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Abstract
BACKGROUND
Human-derived mesenchymal stromal cells have been shown to improve
cognitive function following experimental stroke. The activity of exosomes has
been verified to be comparable to the therapeutic effects of mesenchymal stromal
cells. However, the effects of exosomes derived from human umbilical cord
mesenchymal stem cells (HUC-MSCs) (ExoCtrl) on post-stroke cognitive
impairment (PSCI) have rarely been reported. Moreover, whether exosomes
derived from C-C chemokine receptor type 2 (CCR2)-overexpressing HUC-MSCs
(ExoCCR2) can enhance the therapeutic effects on PSCI and the possible underlying
mechanisms have not been studied.

AIM
To investigate the effects of ExoCtrl on PSCI and whether ExoCCR2 can enhance
therapeutic effects on PSCI.

METHODS
Transmission electron microscopy, qNano® particles analyzer, and Western
blotting were employed to determine the morphology and CCR2 expression of
ExoCtrl or ExoCCR2. ELISA was used to study the binding capacity of exosomes to
CC chemokine ligand 2 (CCL2) in vivo. After the intravenous injection of ExoCtrl or
ExoCCR2 into experimental rats, the effect of ExoCtrl and ExoCCR2 on PSCI was
assessed by Morris water maze. Remyelination and oligodendrogenesis were
analyzed by Western blotting and immunofluorescence microscopy. QRT-PCR
and immunofluorescence microscopy were conducted to compare the
microglia/macrophage polarization. The infiltration and activation of
hematogenous macrophages were analyzed by Western blotting and transwell
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migration analysis.

RESULTS
CCR2-overexpressing HUC-MSCs loaded the CCR2 receptor into their exosomes.
The morphology and diameter distribution between ExoCtrl and ExoCCR2 showed
no significant difference. ExoCCR2 bound significantly to CCL2 but ExoCtrl showed
little CCL2 binding. Although both ExoCCR2 and ExoCtrl showed beneficial effects
on PSCI, oligodendrogenesis, remyelination, and microglia/macrophage
polarization, ExoCCR2 exhibited a significantly superior beneficial effect. We also
found that ExoCCR2 could suppress the CCL2-induced macrophage migration and
activation in vivo and in vitro, compared with ExoCtrl treated group.

CONCLUSION
CCR2 over-expression enhanced the therapeutic effects of exosomes on the
experimental PSCI by promoting M2 microglia/macrophage polarization,
enhancing oligodendrogenesis and remyelination. These therapeutic effects are
likely through suppressing the CCL2-induced hematogenous macrophage
migration and activation.

Key words: Cognitive impairment; Stroke; Exosomes; C-C chemokine receptor type 2;
Microglia/macrophage polarization; Remyelination
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Core tip: Exosomes have been reported to possess the therapeutic benefit comparable to
the therapeutic effects of mesenchymal stromal cells. However, the effects of exosomes
derived from human umbilical cord mesenchymal stem cells (ExoCtrl) on post-stroke
cognitive impairment (PSCI) have rarely been reported. Moreover, whether exosomes
derived from C-C chemokine receptor type 2 (CCR2)-overexpressing human umbilical
cord mesenchymal stem cells (ExoCCR2) have better therapeutic effects on PSCI and the
possible mechanisms underlying these effects remained unclear. This study provides new
insights into the use of genetically modified exosomes for PSCI treatment, offering new
ideas for the clinical application of exosome-based therapies for PSCI.

Citation: Yang HC, Zhang M, Wu R, Zheng HQ, Zhang LY, Luo J, Li LL, Hu XQ. C-C
chemokine receptor type 2-overexpressing exosomes alleviated experimental post-stroke
cognitive impairment by enhancing microglia/macrophage M2 polarization. World J Stem
Cells 2020; 12(2): 152-167
URL: https://www.wjgnet.com/1948-0210/full/v12/i2/152.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i2.152

INTRODUCTION
Post-stroke  cognitive  impairment  (PSCI)  occurs  frequently  after  stroke.  The
prevalence of PSCI in ischemic stroke patients ranges from 25% to 30%[1], which has
been increasing gradually  due to  the  development  of  modern medicine  and the
increasing survival rate of stroke patients[2,3]. PSCI imposes a heavy burden on the
patients,  their families,  and societies.  However,  the treatment of PSCI is  still  not
satisfactory and requires further improvement.

Previous research has shown that mesenchymal stem cell (MSC) therapy faciliates
the  cognitive  recovery  after  stroke[4,5].  However,  the  disadvantages  of  therapies
involving MSCs, such as their high in vivo clearance rate after transplantion[6,7], limited
capacity  to  cross  blood-brain  barrier[8,9],  potential  immunogenicity[10,11],  and
unpredictability  of  cell  growth  and  differentiation[12],  have  emerged  with  the
development of research. Recent studies have indicated that MSCs mostly act via
specific paracrine mechanisms, while exosomes play a key role in the general progress
and recovery under conditions of disease[13]. MSC-derived exosomes have displayed
positive  effects  in  animal  models  of  various  ischemic  injuries  such  as  stroke[14],
myocardial infarction[15], and renal ischemic injury[16]. To a certain extent, MSC-derived
exosomes exert therapeutic effects comparable to those of MSCs and overcome the
potential risks and disadvantages associated with MSCs[17,18]. However, there are only
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a few studies focusing on exosome-based treatments for PSCI.
CC chemokine ligand 2 (CCL2) is highly expressed in the ischemic hemisphere

after a stroke; this mediates the migration of C-C chemokine receptor type 2 (CCR2)-
positive blood-derived macrophages,  thus exacerbating brain tissue damage[19,20].
CCR2 knockout mice[21] or CCL2 knockout[22] mice have shown a significant reduction
of macrophage proliferation within 2 wk after a stroke, accompanied by neuronal
regeneration  and  decreased  infarct  volume,  suggesting  that  inhibition  of  the
CCL2/CCR2 axis may play a neuroprotective role after strokes. In addition, CCR2
antagonism[23] or CCR2 knockout[24] can promote the M2 polarization of microglia/
macrophages by inhibiting CCR2+ macrophages and improve cognitive impairment
in mice with traumatic brain injury.

It is noticeable that in recent years, exosomes secreted by human umbilical cord
MSCs  (HUC-MSCs)  have  shown  powerful  effects  on  microglia/macrophage
activation  and  polarization  in  animal  models  such  as  the  Alzheimer's  disease
model[25], hypoxic-ischemic encephalopathy model[26], and the peripheral nerve injury
model [27].  However,  the  effects  of  HUC-MSC-derived  exosomes  (ExoCtrl)  on
microglia/macrophage polarization and cognitive function after stroke have not yet
been reported. Furthermore, we hypothesize that CCR2-overexpressing HUC-MSC-
derived exosomes (ExoCCR2) further promote microglia/macrophage M2 polarization
by competitively binding to the CCR2 ligand CCL2 and inhibiting the CCL2-mediated
infiltration of blood-derived mononuclear macrophages. Particularly, we compared
the therapeutic effects of the systemic administration of ExoCCR2 and ExoCtrl on PSCI,
which will provide new insights into genetically modified exosome-based therapies
for PSCI treatment and serve as a preclinical study on cerebral protection after stroke.

MATERIALS AND METHODS

Establishment of the tMCAO model and animals grouping
Adult Sprague-Dawley rats (male, weighing 280-350 g) were underwent the right
transient middle cerebral occlusion (tMCAO) for 2 h in accordance with the method as
Longa et al[28] described with modifications. Experimental procedures were approved
by the Institutional Animal Ethics Committee of Life Sciences School, Sun Yat-sen
University.  The  modified  neurological  severity  score  (mNSS)  and  2,3,5-
Triphenyltetrazolium chloride (TTC) (G3005, Solarbio, China) staining were utilized
to confirm the establishment of the tMCAO model. Rats with moderate injury (mNSS
values 7-12) were randomly divided into the sham group, tMCAO group, ExoCtrl

treatment group, and ExoCCR2 treatment group. As described in a previous study, 100
µg of the exosomes was dissolved in 500 µL of phosphate-buffered saline (PBS)[29]. One
day after operation, the rats from sham and tMCAO groups were injected with 500 µL
of PBS, the rats in the ExoCtrl and ExoCCR2 treatment groups were injected with equal
volumes  of  the  respective  exosomal  solutions  via  tail  vein  injections.  BrdU  (50
mg/kg/d;  B5002,  Sigma,  United  States)  was  injected  intraperitoneally  for  14
continuous d one day after the induction of tMCAO.

Transfection of HUC-MSCs with lentiviral vectors and comparison of their biological
characteristics
HUC-MSCs were obtained from three healthy donors after they signed the informed
consent forms. Briefly, the Wharton gum tissues with blood vessels removed were cut
up and digested with collagenase II (1 mg/mL, 234155, Millipore) under 37 °C for 30
min with shaking. The cells were filtered from the suspensions with a cell strainer
(diameter  70  μm).  The  cells  were  washed  with  Hank's  Balanced  Salt  Solution
(SH30031.02, Hyclone) and cultured in low-glucose DMEM (L-DMEM) (C11885500BT,
Gibco) containing 10% fetal bovine serum (04-001-1A, Biological Industries, Israel) in
a 5% CO2 incubator.

At passage 3, the HUC-MSCs were transfected with lentiviral vectors expressing
both the CCR2 and eGFP genes, and vectors expressing the eGFP gene in accordance
with the manufacturer’s instructions. The vector construction is indicated in Supple-
ment Figure 1. Three days after the transfection, the HUC-MSCs transfected with
lentiviral vectors encoding CCR2 (namely HUC-MSCsCCR2) or eGFP (namely HUC-
MSCsCtrl),  were  sorted  using  fluorescence-activated  cell  sorting  (Influx,  Becton
Dickinson). The HUC-MSCsCtrl  and HUC-MSCsCCR2  (passage 6) were identified by
microscopic analysis,  flow cytometry analysis for detecting the following surface
markers: CD13-APC (1:50, 17-0138-41, eBioscience, United States), CD29-APC (1:50,
559883, BD Bioscience, United States), CD44-APC (1:50, 559942, BD Bioscience, United
States), CD34-PE (1:50, 550761, BD Bioscience, United States), CD45-PE (1:50, 560975,
BD Bioscience, United States), CD73-PE (1:50, 60044, Stemcell Technologies, Canada),
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CD90-PE-Cy7 (1:50, 561558, BD Bioscience, United States), CD105-PerCP-Cy5.5 (1:50,
560819, BD Bioscience, USA), HLA-DR-V500 (1:50, 561225, BD Bioscience, United
States). Osteogenesis and lipogenesis induction experiments were conducted with
modification as described in a previous study[30]. Briefly, for osteogenisis induction
experiments, cells were cultured in L-DMEM containing fetal bovine serum (20%),
ascorbic acid (100 μg/mL), β-glycerophosphate (10 mmol) and dexamethasone (100
nmol) for three weeks with medium changed every 3 d. For adipogenesis induction
experiments,  the  cells  were  induced in  L-DMEM supplemented with FBS (10%),
dexamethasone (100 nmol), indomethacin (0.2 mmol), insulin (10 μg/mL), 3-isobutyl-
1-methylxanthine (0.5 mmol). After 3 wk, Osteogenic and adipogenic differentiation
were confirmed by oil red O staining and alizarin red staining.

Exosome isolation and identification
The isolation of exosome was performed according to a previous study[31]. Briefly, the
exosomes were collected by differential ultracentrifugation, and their morphology
was analyzed by transmission electron microscopy. The distribution of the exosomes
based  on  their  diameters  was  performed  using  a  qNano®  system  (Izon  Science,
Oxford, United Kingdom). Western blotting was used to detect the CCR2 expression
and the exosome-specific markers CD9, CD63, and CD81.

Enzyme-linked immunosorbent assay (ELISA)
To test  the  CCL2-binding capacity  of  the  exosomes,  ExoCtrl  and ExoCCR2  were  co-
incubated  with  recombinant  rat  CCL2 (100  ng/well,  400-12,  PeproTech,  United
States).  Differential  ultracentrifugation  was  performed  to  obtain  exosome-free
supernatants.  ELISA kits (CSB-E07429r,  Cusabio Biotech, China) were utilized to
detect the CCL2-binding capacity of ExoCCR2 and ExoCtrl, according to the protocol of
manufacturer.

Cognitive function test
The Morris water maze test was conducted as our previous study described[32]. The
test was carried out at 23 d after the induction of tMCAO. The rats were first subjected
to five consecutive days of the place navigation test. On day 6, a spatial probe test (60
s) was performed under the same condition without platform. During the test, the
latency to the platform and the time recorded in the target quadrants were analysed.
The mNSS values were recorded at 1, 4, 14, and 28 d after exosome treatment, as
described previously[33]. The rats were tested by an individual blinded to the grouping
for three times, and the means of the mNSS results were recorded. The normal score is
0, while the maximal deficit score is 18. Rats with mNSS values ranging from 7-12
were included in the study.

Western blotting
Western blotting was conducted in accordance with the protocol as our previous
study described[34].  First,  the  proteins  were  obtained from the  ischemic  cerebral
hemisphere or cultured cells by treatment with the kit of protein extraction (KeyGen
BioTech, China) according to the protocol of manufacturer. The protein samples were
loaded onto 10% polyacrylamide gels and electrophoresed under 120V voltage; the
resultant bands were transferred onto polyvinylidene difluoride membranes. Next,
the  polyvinylidene  difluoride  membranes  were  incubated  with  rabbit  anti-CD9
(1:2000, ab92726, Abcam, United Kingdom), rabbit anti-CD63 (1:10000, 25682-1-AP,
ProteinTech,  United States),  rabbit  anti-CD81 (1:1000,  ab109201,  Abcam,  United
States), rabbit anti-CCR2 (1:1000, DF2711, Affinity Biosciences, United States), rabbit
anti-CCL2 (1:1000, ab25124, Abcam, United States), mouse anti-iba-1 (1:500, MABN92,
Millipore, United States), rabbit anti-NF-κB (1:1000, ab16502, Abcam, United States),
mouse anti-CD68 (1:1000, ab201340, Abcam, United States), rabbit anti-myelin basic
protein (anti-MBP) (1:200, ab40390, Abcam, United States), and rabbit anti-β-actin
(1:1000, #3700, Cell Signaling Technology, United States) antibodies at 4 °C overnight,
and then with peroxidase-conjugated secondary antibodies at  37 °C for 1  h.  The
protein bands were developed using a specific chromogenic substrate (ECL, KeyGen
BioTech, China), according to the manufacturer’s instructions.

RNA isolation, reverse transcription, and real-time PCR
Total RNA from the ischemic cerebral hemispheres or cultured cells was extracted by
TRIzol (Invitrogen, United States), according to the protocol of manufacturer. Reverse
transcription for synthesizing the cDNA was performed using the PrimeScript™ RT
Master  Mix  (Takara,  Japan),  according  to  the  manufacturer's  instructions.  The
resulting cDNA was then subjected to quantitative real-time PCR for the evaluation of
the relative mRNA levels. The real-time PCR amplifications were performed with a
final reaction volume of 20 μL using the TB Green™ Premix Ex Taq™ II kit (Takara,
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Japan),  according to the manufacturer's  instructions.  The reaction mixtures were
preheated at 95°C (30 s) for one cycle and then amplified at 95°C (5 s) and 60°C (34 s)
for 40 cycles. The Ct (threshold cycle) value of each sample was analyzed by the 2-Ct

method, and the mRNA expression levels of the target genes were normalized to the
expression level of β-actin to obtain the relative expression levels. The sequences of
the used primers are as follows (Table 1).

Immunofluorescence
Frozen sections for immunofluorescence staining were prepared as described in our
previous study[34]. First, the frozen sections were treated for 5 min with hot EDTA-
citrate buffer (95 °C) (P0085, Beyotime Biotechnology, China) for antigen retrieval,
followed by treatment with a blocking reagent (Beyotime Biotechnology, China) for 1
h at 25 °C. Then, the sections were incubated with mouse anti-iba1 (1:200, MABN92,
Millipore, United States), rabbit anti-CD206 (1:200, ab64693, Abcam, United States),
rabbit anti-CD16 (1:100, ab211151, Abcam, United States), and rabbit anti-MBP (1:200,
ab40390, Abcam, United States) antibodies overnight at 4 °C. The sections were rinsed
in PBS for 5 min each for three times, and were then incubated with goat anti-mouse
secondary antibodies and goat  anti-rabbit  secondary antibodies for  1  h at  25 °C.
Fluorescence  signals  were  detected  using  a  confocal  laser  scanning  microscope
(Dragonfly,  Oxford  Instruments,  United  Kingdom).  For  Brdu/NG2  double
immunostaining, rabbit anti-NG2 (1:200, AB5320, Millipore, United States) and rat
anti-BrdU (1:200, ab6326, Abcam, United Kingdom) antibodies were used according
the protocol described in our previous study[32].

Transwell assays
The  transwell  assay  was  performed  for  examining  the  migration  of  mouse
macrophages (raw 264.7 cells, CC9001, CELLCOOK, China), according to a previous
study[35]. The macrophage suspension (106/mL, 100 µL) was transferred into the upper
transwell chamber (pore size of 8 μm; Corning, United States). Cells from the CCL2
control, CCL2 + ExoCtrl and CCL2 + ExoCCR2 groups, which were subjected to different
treatments, were added into the lower transwell chamber. After co-incubation for 16 h
at 37 °C, the macrophages remained in the upper transwell chamber were scraped.
The membranes were fixed using 4% paraformaldehyde and stained with DAPI
(F6057, Sigma, United States). The macrophages that remained in the lower chamber
were observed using a fluorescence microscope (Leica DM6B, Germany).

Statistical Analysis
The results were expressed as the mean ± standard error of mean (SEM). SPSS22.0 for
Windows was applied for the statistical  analysis.  One-way Analysis  of  Variance
(ANOVA),  followed  by  Least  Significant  Difference  (LSD)-t  test  procedure  or
Student’s T test, was applied for comparing the statistical differences. P < 0.05 was
statistically significant.

RESULTS

CCR2-overexpressing HUC-MSCs load the CCR2 receptor into their exosomes
Cultured human MSCs express extremely low levels of the CCR2 receptor during
continuous passage[30]. This result was consistent with that of the study by Huang et
al[30], as indicated by flow cytometry, Western blotting, and quantitative real-time PCR
(qRT-PCR) analyses, which indicated that the HUC-MSCsCtrl (passage 6), following the
fluorescent-activated cell sorting analysis, showed a low CCR2 protein and mRNA
expression. Moreover, the CCR2 protein and mRNA expression in HUC-MSCsCCR2

increased significantly (Figure 1A-1D). Since HUC-MSCs are characterized by specific
surface markers such as CD13, CD29, CD44, CD34, CD45, CD73, CD90, CD105, HLA-
DR[36,37], and the osteogenesis and lipogenesis capacity[38], we checked the biological
characteristics changes by flow cytometry analysis, and osteogenesis and lipogenesis
induction experiments. The results showed CCR2 overexpression had no significant
effects on the biological characteristics of the HUC-MSCs (Supplementary Figure 2).
The morphology and diameter distribution of ExoCtrl  and ExoCCR2  were confirmed
using transmission electron microscopy and the qNano® system (Izon Science, Oxford,
United Kingdom), respectively; there was no significant difference between the ExoCtrl

and ExoCCR2 (Figure 1E, 1F). Since exosomes are characterized by specific marker CD9,
CD63, and CD81[38,39], we investigated the expressions of them by Western blotting.
The results indicated both ExoCtrl and ExoCCR2 expressed CD9, CD63, and CD81(Figure
1G);  however,  ExoCCR2  expressed high amounts  of  CCR2,  while  ExoCtrl  expressed
extremely low amounts of CCR2 (Figure 1H).

To further compare the CCL2-binding capacity of ExoCCR2 and ExoCtrl, ELISA was

WJSC https://www.wjgnet.com February 26, 2020 Volume 12 Issue 2

Yang HC et al. Exosomes on PSCI

156



Table 1  Lists of the sequences of the used primers

Gene Primer sequences (5’-3’)

Human-β-actin F GGCTGTATTCCCCTCCATCG R CCAGTTGGTAACAATGCCATGT

Human-CCR2 F TACGGTGCTCCCTGTCATAAA R TAAGATGAGGACGACCAGCAT

Rat-β-actin F GCCCTGAGGCTCTTTTCCAG R TGCCACAGGATTCCATACCC

Rat-CD16 F TGTGTGTCGTCGTAGACGGT R TTCGCACATCAGTGTCACCA

Rat-IL-1β F GGCAACTGTCCCTGAACT R TCCACAGCCACAATGAGT

Rat-CD206 F ACTGCGTGGTGATGAAAGG R TAACCCAGTGGTTGCTCACA

Rat-Arg-1 F TGGCGTTGACCTTGTCTTGT R TTTGCTGTGATGCCCCAGAT

Mouse-IL-1β F TTGTTGCTGTGGAGAAGCTGT R AACGTCACACACCAGCAGGTT

Mouse-TNF-α F AGCAAACCACCAAGTGAGGA R GCTGGCACCACTAGTTGGTTGT

performed. The results suggested that ExoCCR2 bound significantly to CCL2, compared
to ExoCtrl, while ExoCtrl showed little CCL2-binding capacity, compared to the case for
the CCL2 control group (Figure 1J).

ExoCCR2 showed more beneficial effects against PSCI than ExoCtrl

The Morris water maze is a common tool for performing cognition tests in animals
with  experimental  stroke[40,41](Figure  2A).  The  establishment  of  tMCAO  were
confirmed mNSS behavioral test and TTC staining at 1 d after surgery, as indicated in
Supplementary Figure 3.  Compared with the tMCAO group, the rats in both the
ExoCCR2  and ExoCtrl  treatment groups showed a significant decrease in the escape
latency spent finding the platform (indicating spatial learning) from day 4 and day 5
during the navigation test.  The latency spent finding the platform in case of  the
animals from the ExoCCR2 treatment group further decreased significantly compared to
the case for the animals from the ExoCtrl treatment group at day 4 and day 5 during the
navigation test  (Figure 2B).  During the spatial  probe test,  the rats  from both the
ExoCCR2 treatment and ExoCtrl treatment groups showed a significant increase in the
time spent in the target quadrant (indicating spatial memory). Moreover, the rats from
the ExoCCR2 treatment group showed a further improvement with regards to the time
spent in the target quadrant, compared to those from the ExoCtrl  treatment group
(Figure 2C). At the same time, the mNSS values of the rats in the ExoCCR2 and ExoCtrl

treatment groups decreased significantly compared to those of  the rats  from the
tMCAO group; the mNSS values of the rats from the ExoCCR2 treatment group showed
a further decrease compared to those of the rats from the ExoCtrl  treatment group
(Figure 2D).

ExoCCR2  showed more beneficial effects with regards to oligodendrogenesis and
remyelination than ExoCtrl

Oligodendrogenesis and remyelination contribute to the recovery from PSCI[42,43].
Therefore, we examined the fluorescence intensity of MBP indicating the integrity of
myelination and the number of BrdU+/NG2+ cells indicating the proliferation status
of oligodendrocyte around the ischemic area by immunofluorescence staining; the
expression  of  the  MBP  protein  extracted  from  the  ischemic  hemispheres  was
quantified by Western blotting analysis. Compared to the samples obtained from rats
in  the  tMCAO group,  samples  from the  rats  subjected to  the  ExoCtrl  and ExoCCR2

treatments exhibited increased fluorescence intensity and protein expression of MBP
at day 28 after tMCAO. Moreover, ExoCCR2 treatment showed superior effects on the
fluorescence intensity and protein expression of MBP compared to that showed by
ExoCtrl treatment (Figure 3A-D). Compared to the samples from rats in the tMCAO
group, the samples obtained from rats in both the ExoCtrl and ExoCCR2 treatment groups
showed an increased number of BrdU+/NG2+ cells around the ischemic area at day
28 after tMCAO. Moreover, the changes in samples obtained from rats in the ExoCCR2

treatment group were more enhanced than those in the samples obtained from rats in
the ExoCtrl treatment group (Figure 3E, 3F).

ExoC C R 2  promoted  microglia/macrophage  M2  polarization  and  inhibited
microglia/macrophage M1 polarization in vivo compared to that by ExoCtrl

Since microglia/macrophage polarization plays an important role in the process of
oligodendrogenesis  and remyelination after  stroke[40,44],  we performed qRT-PCR
analysis to quantify the mRNA levels of the M1 markers CD16 and IL-1β and the M2
markers CD206 and Arg-1; we also performed immunofluorescence staining to detect
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Figure 1

Figure 1  Human umbilical cord mesenchymal stem cellsCCR2 load the C-C chemokine receptor type 2 receptor into their exosomes. A, B: Flow cytometry
analysis of the C-C chemokine receptor type 2 (CCR2) receptor on human umbilical cord mesenchymal stem cells (HUC-MSCs)Ctrl and HUC-MSCsCCR2, n = 3, cP <
0.001; C: CCR2 mRNA expression in HUC-MSCsCtrlvs HUC-MSCsCCR2, n = 3, cP < 0.001; D: Western blotting analysis for the quantification of the CCR2 expression
in HUC-MSCsCtrlvs HUC-MSCsCCR2, n = 3; E, F: Analysis of the exosomal morphology and diameter distribution of ExoCtrl and ExoCCR2 using transmission electron
microscopy and the qNano® system, respectively, n = 3; G: Western blotting analysis for the detection of the exosomal specific markers CD9, CD63, and CD81 in
ExoCtrl and ExoCCR2, n = 3; H: Western blotting analysis for the quantification of the exosomal CCR2 expression in the ExoCtrl and ExoCCR2 samples, n = 3; I:
Schematic diagram describing the extraction of the exosomes from the medium; J: Detection of the CCL2-binding ability of the exosomes by ELISA, n = 3, cP < 0.001.
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Figure 2

Figure 2  ExoCCR2 improved the spatial learning and memory at day 28 after transient middle cerebral occlusion compared to ExoCtrl. A: Experimental
schedule to observe the effects of exosomes on rats with transient middle cerebral occlusion (tMCAO); B: Effect of exosomes on the mean escape latency to find the
platform in each group. n = 10, eP < 0.01, ExoCtrl vs tMCAO, cP < 0.001, ExoCCR2 vs tMCAO, aP < 0.05, ExoCCR2 vs ExoCtrl; C: Effect of exosomes on the time spent in
the target quadrant in case of rats from each group. n = 10. dP < 0.05, eP < 0.01, fP < 0.001; D: Effect of exosomes on the mNSS values of rats from each group. n =
10. eP < 0.01, ExoCtrl vs tMCAO, fP < 0.001, ExoCtrl vs tMCAO, cP < 0.001, ExoCCR2 vs tMCAO, aP < 0.05, ExoCCR2 vs ExoCtrl.

CD16/iba-1  and  CD206/iba-1,  to  compare  the  effects  of  ExoCtrl  and  ExoCCR2  on
microglia/macrophage polarization. The CD16 and IL-1β mRNA expression levels in
samples obtained from rats after ExoCCR2 and ExoCtrl treatment decreased significantly
and  the  mRNA  expression  levels  of  CD206  and  Arg-1  increased  significantly
compared to those in samples obtained from rats in the tMCAO group at day 4 and
day 14 after tMCAO. The changes in rats from the ExoCCR2 treatment group were more
enhanced compared to those in rats from the ExoCtrl treatment group (Figure 4A-H).
These results were validated by immunofluorescence staining for CD16/iba-1 and
CD206/iba-1 at day 14 after tMCAO (Figure 4I, 4J).

ExoCCR2 suppressed CCL2-induced macrophage migration and activation in vivo and
in vitro compared to ExoCtrl

In pathological conditions such as cerebral ischemia, numerous CCR2+ blood-derived
macrophages migrate into the ischemic area due to the high in situ  expression of
CCL2[19,20],  which  plays  a  critical  role  in  microglia/macrophage  activation  and
polarization.  Downregulation  of  the  CCL2/CCR2  axis  inhibits  mononuclear
macrophage infiltration, which reduces the over-activation and M1 polarization of
microglia/macrophages  and  promotes  the  alternative  M2  activation  of
microglia/macrophages[21-23,45]. Therefore, we examined the expression of the CCL2,
nuclear factor kappa B (NF-κB), ionized calcium-binding adapter molecule 1 (iba-1),
and  CD68  proteins  by  Western  blotting  analysis.  The  results  showed  that  the
expression levels of CCL2, NF-κB, iba-1, and CD68 in samples obtained from rats in
the ExoCCR2  and ExoCtrl  treatment groups decreased significantly compared to the
samples obtained from rats in the tMCAO group; additionally, the changes in samples
from rats in the ExoCCR2 treatment group were more enhanced compared to those in
samples from rats in the ExoCtrl treatment group (Figure 5A-E).

To further confirm these results  in  vitro,  a  transwell  assay for  quantifying the
number of  migrated macrophages,  qRT-PCR analysis  for quantifying the mRNA
expression levels of IL-1β and tumor necrosis factor α (TNF-α), and Western blotting
analysis for quantifying the NF-κB protein expression were performed to evaluate the
effects of ExoCCR2 and ExoCtrl on the migration and activation of macrophages in vitro.
The  results  indicated  that  ExoCCR2  treatment  significantly  inhibited  macrophage
infiltration, and reduced the mRNA expression levels of IL-1β and TNF-α and the
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Figure 3

Figure 3  ExoCCR2 exerts superior beneficial effects on remyelination and oligodendrogenesis at day 28 after transient middle cerebral occlusion compared
to ExoCtrl. A, B: Western blotting analysis of the MBP expression in samples from rats in each group. n = 5, aP < 0.05, bP < 0.01, cP < 0.001; C, D: Analysis of MBP
fluorescence intensity in samples from rats in each group. Scale bar = 50 μm, n = 6, aP < 0.05, bP < 0.01, cP < 0.001; E, F: NG2+/ BrdU+ cell colocalization count by
immunofluorescence staining. Scale bar = 50 μm, n = 6. bP < 0.01, cP < 0.001.

expression  levels  of  the  NF-κB  protein,  compared  to  the  cells  from  the  ExoCtrl

treatment and CCL2 control group; on the contrary, ExoCtrl  showed no significant
effects on macrophage migration, the mRNA expression levels of IL-1β and TNF-α,
and the expression levels of the NF-κB protein, compared to the case for cells from the
CCL2 control group (P > 0.05) (Figure 5F-5K).

DISCUSSION
With increasing studies seeking to isolate the specific paracrine factors that mediate
the therapeutic effects of MSCs, the therapeutic efficacy of exosomes derived from
their parent cells  has been found to be comparable to that of  MSC therapies[13,14].
Intravenous administration of MSC-derived exosomes to a rodent model of stroke or a
rodent model of traumatic brain injury has been shown to substantially promote
white  matter  damage  repair,  thereby  improving  the  behavioral  and  cognitive
outcomes[29,46].  Moreover, genetically modified exosomes such miR-17-92- or miR-
133b-overexpressing exosomes have been found to enhance the therapeutic effects of
exosome-based treatment in a model of experimental stroke[47,48]. Exosome-mediated
intercellular communications via the transfer of exosomal proteins or RNAs between
the source and target cells have been extensively evaluated[49]. However, only a few
studies have focused on the surface receptors on exosomes. Ciullo et al[50] have found
that  treatment  with  C-X-C motif  chemokine  receptor  4  (CXCR4)-overexpressing
exosomes showed more beneficial outcomes in a myocardial infarction animal model
than the treatment with control exosomes, suggesting that the receptors on exosomes
may also contribute to their therapeutic effects. Shen et al[35] have found that CCR2-
positive  exosomes suppress  macrophage migration and alleviate  ischemic  renal
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Figure 4

Figure 4  ExoCCR2 drove microglia/macrophage M2 polarization and inhibited microglia/macrophage M1 polarization at day 4 and day 14 after transient
middle cerebral occlusion compared to ExoCtrl. A-D: Relative CD16, IL-1β, CD206, and Arg-1 mRNA expression changes in samples obtained from rats in each
group on day 4 after transient middle cerebral occlusion (tMCAO), n = 6, aP < 0.05, bP < 0.01, cP < 0.001; E-H: Relative CD16, IL-1β, CD206, and Arg-1 mRNA
expression changes in samples obtained from rats in each group on day 14 after tMCAO, n = 6, bP < 0.01, cP < 0.001; I: CD16/iba-1 immunofluorescence staining and
cell colocalization counts 14 d after tMCAO. Scale bar = 50 μm, n = 6, aP < 0.05, cP < 0.001; J: CT206/iba-1 immunofluorescence staining and cell colocalization
counts 14 d after tMCAO. Scale bar = 50 μm, n = 6, aP < 0.05, cP < 0.001.

injury.  Since Huang et  al[30]  have demonstrated that  CCR2-overexpressing MSCs
enhance the therapeutic effects of MSC treatment in rats with tMCAO, we further
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Figure 5

Figure 5  ExoCCR2 showed more powerful effects on CCL2-induced macrophage migration and activation in vivo and in vitro than ExoCtrl. A-E: Comparison of
the expression levels of the CCL2, iba-1, CD68, and NF-κB proteins in samples from rats in each group (in vivo) at day 4 after transient middle cerebral occlusion, n =
6, bP < 0.01, cP < 0.001; F: Schematic diagram of the transwell experiment. Immunofluorescence detection of the migrated macrophages in case of each treatment
group (in vitro), n = 3; scale bar = 200 μm, bP < 0.01, cP < 0.001; D-K: Comparison of the mRNA expression levels of TNF-α and IL-1β and the expression levels of the
NF-κB protein in cells from each group (in vitro), n = 3, bP < 0.01, cP < 0.001.

explored whether exosomes derived from CCR2-overexpressing MSCs can show
enhanced  therapeutic  effects.  The  results  indicate  that  HUC-MSCsCtrl  and  their
secreted ExoCtrl expressed low amounts of CCR2, while HUC-MSCsCCR2 and ExoCCR2

showed a high expression of CCR2. Moreover, the results showed that ExoCCR2 showed
significant binding capacity to the ligand CCL2 in vitro compared to ExoCtrl; this is
consistent with the results of the study by Shen et al[35],  Based on this finding, we
hypothesize that when present on exosomes,  the CCR2 receptor may exert  more
powerful therapeutic effects for the treatment of PSCI.

MSC-based treatments have been evaluated to promote cognitive recovery in an
animal model of stroke[4] or traumatic brain injury[51]. Previous studies have indicated
that exosome treatment can promote the repair of white matter damage after stroke
and  facilitate  the  recovery  of  neurological  function  after  stroke[48,52].  Exosomes
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produced by MSCs mediate several therapeutic effects of MSCs; however, reports
about the effects of exosome treatment on cognitive impairment after stroke are rare.
Since  HUC-MSC-derived  exosomes  have  shown  potent  effects  on  microglial
activation  and  polarization  in  animal  models  such  as  the  hypoxic-ischemic
encephalopathy model[26] and the peripheral nerve injury model[27], and improved the
cognitive  function  in  an  Alzheimer's  disease  model  by  modulating  microglial
polarization[25], we utilized HUC-MSC-derived exosomes in this study. The results
showed that the spatial learning and memory in the rats from the ExoCtrl and ExoCCR2

treatment groups were significantly better than those in the rats from the tMCAO
group; additionally, ExoCCR2 treatment significantly promoted the recovery of spatial
learning and memory in rats, compared to that by ExoCtrl treatment.

Although  PSCI  is  a  heterogeneous  disease,  white  matter  damage  is  the  most
common pathological change observed in almost all cases of vascular dementia[53] and
most types of stroke[54]. Both basic medical studies and clinical studies have suggested
that white matter damage after stroke is highly correlated with PSCI[43,55,56]. In the acute
phase of  stroke,  oligodendrocyte damage causes the demyelination of  the white
matter, leading to neurotransmission disorders. During the recovery phase of stroke,
oligodendrocytes and their precursor cells proliferate and differentiate into mature
oligodendrocytes, which play a key role in remyelination[57].  Thus, facilitating the
proliferation of oligodendrocytes and their precursor cells promotes remyelination
and cognitive function after stroke[58]. Our finding is consistent with that of Xin et
al[48,52], who also found that exosomes promote oligodendrogenesis and remyelination
following experimental stroke. Another important finding is that ExoCCR2 treatment
further  promoted oligodendrogenesis  and remyelination,  compared with  ExoCtrl

treatment.  These  results  indicate  that  ExoCCR2  treatment  notably  promoted  the
recovery from PSCI by enhancing oligodendrogenesis and remyelination compared to
that by ExoCtrl treatment.

Microglia, which are the resident macrophages in the central nervous system, as
well  as  blood-derived  macrophages,  activate  and  display  dynamic  M1  and  M2
polarization after stroke[59]. Since activated microglia and blood-derived macrophages
are similar with regards to morphology and biological function, and co-express iba-1,
CD11b, and F4/80, many scholars have referred to activated microglia and blood-
derived macrophages as  the same group of  cells[60,61].  M1 microglia/macrophage
polarization deteriorates oligodendrogenesis and white matter damage by releasing
inducible nitric oxide synthase and pro-inflammatory factors such CD16, IL-1β, and
TNF-α, while M2 microglia/macrophage polarization facilitates oligodendrogenesis
and  white  matter  repair  by  releasing  the  mannose  receptor  CD206  and  anti-
inflammatory factors such as IL-10, Ym-1 and Arg-1 and engulfing tissue fragments
after stroke[40,43,62]. Promoting M2 polarization and inhibiting M1 polarization boosts
oligodendrogenesis and remyelination[63,64], and facilitates the recovery from PSCI[40].
The results of our study show that both the ExoCtrl and ExoCCR2 treatments promoted
M2 microglia/macrophage polarization and inhibited M1 microglia/macrophage
polarization, compared to the case for the rats in the tMCAO group, and ExoCCR2

showed enhanced effects compared to ExoCtrl.  Therefore,  the enhanced beneficial
effects of ExoCCR2 against PSCI may be related to their more effective regulation of
microglial polarization-mediated oligodendrogenesis and remyelination.

It  is  well-known  that  CCL2  is  expressed  in  high  amounts  in  the  ischemic
hemisphere after  stroke,  which mediates  the infiltration of  CCR2+ mononuclear
macrophages into the ischemic site and aggravates the excessive activation and M1
polarization of  microglia/macrophages[23,45].  Therefore,  we postulate  that  CCR2-
overexpressing exosomes may function as endogenous CCL2 sponges binding to
these ligands, block the over-infiltration of macrophages, and subsequently inhibit the
excessive activation and M1 polarization of microglia/macrophages. These results
support the findings from previous studies, which have reported that MSC-derived
exosomes  downregulate  CCL2  overexpression[65]  and  microglia/macrophage
overactivation[27]; ExoCtrl significantly downregulated the expression of CCL2, iba-1,
CD68,  and  NF-κB  in  vivo,  compared  to  the  case  for  rats  in  the  tMCAO  group.
Moreover, ExoCCR2 further downregulated the expression of CCL2, iba-1, CD68, and
NF-κB. To verify this in vivo  finding, in vitro  experiments were performed, which
showed that ExoCCR2 bound significantly to CCL2 in vitro compared with ExoCtrl, while
ExoCtrl  showed a low degree of binding to CCL2. Meanwhile, ExoCCR2  significantly
inhibited in vitro macrophage infiltration and the release of inflammatory factors, and
reduced the NF-κB expression, compared to ExoCtrl. Therefore, CCR2 molecules on
exosomes may function as endogenous CCL2 sponges that bind to these ligands and
inhibit the infiltration of macrophages and the subsequent over-activation and M1
polarization of microglia/macrophages.

In  conclusion,  the  present  study  demonstrated  that  both  ExoCtrl  and  ExoCCR2

improved the  cognitive  function  in  rats  after  ischemic  stroke  by  promoting  M2
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microglia/macrophage polarization,  thereby enhancing oligodendrogenesis  and
remyelination. Furthermore, this study is the first to provide evidence that ExoCCR2

have enhanced beneficial effects compared to ExoCtrl, partially due to the action of
CCR2 molecules as endogenous CCL2 sponges, whereby they bind to these ligands
and inhibit the infiltration and activation of macrophages. Since we utilized human
MSC-derived exosomes, our research serves as a pre-clinical study; further studies on
stroke patients are required to confirm our hypothesis.

ARTICLE HIGHLIGHTS
Research background
Post-stroke cognitive impairment (PSCI) is a common sequela of stroke with considerable impact
on the health well-being and quality of life to patients, and poses significant financial burden on
society. Exosomes have been shown to possess therapeutic effects that are comparable to the
mesenchymal stromal cells.  However,  few studies have focused on the effects of exosomes
derived from human umbilical cord mesenchymal stem cells (HUC-MSCs) (ExoCtrl) on PSCI.
Here in this study, we aimed to explore the if exosomes derived from C-C chemokine receptor
type 2 (CCR2)-overexpressing HUC-MSCs (ExoCCR2) have any therapeutic effects on PSCI, and
clarify the possible underlying mechanisms.

Research motivation
Effective treatment strategies for PSCI in stroke patients are an unmet clinical need.

Research objectives
In the present study, we aimed to: (1) Investigate whether CCR2 over-expressing exosomes
possess improved therapeutic effects on PSCI; and (2) The possible underlying mechanisms
involved in the therapeutic benefits of exosomes.

Research methods
The morphology of ExoCtrl and ExoCCR2 were determined by transmission electron microscopy
and qNano® particles analyzer; the CCR2 expression in the ExoCtrl and ExoCCR2 was evaluated by
Western blotting; the binding capacity of exosomes to CC chemokine ligand 2 (CCL2) in vivo was
examined by ELISA; the effects of ExoCtrl and ExoCCR2 on PSCI in experimental stroke rats were
assessed  by  Morris  water  maze.  Remyelination  and oligodendrogenesis  was  analyzed  by
Western blotting and immunofluorescence microscopy, and microglia/macrophage polarization
were investigated by qRT-PCR and immunofluorescence imaging. The infiltration and activation
of hematogenous macrophages were analyzed by transwell migration analysis and Western
blotting.

Research results
CCR2-overexpressing HUC-MSCs could deliver CCR2 receptor rich exosomes. There were not
significant difference in the size and morphology between ExoCtrl and ExoCCR2. ExoCCR2 showed
more powerful binding capacity to CCL2, while ExoCtrl hardly bound to CCL2. ExoCCR2 enhanced
the beneficial  effects  of  ExoCtrl  on PSCI through further  promoting microglia/macrophage
polarization-mediated oligodendrogenesis and remyelination. Compared with ExoCtrl, ExoCCR2

showed more powerful suppression on CCL2-induced macrophage migration and activation in
vivo and in vitro.

Research conclusions
CCR2 over-expressing on exosomes showed enhanced therapeutic benefits on PSCI through
more  powerful  modulation  on  microglia/macrophage  polarization-mediated  oligo-
dendrogenesis  and  remyelination.  The  additional  therapeutic  effect  maybe  related  to  the
suppression on CCL2-induced macrophage infiltration and activation.

Research perspectives
Our study provides great insight in the application of stem cells-based therapies for neural
degenerative disorders. Comparisons of the therapeutic effects of ExoCtrl and ExoCCR2 on more
clinically relevant animal models of stroke are warranted.
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