR-17-5p Its high expression was associated with disease-
free survival

[125]

miR-21 Its high level of expression was associated with
poor survival and poor therapeutic outcomes

[126]

miR-29a Its elevated level of expression was associated
with a longer disease-free survival in stage II CRC
patients

[127]

miR-34a-5p Its high expression was correlated with disease-
free survival

[128]

miR-106a Its downregulation was associated with shortened
overall survival

[125]

miR-132 Its decreased expression level was associated with
poorer overall survival and occurrence of distant
metastasis especially in liver

[129]

miR-150 Its elevated expression level was associated with
longer overall survival. While its low level of
expression was associated with poor therapeutic
outcome in patients treated with 5-Fluro uracil

[130]

miR-195 Its low expression rate was associated with
occurrence of lymph node metastasis and
advanced tumor grade/stage

[131]

miR-199b Increased in metastatic CRC tissue compared with
non-metastatic CRC tissue. Furthermore, its low
expression was associated with longer overall
survival

[132]

miR-203 Its elevated expression level was associated with
advanced TNM staging and poorer overall
survival

[130]

miR-320e Its high expression was associated with poorer
overall survival in stage III colon cancer patients

[133]

miR-429 Its overexpression was associated with overall
survival; low level of expression was associated
with response to 5-Fluro uracil-based
chemotherapy

[134]

miR-494 Its elevated expression was associated with shorter
DFS and overall survival

[135]

miR-625-3p High expressions were associated with higher
overall survival and enhanced response to therapy

[136]

CRC: Colorectal cancer.

proteins expressed by the microbiota’s arsenal, human could make use of various
kinds of dietary ingredients, that otherwise will be rubbish-in/rubbish-out. Although
genetic factors and age play a role in the pathogenesis of CRC, still gut microbiota has
the lion’s share in this complicated process. Armed with an enormous number of
identified and yet-to-be-identified metabolites, this population of bacteria can modify
the gut’s cells methylation pattern and histone structure causing inflammation, that
lead eventually to cancer. It is quite important to keep these microorganisms under
focus by deeply investigate their intricate communications with our cells. By doing so,
we would be able to avoid at least life-threatening diseases such as CRC[1].
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