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Abstract
Hepatocellular carcinoma (HCC) remains a global medical burden with rising
incidence due to chronic viral hepatitis and non-alcoholic fatty liver diseases.
Treatment of advanced disease stages is still unsatisfying. Besides first and
second generation tyrosine kinase inhibitors, immune checkpoint inhibitors have
become central for the treatment of HCC. New modalities like epigenetic therapy
using histone deacetylase inhibitors (HDACi) and cell therapy approaches with
chimeric antigen receptor T cells (CAR-T cells) are currently under investigation
in clinical trials. Development of such novel drugs is closely linked to the
availability and improvement of novel preclinical and animal models and the
identification of predictive biomarkers. The current status of treatment options
for advanced HCC, emerging novel therapeutic approaches and different
preclinical models for HCC drug discovery and development are reviewed here.

Key words: Liver cancer; Immunotherapy; Checkpoint inhibitors; Targeted therapy;
Mouse model; Biomarker; Next-generation sequencing; Non-alcoholic steatohepatitis;
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medical need. Novel therapeutic options comprise new tyrosine kinase inhibitors,
epigenetic modifiers and increasingly also cell therapy and immune checkpoint inhibitors
and combinations of those modalities. Development of better drugs is closely linked to
improved preclinical and animal models and has to be accompanied by the
implementation of predictive biomarkers, which is still lacking for hepatocellular
carcinoma. The current status of these aspects is reviewed in this manuscript.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the
liver, accounting for approximately 85% of all cases. It is considered to be the 6th most
commonly diagnosed cancer and the 4th most common cause of cancer related death
worldwide, with 2 to 3 times higher rates for men[1]. Major risk factors are chronic
viral hepatitis [hepatitis B virus (HBV) and hepatitis C virus (HCV)], aflatoxin ex-
posure, alcohol intake, and the globally increasing high rates of obesity and type 2
diabetes[2]. The 5-year survival rate of advanced HCC remains devastating at 1% and
is the poorest of all solid cancers[3]. Treatment of advanced stages of HCC is often
limited by the underlying liver disease which is commonly accompanied by cirrhosis
and end-stage liver disease with significantly impaired liver function. Due to those
different  etiologies  and pathogenetic  mechanisms,  the identification of  common
oncogenic drivers is challenging although heterogeneous sets of mutations could be
detected in HCC (Table 1), of which especially telomerase, p53, β-catenin and others
were linked to distinct and prognostic HCC subtypes (Table 2)[4,5].

Curative therapy is currently only possible in early stages by complete surgical
resection or orthotopic liver transplantation, the latter being limited by availability of
donor organs. Locoregional therapies [e.g., transarterial chemoembolization (TACE),
different ablation strategies, selective internal radiotherapy (SIRT)] are available for
intermediate stages or HCCs not amenable to surgical therapy and can be applied
repeatedly also for downstaging in preparation of transplantation or in an adjuvant
setting prior to surgery[6,7]. In addition, external beam radiation (EBRT) is a valuable
adjuvant  therapy option  for  small  HCCs,  in  combination  with  surgery  or  other
locoregional therapies or as a bridging option to orthotopic liver transplantation. It
can also help to reduce pain in extrahepatic metastases and prolong survival after
surgical resection[8]. For further details on locoregional and non-systemic treatment
options, we refer the reader to a recent meta-analysis on the management of HCC[9].

Since the introduction of the multi-kinase inhibitor sorafenib about a decade ago,
only little progress has been made in treatment of advanced HCC. In this article, we
will review the current status of novel drugs for the treatment of advanced HCC
including the emerging immune checkpoint inhibitor therapies. We will also highlight
recent trends in identifying predictive biomarkers and establishing animal models
that closely resemble the complex and diverse human pathophysiology of HCC.

CONVENTIONAL CHEMOTHERAPY AND MOLECULAR
TARGETED THERAPIES
Prior to the approval of sorafenib,  no standard chemotherapy regimen had been
established for treatment of advanced HCC. Randomized trials and meta-analyses
showed a poor response rate of different agents like 5-fluorouracil (5-FU), cisplatin,
doxorubicin or hormonal therapy (e.g., tamoxifen or somatostatin-analogues). The
high intrinsic resistance of HCC is considered due to the high expression of efflux
pumps (linked to the physiologic metabolic capacity of the liver parenchyma), altered
blood flow and fibrosis as well as high expression and mutations in drug resistance
genes  like  p53.  Most  tested  drugs  showed  only  modest  activity  with  minimal
improvement in overall survival but with significant toxicities in combination[6,10].
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Table 1  Known dysregulated pathways and genes in hepatocellular carcinoma with mode of action and frequency (modified from[4,5,92])

Pathways / genes Alteration Frequency in HCC

AKT-mTOR-MAPK signaling

RPS6KA3 Mutation 2%%-9%

TSC1 and TSC2 Mutation or deletion 3%-8%

PTEN Mutation or deletion 1%-3%

FGF3, FGF4 and FGF19 Amplification 4%-6%

PI3KCA Mutation 0%-2%

Angiogenesis

VEGFA Amplification 3%-7%

Antioxidation

NFE2L2 KEAP1 Mutation Mutation 3%-6% 2%-8%

Cell cycle control/tumor suppressors

TP53* Mutation or deletion 12%-45%

RB1 Mutation or deletion 3%-8%

CCND1* Amplification 5%-14%

Epigenetic and chromatin remodeling

ARID1A* Mutation or deletion 4%-17%

ARID2* Mutation 3%-18%

BAP1 Mutation 5%[117]

Immortalization/telomere maintenance

ERT* Promotor mutation amplification 54%-60% 5%-6%

JAK/STAT

JAK1 Mutation 5%

Metabolic pathways

Afamin apoptogenic protein 1, mitochondrial Mutation Up to 10%[117]

Oncogenes

MET* Amplification 30%-50%

MYC Amplification 4%

TGFβ pathway

Osteopontin Mutation Up to 40%[118]

G2/mitotic-specific cyclin-B2 Cyclin-dependent kinase 1 lymphoid enhancer-binding factor 1

Integrin α2

Wnt pathway

Catenin β1* Mutation 11%-37%

AXIN1* Mutation or deletion 5%-15%

HCC: Hepatocellular carcinoma.

The small-molecule multi-kinase inhibitor sorafenib was the first drug to show an
overall survival benefit in first-line therapy of advanced HCC (10.7 mo vs 7.9 mo; 6.5
mo vs 4.2 mo in Asian patients) in randomized controlled trials[11,12]. Since then, only
lenvatinib was able to achieve increased overall survival (in a phase 2 study) and was
proven to be non-inferior to sorafenib in a recent phase 3 study, reaching a median
survival time of 13.6 mo compared to 12.3 mo for sorafenib[13,14].

Similarly, results for new drugs in a second-line setting after failure of sorafenib
were mostly disappointing. Regorafenib, a derivative of sorafenib, and the novel
multi-kinase inhibitor cabozantinib achieved a significant increase in overall survival
in placebo-controlled trials. Regorafenib increased overall survival to 10.6 mo vs 7.8
mo[15], while cabozantinib achieved overall survival of 10.2 mo vs 8.0 mo with toxicity
similar to regorafenib[16].  Lately the vascular endothelial growth factor receptor 2
(VEGFR-2) antibody ramucirumab proved efficacy in sorafenib pretreated patients
with an alpha-fetoprotein level of ≥ 400 mg/mL[17]. The randomized phase-III placebo
controlled trial REACH-2 showed median overall survival times of 8.5 mo for ramu-
cirumab treated patients vs 7.3 mo for the placebo arm [hazard ratio (HR) = 0.7; P <
0.0001]. This is the first study to show a significant survival benefit for a bio-marker
(alpha-fetoprotein) selected subgroup of HCC.
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Table 2  Summary of classification schemes of hepatocellular carcinoma (modified from[119])

First author Lee et al[120] Boyault et al[121] Chiang et al[122] Hoshida et al[123] Désert et al[124] TCGA network[117]

Year 2004 2006 2008 2009 2017 2017

HCC cases 91 56 91 232 1133 559

Number of
subgroups

2 6 5 3 4 3

Names of classes Cluster A/B G1-G6 CTNNB1-
proliferation

S1-S3 PP, PV, ECM, STEM iCluster1-iCluster3

Major applied technology for molecular profiling

Transcriptomics X X X X X X

Genetic Mutations X X

Copy number
alterations

X X

Metabolomics X

Epigenomics X (CDH1 and
CDKN2A)

X

Proteomics X

Major HCC Classes with clinic-pathological features and high mutation rates

Proliferative phenotype

Poor outcome A G1, G2, G3 Proliferation S1 + S2 ECM + STEM iCluster 1 + 3

High AFP

Moderate to poor
differentiation

P53

Non-proliferative phenotype

Good to moderate
outcome

B G5, G6 CTNNB1 S3 PP + PV iCluster 2

Low AFP

CTNNB1

ECM: Extracellular matrix; PP: Periportal; PV: Perivenous; STEM: Stem/progenitor cells; HCC: Hepatocellular carcinoma.

Several other targets for inhibition of receptor tyrosine kinase function in HCC
were investigated. Hepatocyte growth factor (HGF) and its receptor c-Met are com-
monly overexpressed in HCC and have been linked to poor prognosis and re-sistance
to e.g., sorafenib treatment[18-20]. c-Met is targeted by several multi-kinase inhibitors
like gefitinib or cobazitinib and more recently also selective inhibitors like capmatinib
or tepotinib entered clinical trials but results for studies in HCC are still pending[21-23].
Other  less  selective  compounds  with  c-Met  inhibition  properties  like  crizotinib,
brivanib or foretinib did not lead to significant prolongation of overall survival (OS)
in phase III studies or were not investigated in HCC patients yet[21,22,24,25].

All  of  these  compounds  are  recommended  for  patients  with  preserved  liver
function, i.e., Child-Pugh score 5, 6 and 7[26]. Treatment options for patients with more
advanced liver impairment or cirrhosis  are still  lacking and represent an urgent
medical need. Esp. the use of sorafenib in patients with portal vein tumor thrombosis
(PVTT) remains controversial[27]. In a study with 30 patients with advanced HCC and
PVTT treated  with  sorafenib  monotherapy,  a  disease  control  rate  of  33.3% was
achieved, including thrombus revascularization in a small number of patients. Yet, OS
and progression-free survival (PFS) still remained disappointing with only 3.1 and 2.0
mo,  respectively[28].  In  combination  with  TACE,  sorafenib  was  able  to  induce  a
significant survival benefit compared to TACE only in patients with type B (13 mo vs
6 mo) or type C (15 mo vs 10 mo) in a stud enrolling 99 patients[29]. Similar results were
obtained in combination with radiofrequency ablation (RFA)[30].  Still,  prospective
randomized controlled trials on sorafenib or regorafenib monotherapy in this setting
are missing and the effect of the combination approach is probably overruling the
currently available results[27].

Different combination studies of sorafenib and other agents have been performed.
Interestingly, vitamin K was shown to enhance the antitumor effects of sorafenib via
reduction of expression of des-γ-carboxy prothrombin (DCP), a proangiogenic growth
factor that can also trigger signaling via c-Met and which is commonly upregulated
after sorafenib treatment[31,32].
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Combination studies with other targeted agents showed only a modest increase in
survival but had significant increase in drug related adverse events or even showed a
worse outcome than single agents like the sorafenib/erlotinib combination[33]. These
agents have also been investigated in earlier disease stages but could not demonstrate
a survival benefit in combination with locoregional approaches like TACE or in an
adjuvant setting[7].

In summary, sorafenib and lenvatinib are options for first-line therapy of advanced
HCC, while regorafenib, cabozantinib and ramucirumab can be used as second-line
options afterwards.

IMMUNE CHECKPOINT INHIBITORS AND NOVEL
IMMUNOTHERAPY TARGETS IN HCC
The development of immune checkpoint inhibitors like anti-CTLA4 (ipilimumab,
tremelimumab)  or  anti-PD-1/PD-L1  (nivolumab,  pembrolizumab,  tislelizumab,
camrelizumab, atezolizumab, durvalumab, avelumab) antibodies has dramatically
changed clinical oncology nowadays and achieved sustained treatment responses in
an unprecedented manner across different cancer types. Chronic inflammation due to
the  various  underlying etiologies  is  a  mainstay  of  HCC development.  Different
immune cell subtypes (T cells, macrophages, Kupffer cells) are currently intensively
investigated to understand their role in HCC pathogenesis and to exploit them as
novel and specific therapeutic approaches for this disease. Kupffer cells and CD8+ T
cells in HCC have been shown to express high levels of PD-1 and PD-L1, thus playing
a key role in the immune evasive phenotype of HCC. High expression of PD-L1 on
tumor cells was associated with poorer outcome in HCC patients[34-37].

Several immune checkpoint inhibitors are currently investigated in clinical trials as
single agents or in combination with neo-epitope releasing locoregional therapies,
epigenetic drugs or conventional targeted agents[38].

In a phase 1 study, tremelimumab reached a clinical disease control rate of 76.4%
with 17.6% of patients achieving partial response[39]. In combination with subtotal
radiofrequency ablation or chemoablation, 26.3% of patients reached partial response
and a median overall  survival of 12.3 mo. Responders also showed increased in-
filtration of CD8+ T cells and HCV positive patients had a significant reduction in
viral load[40].

Based  on  positive  results  of  the  phase  1/2  CheckMate-040  study,  nivolumab
received FDA approval as a 2nd line therapy option in HCC[41]. An objective response
rate of 20% was reached overall, and patients expressing PD-L1 on tumor cells even
reached 26%. A subgroup analysis revealed disease control rates of up to 75% and a
median duration of response of 9.9 mo. Results of the phase 3 CheckMate-459 study
that compares nivolumab vs sorafenib are still pending.

Similar results  were obtained for pembrolizumab in the KEYNOTE-224 study.
Here, 17% of patients had partial response, 44% had stable disease and overall 77% of
responding patients had durable responses of 9 mo or more. Pembrolizumab also
received FDA approval as a 2nd line therapy after sorafenib therapy.

Several  further studies  are currently ongoing to evaluate these checkpoint  in-
hibitors in first or second line therapy of HCC, including the HIMALAYA study that
explores durvalumab alone or in combination with tremelimumab vs sorafenib or the
IMbrave50 study that combines atezolizumab with bevacizumab vs sorafenib[42].

Due to its  physiologic role in clearing portal  vein blood flow from potentially
harmful gut content, the liver is a key immunologic organ and contains a high pro-
portion of macrophages (Kupffer cells) and other cells of lymphoid lineage, including
B and T cells as well as natural killer (NK) and NKT cells[43]. As outlined above, HCC
commonly develops on the basis of chronic inflammatory liver injury and exploiting
the  immunologic  repertoire  of  the  liver.  The  first  promising  results  of  immune
checkpoint inhibitors in HCC further support this approach. Different technologies
have been developed to apply an adaptive cell transfer as a therapeutic option also in
HCC, including application of tumor infiltrating lymphocytes, cytokine induced killer
cells or fostering neoepitope release by locoregional ablation techniques[44-46].

Recently,  chimeric  antigen  receptor-engineered  T  (CAR-T)  cells  yielded  out-
standing responses in hematologic malignancies and received FDA approval for the
treatment of acute lymphoblastic leukemia[47,48] and diffuse large B-cell lymphoma[49,50].
In  brief,  T  cells  of  patients  are  harvested,  genetically  modified,  expanded  and
reinfused into the patient. CARs consist of an extracellular antigen recognition do-
main, a hinge/spacer domain, a transmembrane domain and a T cell activation do-
main (CD3ζ). CARs of the 2nd and 3rd generation have additional costimulatory mo-
lecules like CD27 or CD134 in between the transmembrane and the CD3ζ domain to
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achieve prolonged T cell expansion and antitumor effects[51]. Success of CAR-T cells in
solid tumors is limited by their broader mutational load compared to hematologic
malignancies and suitable tumor antigens are thus more difficult  to identify.  An
additional  hurdle  is  the  localization  of  modified  T  cells  to  the  tumor,  which  is
influenced by tumor angiogenesis, low levels of chemokines to attract T cells into the
tumor and, esp. in HCC, a tumor microenvironment (stroma, fibrosis) that does not
permit sufficient tissue penetration of large molecules[52]. The latter can be overcome
by selective local administration like hepatic artery infusion which makes HCC an
interesting option for this therapy approach and several studies using CAR-T cells
were therefore initiated in HCC[44,53] (Table 3). Interestingly, most studies use the cell
surface glycoprotein glypican-3 (GPC3) as an antigen, which is highly expressed in
HCC but not in other adult tissues and has been linked to poor prognosis of HCC[54,55].
Preclinically,  CAR-T cells  targeting GPC3 were able  to  eliminate  HCC cells  and
prolong survival of tumor-bearing mice[56,57]. Ongoing studies also evaluate different
application routes like hepatic artery infusion, systemic infusion or combination with
transarterial (chemo-)embolization and the effect of lymphodepleting conditioning.
Preliminary results from study NCT02395250 indicate that GPC3-CAR-T cells are safe
in relapsed or refractory Chinese HCC patients. In this study, 1 partial response and 2
stable diseases were observed as best response (from 6 evaluable patients), all durable
for more than one year[58].

EPIGENETIC THERAPY WITH HDAC INHIBITORS IN HCC
Epigenetic  dysregulation  of  gene  activity  is  essentially  involved  in  HCC tumo-
rigenesis as evidenced by dysregulation of histone deacetylases in vitro, in vivo and in
situ[59,60]. Treatment with HDAC inhibitors (HDACi) therefore represents an attractive
therapeutic option in liver cancer that addresses different molecular mechanisms
compared to chemotherapy or targeted therapies to inhibit tumor cell growth and
promote cell death. HDACi inhibitors commonly inhibit cell cycle pro-gression by re-
expression of p21cip1/waf1 in a p53-dependent manner but can also mediate alternative
cell death pathways like unfolded protein response and ER stress pathways due to
their non-specific acetylation of proteins also outside the nu-cleus[61-65]. Although some
case reports showed a positive effect of HDACi in com-bination with sorafenib in
HCC[66],  most  studies  are  disappointing so far.  A phase 2  study using belinostat
(inhibitor of all zinc dependent HDAC isoforms) in unresectable HCC showed a PFS
and  OS  of  2.6  and  6.6  mo,  respectively[67].  The  SHELTER  study  investigated
resminostat (oral pan-HDACi with predominant activity against HDAC1, 2 and 3) in
combination with sorafenib in a 2nd line setting of adv-anced HCC and demonstrated
an OS of 8.0 mo, while monotherapy resminostat reached only 4.1 mo[68]. Interestingly,
this combination was also used in a 1st  line setting in Asian patients but did not
provide evidence for an OS benefit over sorafenib[69].

These studies, like others investigating tyrosine kinase inhibitors, usually enroll
patients with progressive, unresectable, locally advanced or metastatic HCC with an
overall poor prognosis that limits the chance of achieving PFS or OS advantages[70].
Yet, epigenetic therapies may be able to overcome such hurdles and even enhance the
results  of  immune  checkpoint  inhibitors  in  HCC.  Epigenetic  targeting  with  the
enhancer of zeste homolog 2 (EZH2), a histone-lysine-N-methyltransferase, inhibitor
3-Deazaneplanocin A (DZNep) and the DNA methyltransferase 1 (DNMT1) inhibitor
5-azacytidine reactivated transcriptionally repressed chemokines genes and aug-
mented T cell trafficking to the tumor[71]. Consequently, epigenetic pretreatment may
lead to priming of so-called immune cold tumors also in HCC[71,72].

NOVEL BIOMARKERS TO IMPROVE PATIENT OUTCOME
HCC patients  are  commonly  stratified  based on  their  liver  function  capacity  as
assessed by Child-Pugh score, which overall seems to be a better predictor for tr-
eatment outcome than the underlying etiology of HCC[70,73]. Biomarkers that could
predict treatment response are therefore urgently needed, esp. for targeted therapies
and immunotherapy approaches[74].

In a recent biomarker analysis of the sorafenib phase 3 STORM trial (BIOSTORM),
none of the biomarkers related to angiogenesis or cell proliferation or other molecular
markers like gene signatures or mutations could predict a treatment benefit or recu-
rrence-free survival (RFS). Only p-ERK and microvascular invasion were associated
with poor RFS. This study proposed a new 146-gene signature that id-entified about
30% of patients which benefit from sorafenib treatment. Interestingly, those patients
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Table 3  Clinical trials with chimeric antigen receptor T cells cells in hepatocellular carcinoma

NCT Antigen Phase Patients Sponsor Status Comments

NCT02715362 GPC3 I/II 30 Company Recruiting HAI

NCT03672305 c-Met/PD-L1 I 50 Academic Not yet recruiting IV

NCT02723942 GPC3 I/II 60 Academic Completed

NCT03198546 GPC3 I 30 Academic Recruiting

NCT02395250 GPC3 I 13 Academic Completed
[58]

NCT03349255 AFP I 18 Company Recruiting IV vs HAI

NCT03130712 GPC3 I/II 10 Company Recruiting IT

NCT03084380 GPC3 I/II 20 Academic Not yet recruiting Combination with TACE

NCT029051881 GPC3 I 14 Academic Not yet recruiting

NCT03302403 GPC3 I 48 Academic Not yet recruiting

NCT03146234 GPC3 I 20 Academic Recruiting

NCT01935843 Her2 I/II 10 Academic Unknown

NCT02959151 GPC3 I/II 20 Company Unknown

NCT02587689 MUC1 I/II 20 Company Unknown

NCT03013712 EpCAM I/II 60 Academic Recruiting

1Location of study is United States, all other trials are conducted in China. HAI: Hepatic artery infusion; IT: Intratumoral injection; IV: Intravenous
injection; TACE: Transarterial chemoembolization.

were  also  enriched  in  CD4+  T  and  B  cells,  NK  cells  and  were  associated  with
signature of poor response to immune checkpoint inhibitors[75].

Analysis  of  the  regorafenib  phase  3  study  in  HCC  (RESORCE),  also  recently
identified a plasma protein expression profile [angiopoietin 1, cystatin B, oxidized low
density lipoprotein (LDL) receptor 1,  latency associated peptide of  transforming
growth factor β (TGF-β) and macrophage inflammatory protein 1α (MIP1α)] and 9
plasma miRNAs that were associated with increased overall survival and time to
progression. The proposed soluble plasma protein biomarkers are also known to play
a role in inflammation and HCC pathogenesis. Interestingly, none of these predictive
biomarkers was so far shown to have prognostic relevance[76].

Overall, the identification and validation of biomarkers in HCC was previously
limited by the availability of tissue specimens as international guidelines did not
mandate a biopsy sample for diagnostic purposes. Recently, guidelines from EASL
recommend taking tissue and liquid biopsies from HCC patients participating in
clinical studies which could improve this situation[77]. Biomarker analyses in HCC are
often limited by small sample size in respective subgroup analyses due to the diverse
etiologic backgrounds like viral hepatitis, NASH/NAFLD, cirrhosis status etc. which
all significantly impact on the underlying chronic inflammation or have direct in-
fluence on oncogenic pathways.

Numerous new diagnostic and prognostic biomarkers like GPC-3 or c-Met have
been proposed recently  and were also translated into CAR-T cell  based therapy
approaches (see above) but no clear predictive biomarker for either targeted therapies
or for immune checkpoint inhibitors is available so far[78,79].

Liquid biopsies are capable of detecting genetic and epigenetic alterations as well as
expression patterns of DNA, RNA and miRNA from circulating tumor cells, cell-free
nucleic acids or from exosomes. Success rate of these technologies is still variable
depending on tumor size and stage but with further technological advances, e.g., on
next generation sequencing from cell-free DNA, it  is rapidly maturing to clinical
applicability[80-82].

Assessment of  metabolic pathways including proteomics and glycomics could
further contribute to biomarker development although current approaches, e.g., de-
tection of CD44v9[83] or Hippocalcin-like 1 (HPCAL1)[84], are used for diagnostic or
prognostic  settings or  to predict  disease recurrence and have not  been linked to
treatment responses.

NEW PRECLINICAL MODELS TO IMPROVE HCC THERAPY
The successful development of novel drugs is largely dependent on the availability of
suitable and predictive preclinical models. Besides the specific biochemical (cell-free)
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inhibition  of  a  distinct  target,  novel  compounds  need to  prove  their  potency  in
various in vitro and in vivo model systems before entering human clinical trials.

In  the  past,  high  throughput  screening  was  performed  on  2D  cultures  using
immortalized cell lines. Although this approach allowed screening large numbers of
cell lines, it lacks the complex interaction of different cell types and matrix structures
within real tissue. Consequently, more complex 3D culture systems were established,
also  from  primary  human  cancer  samples,  that  also  contain  components  of  ex-
tracellular matrix and additional cell types as fibroblasts[85,86]. Recently, spheroids and
organoids that mimic organ structure and aggressiveness of human HCC have been
established as tools for drug sensitivity screening[87,88].  To reflect the genetic hete-
rogeneity of human cancers, mixtures of barcoded tumor cell lines can be sub-jected to
high throughput screening. This technology secures homogeneous drug exposure to
genetically different cell types at the same time and was shown to identify responders
and  non-responders  to  specific  treatments  as  well  as  to  create  new  biomarker
hypotheses[89].

Precision-cut liver slices represent an interesting ex vivo model system for drug de-
velopment. Complex tissue architecture is preserved and the model allows to in-
vestigate different pathophysiologic conditions and drug testing on primary human
tissue samples[90,91].

Animal models,  however, still  represent standard models for early drug deve-
lopment  approaches.  As  HCC  usually  develops  on  the  background  of  chronic
underlying liver diseases associated with chronic inflammation, viral infection or
fibrotic remodeling, and clear oncogenic driver mutations have not been identified
yet, finding suitable and appropriate models still remains an urgent task. An ideal
model would therefore in parallel describe the underlying liver disease and tumor
development. The increasing role of immunotherapies in HCC also urgently warrants
the development of respective immunocompetent models (Table 4)[92].

The subcutaneous implantation of HCC cell lines was extensively used in the past
and still has value when using primary cell lines or tissue explants (patient-derived
xenograft models). These models are relatively easy to handle and provide an easy
readout of tumor growth by caliper measurement. Orthotopic implantation reflects
the primary site of tumor formation and crossplay with liver matrix and cells but
requires surgical  expertise  and more advanced imaging technologies  to monitor
tumor growth. Both systems need immunodeficient mice unless syngeneic murine
tumors are used. This limits the application of those models for studying immu-
notherapy approaches.

As human HCC can also develop upon chronic exposure to toxic agents, chemical
induction in mice using diethylnitrosamine (DEN) has been established as a standard
method but is limited by high variability of tumor formation and time to develop
tumors[93]. Yet, chemical models can easily be combined with other approaches (e.g.,
fibrosis  induction,  NASH models,  alcohol)  and thus provide an option for rapid
evaluation of novel drugs under distinct pathophysiologic conditions[94-97].

Genetically engineered mice (GEM) are useful tools to study the contribution and
effects  of  individual  genes  on  HCC  pathogenesis.  They  are  technically  more
demanding and may have a longer latency period than other models. With the option
of targeted knock-in and knock-out systems and combinations of those approaches,
distinct molecular backgrounds can be analyzed. As today no clear single oncogenic
driver for HCC development has been identified, several GEM models have been
established as useful tools, e.g., p53-deficient[98] mice or mice overexpressing MYC[99] or
WNT pathway components[100,101]. The option to study HBV and HCV transgenic mice
is of special interest. We have shown previously that dependent on the host genetic
background, ER stress pathways can be activated that are known to lead to cellular
stress and chronic inflammation and that are involved in fibrogenesis and ultimately
also HCC pathogenesis[102,103].

As outlined above, HCC commonly develops on the basis of an underlying chronic
liver disease. Therefore, specific liver disease models are of very high relevance to
study HCC pathogenesis and explore new therapeutic options[92]. Several small animal
models for the development of liver fibrosis and cirrhosis are currently established.
Application of carbon tetrachloride (CCl4) or thioacetamide (in combination with
ethanol)[104] leads to rapid fibrosis development and acute inflammation[105]. While easy
to handle, these models can be combined with GEM or orthotopic transplantation
models  and  provide  a  good  tool  to  study  tumor  cells  with  a  fibrotic  micro-
environment.

Although less  clear  in  its  pathogenesis  for  HCC,  the  increasing prevalence of
metabolic liver diseases associated with diabetes mellitus, adipositas, hyperlipidemia,
hypertriglyceridemia and metabolic syndrome puts models for NAFLD/NASH in the
focus of today’s research models[106-108]. NAFLD and NASH can easily be induced by
dietary models, e.g., using a high-fat (HFD), high-cholesterol (HCD), high-fructose or
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Table 4  Available techniques for induction of hepatocellular carcinoma in relation to temporal and technical aspects as well as major
advantages and disadvantages (summarized from[92])

Method and specification Time to HCCshort (+) to long
(+++)

Technical effortslow (+) to high
(+++) Major “Pros” (+) vs “Contras” (-)

Chemotoxic agents linked models

Diethylnitrosamine ++ + (+) good combination options with
other methods

9,10-dimethyl-1,2-benzanthracene (-) time to HCC not easily predictable

Direct implantation of tumor cells or tissue

Heterotopic/orthotopic + +/++ (+) heterotopic xenografts are often
and easily done

(+) syngeneic orthotopic models
better reflect the natural liver
microenvironment

Syngeneic/xenografts (-) xenografts need
immunocompromised mice

(-) orthotopic tumor implants need
surgical and imaging experience

Genetically engineered mouse models

Mouse embryo manipulation ++/+++ +++ (+) hepatocarcinogenesis can be
analyzed stepwise

Cre-Lox recombination (-) effects of manipulated gene(s)
could have heterogeneous latency
and genetic penetrance

Hydrodynamic injection

CRISPR-Cas9

Humanized mouse models

Immunologically humanized mice +++ +++ (+) immunotherapeutical issues can
be studied based on human cell lines
in mice

Genetically humanized mice (-) establishment difficult due to
engraftment failure and development
of stable stem cell-derived
hepatocytes

HCC: Hepatocellular carcinoma.

methionine and choline-deficient (MCD) diets  or combinations of  those classical
inducers[109]. Yet, dietary models are often limited by not completely following the
human course of disease, e.g.,  lacking HCC formation for high-fat diet or lacking
obesity for the MCD diet. Therefore, models have been further refined by combining
the dietary stimulus with distinct genetic models like PTEN-deficient mice, MC4R
(melanocortin 4 receptor) or ALR (augmenter of liver regeneration) knockouts that
reliably lead to HCC formation in 60% to 100% after  approximately one year[110].
Recently,  it  was shown that HFD and HCD triggers liver cancer formation in an
ApoE/LDL-receptor double knockout mouse,  linking metabolic  stress  and athe-
rosclerosis to HCC formation[111].

CONCLUSION
Integrative  and  comprehensive  molecular  and  genomic  analyses  could  classify
hepatocellular  carcinoma  on  the  basis  of  landscapes  of  genetic  and  molecular
signatures (Tables 1 and 2) which could then lead to the identification of predictive
biomarkers for novel treatment options and then impact HCC trial design and patient
outcome.  Consequently,  all  HCCs  should  be  biopsied  and  specimen  should  be
intensively investigated applying “omics”-technologies for real precision medicine
approaches. Furthermore, the biological roles of the identified driver genes in HCC
must be analyzed in the deeper integration of inter- and intratumoral, interpatient,
and inter-ethnic tumor heterogeneity in more detail. Deeper knowledge about those
drivers is urgently needed, as the underlying pathogenesis of HCC is complex and
currently shifting from chronic  viral  infections to  more metabolically  driven tu-
morigenesis as seen in NASH. As inflammation seems to be a common ground for
HCC development, it is not surprising that immune checkpoint inhibitors are moving
into first line therapy setting and it is expected that this compound class will also
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significantly shift the therapeutic landscape in HCC soon. Therefore, tumor models
with  complex  genetically  engineering  are  an  essential  drug  development  and
technology transfer tool closing the gap between in vitro experiments and intensive
clinical trials in future (Table 4). Finally, artificial intelligence and machine learning
could  essentially  help  to  analyze,  to  classify  and  to  interpret  the  dramatically
increasing and high-dimensional amount of transcriptomic, genomic, epigenomic,
metabolic,  proteomic and imaging data in HCC[112-114].  The desirable aims of such
approaches will  be to (1) identify cancer drug targets,  (2) predict anticancer sen-
sitivity,  toxicity and cancer  resistance,  and (3)  give robust  recommendations for
therapeutic strategies in the future[115,116].

Overall, the better understanding of the molecular pathogenesis of HCC allows for
more stringent patient selection criteria in biomarker-driven studies that can improve
patient outcome.
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