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Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) play a critical role in the 
osseointegration of bone and orthopedic implant. However, osseointegration 
between the Ti-based implants and the surrounding bone tissue must be 
improved due to titanium’s inherent defects. Surface modification stands out as a 
versatile technique to create instructive biomaterials that can actively direct stem 
cell fate. Here, we summarize the current approaches to promoting BMSC 
osteogenesis on the surface of titanium and its alloys. We will highlight the 
utilization of the unique properties of titanium and its alloys in promoting tissue 
regeneration, and discuss recent advances in understanding their role in 
regenerative medicine. We aim to provide a systematic and comprehensive 
review of approaches to promoting BMSC osteogenesis on the orthopedic implant 
surface.

Key words: Bone marrow mesenchymal stem cells; Osseointegration; Orthopedic implant; 
Biofunctionalization
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Core tip: Bone marrow-derived mesenchymal stem cells (BMSCs) play a key role in tissue 
repair after bone and joint injures. The effects of the surface treatment of the orthopedic 
implants on the osteogenic differentiation of BMSCs are worthy of attention. In this paper, 
we review recent advances in approaches that promote osseointegration of BMSCs on the 
surface of orthopedic implants.
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INTRODUCTION
Since Friedenstein et al[1] isolated bone marrow mesenchymal stromal cells from for the 
first time and regarded them as bone tissue progenitor cells, they have played an 
increasingly important role in orthopedics. Bone marrow-derived mesenchymal stem 
cells (BMSCs) are ideal candidates for tissue repair after traumatic injury because they 
are relatively easy to harvest in vitro and can undergo self-renewal and multi-
directional differentiation into several mesodermal and non-mesodermal cell lineages 
including osteoblasts, chondrocytes, and adipocytes[2-6]. Degenerative diseases of bone 
such as osteoarthritis can lead to bone fractures and immobility, compromising quality 
of life. In the treatment of osteomyelitis, after effectively controlling the symptoms of 
infection using local or systemic antibacterial drugs, BMSCs differentiate into 
osteoblasts and lipoblasts, and finally differentiate into mature bone adipose tissue for 
repair local injury[7]. However, although much attention has been paid to the 
engineering of biomaterials that regulate BMSC commitment to specific lineages, like 
the chondrogenic and osteoblastic lineages, harnessing BMSC fate remains a major 
challenge[8,9]. Therefore, overcoming these challenges would be very significant in the 
field of orthopedics, where the ability to stimulate osteogenic BMSC differentiation on 
biomaterials like titanium and its alloys would translate into higher rates of implant 
osseointegration and improved long-term functionality. In addition, it is necessary to 
stimulate the in vivo environment using BMSCs to study the cellular response at the 
bone-implant interface since BMSCs are in direct contact with the implant after 
surgery[10].

The term “osteointegration” has been used since Professor Branemark first reported 
the phenomenon of “osteointegration” to describe the stable combination of 
biomaterials and bone tissue. Osseointegration refers to the direct contact of the bone 
with the implant without an intermediate layer of connective tissue. This biological 
fixation is a prerequisite for implantable prostheses and their long-term success.

Titanium and its alloys have been widely used in biomedical areas in recent decades 
for cardiovascular, orthopedic, and dental applications due to their resistance to 
fatigue, superior mechanical properties, and load-bearing capabilities[11,12]. For 
example, the elastic modulus of nitinol is 40 GPa, compared to 30 GPa for bone[13]. 
However, there are major disadvantages to using Ti-based implants, including inert 
biomaterials and poor biological activity[14,15]. In addition, they fail to achieve sufficient 
osseointegration, leading to increased aseptic loosening and premature implant 
failure[16,17]. Therefore, these problems with Ti-based implant materials have hindered 
to some extent their development as orthopedic implants. Campoccia et al[18] believed 
that the surface of an ideal osteo-compatible biomaterial should possess the following 
characteristics in vitro: (1) Allow good and tight initial adhesion; (2) Support cell 
attachment and viability; and (3) Have a positive influence on the osteogenic 
differentiation process. Given that the interaction between the implant materials and 
bone tissue first occurs on the implant surface, it is necessary to modify the implant 
surface to solve the problems in titanium and its alloys. BMSCs have the critical role to 
achieve bone and implant osseointegration. Surface composition, hydrophilicity, and 
roughness of the orthopedic implant can affect BMSC differentiation and affect 
osseointegration. Thus, the surface of the implant must be biomodified to create a 
bioactive surface that is helpful to promote cell-material interactions and improve 
osseointegration of titanium and its alloys[19-21].

Many surface modification techniques like physical vapor deposition, sol-gel, ion 
implantation, anodization, and micro-arc oxidation have been investigated to improve 
the surface properties of titanium and its alloys[22-25]. Although many researchers pay 
attention to the effect of titanium surface modification on its biological activity, there 
are still few studies on the effect of modification of titanium and its alloys on the 
behavior of mesenchymal stem cells. The main aim of this review study is to report the 
state of art on the technological advancements of titanium implant surfaces to promote 
osteogenic differentiation of BMSCs on orthopedic implants. This review article deals 
with the titanium properties, innovative physicochemical procedures to modify 
titanium surfaces, biomimetic functionalization, promotion of BMSC osteogenesis, and 
inhibition of biofilm accumulation. We hope that it can provide some ideas for better 
methods to improve osseointegration efficiency.
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BIOFUNCTIONALIZATION OF ORTHOPEDIC IMPLANT WITH BIOACTIVE 
CERAMIC TO REGULATE BONE MARROW MESENCHYMAL STEM CELL 
BEHAVIOR
Bioactive ceramic materials have a certain degree of solubility in the body, releasing 
certain ions that are not harmful to the body, participating in organic metabolism, 
stimulating or inducing bone hyperplasia, promoting defective bone tissue repair, and 
showing other good biological properties. This type of material may contain 
hydroxyapatite, or it can produce hydroxyapatite after reacting with body fluids, 
which can be integrated with bone tissue to form a bone binding interface. This 
method belongs to chemical combination with high strength and good stability. In this 
section, we will review the effects of different methods of bioactive ceramic coating on 
the behavior of BMSCs. The overall situation is shown in Table 1.

Plasma spraying
Plasma spraying technology is a method in which a plasma electric arc driven by a 
direct current is used as a heat source to heat materials like ceramics, alloys, and 
metals to a molten or semi-fused state before spraying the surface of a pretreated 
workpiece at a high speed to form a firmly adhered surface layer. Plasma spraying is 
an effective method to prepare bioactive ceramic coatings. Hydroxyapatite [Ca10(PO4)6

(OH)2, HA] is a calcium hydroxide and tricalcium phosphate compound salt with a 
chemical composition and crystalline structure similar to the main minerals in human 
bones and teeth. It is also the main inorganic component of human bone tissue, and a 
typical bioactive material with good biocompatibility and chemical stability. It has 
been reported that spraying a hydroxyapatite ceramic coating on the surface of 
titanium-based implants leads to good cellular compatibility, promotes adhesion, 
proliferation, and osteogenic differentiation of BMSCs, and improves the implant’s 
bond to surrounding bone tissue. In one study, Dimitrievska et al[26] fabricated a new 
type of titanium alloy that possesses a layer of hydroxyapatite on titanium dioxide by 
plasma spraying. They studied the behavior of BMSCs on this titanium-based material. 
The results show that cells have stronger initial adhesion (improved by 20% after 2 h) 
and higher metabolic activity (improved by 20% after 2 h) on TiO2-HA compared to 
the titanium dioxide group. Furthermore, the differentiation of BMSCs is evidenced by 
alkaline phosphatase (ALP) and osteocalcin (OCN), early indicators of osteogenic 
differentiation, which are significantly increased on TiO2-HA. However, the pure HA 
coating also has some serious defects: High brittleness, poor fatigue resistance, and 
weak bonding strength with metal substrates. Porous tantalum has attracted much 
attention for its good biocompatibility and microstructure similar to cancellous 
bone[27]. In a recent study, Ta-incorporated HA coatings were developed by Lu et al[28] 
using the plasma spray technique on a titanium substrate. The result demonstrated 
that Ta-incorporated HA coating could promote initial adhesion and faster cell 
proliferation after incubation for 3 and 5 days, but it also promotes osteogenic 
differentiation of BMSCs compared to HA coatings. Akermanite ceramics can induce 
apatite mineralization. They also have moderate stability in simulated body fluid (SBF) 
and generally good mechanical properties, and support BMSC attachment[29,30]. The 
researchers found that the bonding strength between the plasma-sprayed akermanite 
bioactive coatings and Ti substrates is higher than hydroxyapatite (HA) coatings, and 
BMSC attachment and proliferation were more significant on akermanite coatings than 
on HA coatings[31].

Sol-gel method
Sol–gel process first described 150 years ago is still receiving great attention as one of 
the easiest ways to develop modified materials which possess required properties and 
are characterized by durability and stability[32]. Hence, sol-gel process is another 
method for preparing bioactive ceramic coatings. The sol-gel technology has some 
advantages compared to plasma spraying methods, including chemical uniformity, 
fine grain structure, and lower processing temperature[33]. In a study, a micro/nano-
layered structure was prepared on a micro-structured titanium (Micro-Ti) substrate 
using a sol-gel method with a spin coating technique. The results confirmed that the 
micro/nano-level structure of large particles (80 nm) significantly promoted MSC 
proliferation and differentiation compared to other small particles (20 nm and 40 
nm)[23]. Inzunza et al[34] prepared nanoporous silica coatings on Ti using the sol-gel 
method and evaporation-induced self-assembly method. The silica coatings with 
highly ordered sub-10 nm porosity accelerate the adhesive response of early BMSCs 
and promote BMSC osteogenic differentiation.
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Table 1 Biofunctionlization of orthopaedic implant with bioactive ceramic to regulate bone marrow mesenchymal stem cell behavior

Method Preparation of bioactive ceramic Cell response Ref.

TiO2-HA nanocomposite powders were thermally sprayed via the 
HVOF (high-velocity oxy-fuel) technique.

HBMSCs have stronger initial adhesion and favor 
osteogenic differentiation.

Dimitrievska 
et al[26]

Ta-incorporated HA coatings were fabricated using the plasma 
spray technique on a titanium substrate.

Ta-incorporated HA coating could promote initial 
adhesion, faster proliferation, and osteogenic 
differentiation of BMSCs.

Lu et al[28]

Plasma 
spraying

An atmosphere plasma spray system was applied to spray the 
synthesized 40-80 μm powders onto the treated substrates.

The attachment and proliferation of BMSCs were 
more significantly on akermanite coatings than on HA 
coatings.

Yi et al[31]

Ti disks were etched with the mixed solution of HF and H2SO4. 
Next, EtOH solutions containing tetrabutyl titanate (TBT) were 
spin-coated onto samples.

The micro/nano-level structure of large particles (80 
nm) significantly promoted MSC proliferation and 
differentiation.

Shen et al[23]Sol-gel 
method

Pre-hydrolyzed silica solution was added to a solution containing 
the pores structure-directing agents dissolved in ethanol.

The silica coatings accelerate the adhesive response of 
early BMSCs and promote BMSC osteogenic 
differentiation.

Inzunza et al[34]

HVOF: High-velocity oxy-fuel; HBMSCs: Human bone marrow-derived mesenchymal stem cells; HA: Hydroxyapatite; BMSCs: Bone marrow-derived 
mesenchymal stem cells; HF: Hydrofluoric acid; H2SO4: Sulfuric acid; TBT: Tetrabutyl titanate; MSC: Mesenchymal stem cell.

SURFACE TOPOGRAPHY TO REGULATE BONE MARROW 
MESENCHYMAL STEM CELL BEHAVIOR
A bioactive ceramic layer is coated on the surface of porous titanium, and its 
osteoconduction supports the new bone to grow into the pore along the pore wall, 
which can effectively improve biological fixation of the porous titanium coating. 
However, this method also has some shortcomings: (1) After applying the bioactive 
ceramic coating, the pores of bone tissue are reduced, so the contact area with bone 
tissue is reduced; and (2) Bioactive ceramic coating still has degradation, poor 
combination with titanium, and other problems[35]. A variety of surface modification 
methods have been developed to improve titanium bioactivity. In this section, we will 
review the different surface modification methods to provide a reference for clinical 
use (Table 2).

Chemical treatments
Chemical methods can be used to increase the thickness of the oxide film to improve 
the biocompatibility and bioactivity of titanium and its alloys. The surface chemical 
treatment of titanium and titanium alloys mainly includes alkali treatment, acid 
treatment, and acid-base two-step treatment. Alkali solution is used to modify the 
titanium surface to obtain sodium titanate gel with rich Ti-OH groups on the surface, 
endowing it with biological activity[36,37]. For this purpose, Cai and his team employed 
potassium hydroxide to modify the surfaces of titanium substrates; the formed 
potassium titanate layer enhances titanium’s corrosion resistance. The proliferation 
and differentiation levels of alkaline phosphatase and osteocalcin were significantly 
increased in MSCs cultured on alkaline-treated titanium after 7 and 14 d of culture, 
respectively[38].

Acid treatment is often used to remove the oxide layer and contaminants on the 
surface of the medical titanium material to obtain a clean and uniform surface. The 
acid treatment results in a 10-nm thick oxide layer, while the titanium oxide in the air 
is only 3-6 nm thick[39]. Maekawa et al[40] treated titanium with polyphosphoric acid 
solution for 24 h at 37 °C. Surface texture measurement results show that the 
maximum surface roughness of the treated titanium surface significantly increased. 
Significantly higher cell attachment and proliferation were also found on titanium 
treated with polyphosphoric acid in contrast to untreated titanium (control). By 
comparing the effects of acid-treated titanium and pure titanium on osteogenic 
differentiation of bone MSCs, Perrotti et al[41] concluded that 1 wk of treatment was 
more than enough for osteoblast differentiation on acid-treated titanium. Silva and his 
group suggested that rough surfaces submitted to acid-etching favor undifferentiated 
mesenchymal cell differentiation into osteogenic lineage cells compared to smooth 
titanium surfaces without acid treatment[42]. Although many studies have shown that 
surface acidification can increase the degree of roughening and improve the biological 
activity of titanium implants, acid treatment may cause hydrogen to penetrate below 
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Table 2 Surface topography to regulate bone marrow mesenchymal stem cell behavior

Method Treatment process Cell response Ref.

Commercial pure Ti was immersed into KOH solutions. The differentiation levels of ALP and OCN were significantly increased. Cai et al[38]

The Ti disks were immersed into solutions of polyphosphoric acid. Significantly higher cell attachment and proliferation were also found on Ti treated with polyphosphoric 
acid.

Maekawa 
et al[40]

Surfaces submitted to polishing plus etching with 0.8% HF, 13% HNO3 solution. Rough surfaces submitted to acid-etching favor undifferentiated BMSCs into osteogenic lineage cells. Silva et al[42]

The Ti disks were pickled in oxalic acid solution and NaOH, respectively. Although BMSC adhesion and osteogenesis were promoted, proliferation was significantly inhibited on 
treated surfaces.

Li et al[47]

The titanium was treated with H2O2. H2O2-treated surfaces were beneficial for promoting BMSC attachment, proliferation, and osteogenic 
differentiation.

Daw et al[52]

Chemical treatments

The anodic oxidation was carried out to prepare nanotube on titanium surface. NT30 supported adhesion, stretching, proliferation, and osteogenic differentiation of BMSCs. Xu et al[24]

Nanonets on titanium surfaces were prepared. BMSC cultured on nanonets structured Ti surfaces present a high frequency of alignment. Grimalt 
et al[53]

The Ti disks were micro-arc oxidized in an electrolyte solution. The MAO-coating significantly promoted adhesion and osteogenic differentiation of BMSCs by mediating 
the integrin β1 signaling pathway.

Li et al[57]

Electrochemical 
anodization

O-PIII treatment was performed in a high-vacuum chamber with a radio 
frequency plasma source.

O-PIII treatment could enhance the adhesion of BMSCs. Yang et al[59]

O-PIII treatment was performed in a high-vacuum chamber with a radio 
frequency plasma source.

The group treated with the highest concentration of oxygen ions has the best effect on adhesion, migration, 
proliferation, and differentiation of BMSCs.

Yang et al[60]

The Ti-based alloy was modified by electropolishing and plasma electrolytic 
oxidation process.

The calcium-ion-implanted titanium remarkably improved BMSC adhesion and proliferation compared to 
the untreated sample.

Michalska 
et al[61]

Highly ionized Ca and Mg plasmas were generated from a filtered vacuum arc 
source and accelerated within the electric field between a sheath and the 
substrates.

Initial cell attachment on a titanium surface can be improved by Ca and Mg ion implantation. In addition, 
the expression of osteogenic-related genes like RUNX2 and type I collagen was higher in the Mg ion-
implanted surface.

Won et al[62]

Plasma ion implantation 
and deposition

The Ti discs were polished with abrasive grit (grades 240–600), and then treated 
with laser radiation at various fluences (132, 210, or 235 J/cm2).

Laser-modified titanium surfaces could enhance upregulation of expression of the osteogenic markers and 
enhance alkaline phosphatase activity of BMSCs.

Bressel et al[66]

DMLS discs were fabricated in an argon atmosphere with Yb fibre laser system. Topographical cues of DMLS surfaces could enhance BMSC adhesion, as well as osteogenesis. Zheng et al[67]Laser beam treatment

The laser system was a Ti: Sa laser chain, which delivers 120 fs, 800 nm pulses at 
a repetition rate of 5 kHz.

BMSCs exhibited a more elongated, spindle-like morphology and higher spreading speeds on FS laser-
modified surfaces.

Dumas et al[68]

Ti: Titanium; KOH: Potassium hydroxide; ALP: Alkaline phosphatase; OCN: Osteocalcin; HF: Hydrofluoric acid; HNO3: Nitric acid; BMSC: Bone marrow-derived mesenchymal stem cell; NaOH: Sodium hydroxide; H2O2: Hydrogen 
peroxide; MAO: Micro-arc oxidation; O-PIII: Oxygen plasma immersion ion implantation; Ca: Calcium; Mg: Magnesium; RUNX2: Runt-related transcription factor 2; DMLS: Direct metal laser sintering: Yb: Ytterbium; FS: Femtosecond.

the oxide layer, thereby triggering hydrogen embrittlement[43].
The acid-alkali two-step method is also used for titanium surface modification. 

Strong acid erosion could cause micropores on the surface of titanium and titanium 
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alloys to increase surface area. Meanwhile, alkaline solution can form a thicker 
microporous titanium oxide layer on the titanium surface, improving the titanium 
implant’s biological activity[44-46]. Li et al [47] first placed titanium in oxalic acid solution 
(5 wt%) at 100 °C for 2 h to remove the oxide layer and acquire a homogeneous 
micropit surface. Each pretreated titanium plate was treated in 5 mmol/L NaOH 
solution at 80 °C for 24 h. An in vitro cell experiment demonstrated that BMSC 
adhesion and osteogenesis can be better promoted on a micro/nanoporous surface 
than on an acid etched titanium surface. However, BMSC proliferation was 
significantly inhibited on treated surfaces after culturing for 4 and 7 days, which may 
due to the high pH around the implant. The high pH at the cell/material interface may 
cause alkalosis and inhibit BMSC proliferation and viability[48].

Hydrogen peroxide can also be used for activation treatment of titanium. Hydrogen 
peroxide treatment of titanium is a chemical dissolution and oxidation process, which 
could alter surface roughness, thickness, and hydrophilicity, with improvements in 
titanium osteoconductivity[49-51]. In one study, titanium was treated with 30% volume 
(v/v) of H2O2 (5 mL H2O2/g disc) for different times in an unsealed covered container 
under darkness at room temperature. The modifications induced by 6-24 h H2O2-
treated surfaces are most beneficial for maintaining or promoting the attachment, 
proliferation, and osteogenic differentiation of BMSCs[52].

Electrochemical anodization
Anodization refers to the use of an electric field and various dilute acids as electrolyte 
solutions. A series of REDOX chemical reactions take place on the anode surface to 
form an oxidation layer. Due to anodization’s simplicity, versatility, and low cost, it 
has gained widespread attention in the surface treatment of titanium implants. In a 
study, Xu et al[24] found that tube diameter had a significant effect on adhesion, 
proliferation, and differentiation of MSCs. Titanium was used as the working 
electrode, platinum sheet was used as the cathode, and 0.50 wt% NH4F + 10 vol% H2O 
mixture was used as the electrolyte. The anodic oxidation was carried out at 10, 30, 
and 60 V, which were designated as NT10, NT30, and NT60, respectively. Finally, 
NT10, NT30, and NT60 were obtained with pore diameters of 30, 100, and 200 nm, 
respectively. By comparison, although NT60 can promote osteogenic differentiation to 
the greatest extent, it significantly inhibits cell adhesion and proliferation. NT10 can 
promote cell proliferation and adhesion, but it is useless for osteogenic differentiation 
of cells. NT30 supported adhesion and proliferation of BMSCs, and the cells on NT30 
became increasingly elongated with increased diameter and showed a large number of 
prominent filamentous pseudopods. Moreover, it showed better osteogenesis-
inducing ability. In another study, Grimalt et al[53] produced a nanonets structure on 
titanium discs. BMSCs cultured on nanonet structured titanium surfaces present a 
high frequency of alignment and promote osteogenic differentiation of the cells, while 
cells on untreated titanium surfaces exhibited a random orientation.

Micro-arc oxidation (MAO) is a new type of anodic oxidation technology that 
deposits a ceramic coating on the metal surface, and it has been widely applied in the 
surface modification of titanium and its alloys to enhance biological activity and 
osteogenic capacity. Based on ordinary anodization, arc discharge is used to enhance 
and activate the reaction occurring on the anode, thereby forming a ceramic film in situ 
on the surface of titanium[54-56]. Zhou et al[25] reported that porous coatings prepared by 
MAO promote BMSC adhesion and osteogenic differentiation. In addition, the larger 
the pore size, the more conducive to BMSC adhesion and osteogenic differentiation 
when the pore size is in the range of 3-10 μm. A similar phenomenon was observed in 
BMSCs in another study. Li et al[57] developed two kinds of coatings (MAO and MAO-
Alkali coatings) with similar micro-morphologies, both of which significantly promote 
BMSC adhesion and osteogenic differentiation by mediating the integrin β1 signaling 
pathway.

Plasma ion implantation and deposition
Plasma ion implantation (PIII) is known to modify the surface and near surface regions 
of materials, and it has many advantages for surface modification of materials, 
including the following: (1) Changing the surface characteristics of the material alone 
without affecting the properties of the material; (2) The modified layer will not fall off 
or fail in combination; and (3) PIII is a low-temperature process (approximately 100 
°C), and there is no change in the size of the workpiece due to thermal distortion.

PIII surface modification mainly uses plasma generated after Ar, N2, O2, and other 
gases or metal gasification to treat the material surface. Under the action of plasma, the 
surface of the material is bombarded with high-energy particles in the plasma. 
Chemical bond breakage occurs, and large molecular radicals are generated. At the 
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same time, the material is etched to change the surface properties. PIII of metal 
materials can effectively improve the mechanical properties, wear resistance, and 
corrosion resistance of orthopedic implants, thus enhancing their biocompatibility[58]. 
Yang et al[59] explored the effect of titanium treated with oxygen plasma immersion ion 
implantation (O-PIII) on the behavior of BMSCs with different oxygen doses. The 
results showed that O-PIII treatment could enhance BMSC adhesion, and there was no 
significant difference in the titanium surface treated with O-PIII when the oxygen ion 
dose differed. In their later study, Yang et al[60] compared the effects of three doses of 
oxygen ion implantation into titanium on BMSC behavior. Among these treated 
titanium disks, the group treated with the highest concentration of oxygen ions has the 
best effect on cell adhesion, migration, proliferation, mineralization, and 
differentiation of BMSCs. It has been reported that calcium-ion-implanted titanium 
also remarkably improved BMSC adhesion and proliferation compared to the 
untreated sample[61]. Similarly, other studies have evaluated the response of BMSCs to 
titanium surfaces that had been implanted with Ca and Mg ions using the PIIID 
technique. The results showed that initial cell attachment on a titanium surface can be 
improved by Ca and Mg ion implantation. Cells on the Mg ion-implanted surface 
showed more extended filopodia after 4 and 24 h of cultivation. In addition, the 
expression of genes associated with osteogenic differentiation like RUNX2 and type I 
collagen was higher in the Mg ion-implanted surface[62]. These results are consistent 
with previous studies showing that significant cytotoxicity was not observed after Mg 
ion implantation into a titanium implant, and initial BMSC adhesion was improved 
with resulting osteoblast differentiation enhancement[63].

Laser beam treatment
Laser beam treatment is a controllable and flexible approach to modifying surfaces, 
which results in surfaces with increased surface area and enhanced wettability, and it 
displays negligible corrosion and high removal torques of established implants in 
preclinical bone models[64,65]. Laser-modified titanium surfaces could enhance 
upregulation of expression of the osteogenic markers and enhance alkaline 
phosphatase activity of BMSCs[66]. A recent investigation on the direct metal laser 
sintering (DMLS) titanium surface found that topographical cues of DMLS surfaces 
could enhance both protein adsorption ability and BMSC adhesion performance. 
Moreover, DMLS titanium surface could efficiently induce osteogenesis-associated 
gene expression in BMSCs via H3K27 demethylation and increases in H3K4me3 levels 
at gene promoters after osteogenic differentiation[67]. In another study, dynamic 
analyses of early cellular events showed that BMSCs exhibited a more elongated, 
spindle-like morphology and higher spreading speeds on femtosecond laser-modified 
surfaces compared to commercially pure titanium[68].

COVALENT IMMOBILIZATION BIOACTIVE MOLECULES TO PROMOTE 
BONE MARROW MESENCHYMAL STEM CELL ADHESION,  
PROLIFERATION, AND OSTEOGENIC DIFFERENTIATION
The basic principle of the above physical and chemical methods is to change the 
physical and chemical characteristics of the metal matrix surface to improve the 
biocompatibility of the material and BMSC growth inductivity, which is an indirect 
surface modification method. However, the application of biochemical technology 
proposed by David A Puleo to improve the surface activity of implants provides a 
different approach to surface modification from the traditional physical and chemical 
methods[69]. Contrary to topography-based approaches, biochemical surface 
modification utilizes macromolecules like extracellular matrix components, peptides, 
cell growth factors, and others to be fixed on the surface of biomaterials to act as 
receptors for adjacent cells, matrices, and soluble factors, which form a transition layer 
suitable for living organisms to control the tissue-implant interface[70]. In this section, 
we list different types of titanium-implant-bound macromolecules that have been 
shown to influence BMSC behavior. The overall data are listed in Table 3.

Extracellular matrix components
The extracellular matrix (ECM) is composed of several molecules secreted by cells. In 
addition to providing structural and mechanical support for tissues to interact with 
cells, these molecules can also bind to soluble molecules like growth factors that are 
present in extracellular fluid and regulate the occurrence of tissues and physiological 
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Table 3 Covalent immobilization bioactive molecules to promote bone marrow mesenchymal stem cell adhesion, proliferation, and 
osteogenic differentiation

Bioactive 
molecules Treatment process Cell response Ref.

Titanium fiber meshes were treated with NaOH, 
followed by p-nitrophenyl chloroformate, and coated 
with collagen type I.

The modification of titanium fiber meshes can promote 
BMSC osteogenic differentiation.

van den Dolder 
et al[72]

Covalent immobilization of collagen on titanium. Greater regulation effect on BMSC osteogenesis 
compared to adsorptive immobilization.

Ao et al[74]

Type I collagen

Hyaluronic acid was immobilized on titanium surface 
by layer-by-layer technique.

BMSCs had more lamellipodia and adhered more closely 
to the covalently immobilized HyA surface.

Ao et al[78]

HyA Covalent immobilization of RGD peptide on titanium 
surface.

RGD-functionalized titanium can improve early bone 
growth and matrix mineralization.

Elmengaard et al[87], 
Karaman et al[88]

RGD peptide HBII-RGD was immobilized on the Ti surface. HBII-RGD-functionalized Ti surfaces could stimulate 
BMSC differentiation and mineralization.

Guillem-Marti 
et al[90]

Covalently graft EGF and BMP-2 onto the oxide 
surfaces.

BMSC adhesion and proliferation were dramatically 
increased by covalently grafting EGF, but covalently 
grafted BMP-2 did not.

Bauer et al[92]Growth factors

PDGF-BB loading on titanium nanotube. PDGF-BB functionalized surfaces significantly enhanced 
BMSC attachment and osteogenesis-related functions

Ma et al[98]

NaOH: Sodium hydroxide; BMSC: Bone marrow-derived mesenchymal stem cell; HyA: Hyaluronic acid; RGD: Arg-Gly-Asp; HBII-RGD: Heparin binding 
II-Arg-Gly-Asp; Ti: Titanium; EGF: Epidermal growth factor; BMP-2: Bone morphogenetic protein-2; PDGF-BB: Platelet-derived growth factor BB.

activities of cells. The ECM provides a framework for tissue construction and plays an 
important role in regulating the survival, migration, proliferation, morphology, and 
other functions of cells in contact with it. Therefore, ECM components are the first 
choice for the biochemical surface modification of titanium-based bone implant 
materials.

TYPE I COLLAGEN
Collagen type I, one of the main organic components of bone ECM, is known to play 
an important role during adhesion, proliferation, and mineralization processes and 
osteogenic differentiation of cells, and it is an intriguing candidate for surface 
immobilization[71]. Dolder et al[72] showed that the modification of titanium alloy by 
type I collagen can promote BMSC osteogenic differentiation.

Morra et al[73] fixed collagen I to the surface of titanium (denoted as Col-Ti), finding 
that enhanced BMSC adhesion and cell density on Col-Ti, together with increased cell 
spreading areas on the microscopic surface morphology. RT-PCR analysis of several 
osteogenic related genes showed that the titanium surface immobilized on type I 
collagen could significantly promote BMSC osteogenic differentiation.

In another study, Ao and his team also found that immobilizing type I collagen on a 
titanium coating could enhance interactions between cells and materials and improve 
BMSC functions like adhesion, proliferation, and osteogenic differentiation. 
Furthermore, they compared the effects of different type I collagen fixation methods 
on BMSC behavior. They concluded that covalent immobilized collagen on titanium 
coating has a greater regulation effect on BMSC osteogenesis in contrast to adsorptive 
immobilization, which can be explained from the perspective of increasing the amount 
of covalently connected collagen and improving stability[74].

HYALURONIC ACID
Hyaluronic acid (HyA) is rich in carboxyl groups, and it is another major ECM 
component that possesses good biocompatibility, degradability, and low antigenicity, 
In addition, HyA could enhance cell migration and proliferation[75-77]. Based on HyA’s 
excellent properties, Ao et al[78] fabricated a titanium coating modified with HyA by 
covalent immobilization. They confirmed that BMSCs had more lamellipodia and 
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adhered more closely to the covalent immobilized HyA surface than untreated 
samples. Other in vitro cell experiments have also shown that HyA immobilization on 
titanium coatings could significantly enhance BMSC attachment, proliferation, and 
differentiation. Furthermore, Ao et al[79] prepared a stable collagen/HyA (Col/HyA) 
polyelectrolyte multilayer (PEM) film on a titanium coating using a combination of the 
layer-by-layer self-assembly technique and covalent immobilization. The results 
showed that BMSCs displayed a polygonal and fusiform-shaped morphology, and cell 
adhesion and proliferation on the material were also improved. In other words, the 
construction of Col/HyA PEMs on TCs improved the cell–material interaction. The 
induction of osteogenic differentiation was further determined using qPCR, and the 
results confirmed that stable Col/HyA PEM could significantly enhance BMSC 
osteogenic differentiation.

Peptide sequence
It has been found that some short peptides in ECM proteins play important roles in 
cell behavior regulation[80,81]. Among different ECM proteins, fibronectin (FN), a 
multifunctional cell adhesive glycoprotein, is one of the most well-known and 
commonly used to functionalize biological materials. It contains several domains that 
mediate many cellular processes like cell adhesion, migration, growth, and 
differentiation. The use of FN-functionalized titanium implants has been shown to 
improve bone conduction capacity for its ability to attach cells to ECM components via 
integrin receptor interactions[82]. Chen et al[83] fixed FN on the surface of titanium, and 
BMSCs exhibited substantial actin polymerization, in the form of lamellipodia, 
pseudopodia, and actin stress fiber. However, the cells retained a rounded 
morphology on untreated surface. Besides, FN-functionalized titanium had a 
significant positive effect on BMSC proliferation compared to the control. However, its 
use for clinical applications is hampered due to poor stability, high production costs, 
and poor ECM protein immunogenicity, which have reduced their biomedical 
potential[84]. The use of ECM-derived synthetic peptides containing the functional 
domains of ECM proteins is an effective method to overcome these problems. 
Therefore, the synthesis of short peptide fragments representing ECM proteins and the 
modification of titanium-based implants have been gradually developed[85,86]. The most 
commonly used peptide sequence for surface modification is the arginine-glycine-
aspartic acid (RGD) motif. RGD-functionalized titanium can improve early bone 
growth and matrix mineralization, and it can enhance the combination of materials 
and new bone[87]. There have been several reports on the effects of RGD on BMSCs. In a 
study, Karaman et al[88] covalently attached RGD peptide to titanium discs. The results 
indicated that RGD peptide treatment significantly enhanced BMSC adhesion and 
proliferation. Furthermore, this effect was enhanced by combining cold temperature 
plasma treatment and RGD peptide coating. Consistent with this, Herranz et al[89] 
concluded that the RGD motif was more favorable for BMSC adhesion, proliferation, 
and osteogenic differentiation in contrast to fibronectin. In another study, Jordi and his 
group covalently attached a novel molecule on the titanium surface. The novel 
molecule possesses adhesion capacity by an RGD gain-of function DNA mutation 
installed to the heparin binding II (HBII) fragment. The presence of RGD in the HBII 
domain stimulated focal adhesion formation at BMSC edges where filopodia were 
spikier compared to bare titanium samples with completely round cells. In addition, 
HBII-RGD-functionalized titanium surfaces could also stimulate BMSC differentiation 
and mineralization[90].

Growth factors
Growth factors are a class of proteins secreted by cells that act as signaling mediators 
for the relevant target cells to perform specific behaviors. Growth factors can promote 
cell proliferation, differentiation, protein synthesis, and migration of specific cells. 
Growth factors released from the implant surface can increase osteoblast activity and 
facilitate bone tissue regeneration[91]. Many researchers have been depositing growth 
factors on biomaterials to affect cell behavior. In one study, Bauer et al[92] showed the 
covalent immobilization of two growth factors, epidermal growth factor (EGF) and 
bone morphogenetic protein-2 (BMP-2), on the surface of TiO2 nanotubes and their 
effects on BMSC behavior. Cell adhesion and proliferation were dramatically increased 
by covalently grafting EGF on a surface of a 100 nm nanotube, but covalently grafted 
BMP-2 did not. The result was consistent with the finding of previous studies that 
BMP-2 promotes BMSC differentiation into osteoblast lineages but does not contribute 
to the cell attachment, adhesion, or proliferation like EGF[93]. Studies on BMP-2’s effect 
on BMSC differentiation have shown that BMP-2 has a significant effect on osteoblast 
differentiation potential[94].
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Platelet derived growth factor (PDGF) has been shown to play critical roles in bone 
regeneration after injury, and it significantly contributes to all stages of bone 
regeneration after trauma[95,96]. Among three types of dimerism, PDGF-AA, -BB, and 
–AB, PDGF-BB exerts the most potent chemotactic effects on BMSCs[97]. Ma et al[98] 
fabricated a nano-micro hierarchical TiO2 clustered nanotubular structure using 
anodization, and PDGF-BB was functionalized with PhoA (11-hydroxyphosphonic 
acid)/CDI (carbonyldiimidazole). The resulting new material had almost no 
cytotoxicity to host cells, and it significantly enhanced BMSC attachment and 
osteogenesis-related functions (early proliferation, extracellular matrix synthesis, and 
mineralization).

LOCAL CONTROL RELEASE OF BIOACTIVE MOLECULES TO PROMOTE 
BONE MARROW MESENCHYMAL STEM CELL ADHESION,  
PROLIFERATION, AND OSTEOGENIC DIFFERENTIATION
Recently, many researchers have focused on biomolecule-controlled release. This 
controlled release system overcomes the limitation of rapid degeneration and diffusion 
of biomolecules in the body, which may decrease biomolecule doses, reduce costs, and 
more importantly, minimize side effects of high-dose biomolecules. An effective 
controlled-release system can encapsulate bioactive cues in biocompatible and 
biodegradable microparticles. As the microparticles gradually degrade, biological 
molecules are released with predesigned dose kinetics over time[99-101]. The key to 
making bioactive molecules work is their release so that they can induce the required 
biological response. Many bioactive molecules can be used in this kind of sustained-
release system, including growth factors, short peptides, clinical drugs, and others. By 
sustained release on the implant surface, cell adhesion, proliferation, differentiation, 
and other behaviors can be regulated, thus improving the implant’s biocompatibility. 
Table 4 lists the commonly used bioactive molecules and their cellular responses 
reported in the recent literature.

Coating biodegradable polymers is an effective method to control the drug release 
kinetics from titanium. In a study, Kim et al[102] prepared a new dopamine coating that 
enhances the initial cell adhesion, mitochondrial activity, and proliferation of BMSCs 
on the titanium surface. Son et al[103] successfully developed hydroxyapatite (HA)-
titanium disc surfaces immobilized with dexamethasone (DEX)-loaded poly(lactic-co-
glycolic acid) (PLGA) particles using a low-temperature high-speed collision method. 
The evaluation of HA-titanium surfaces with a particle carrier system potently 
induced BMSC differentiation in vitro. This showed that the gene expression levels of 
ALP, OPN, BSP, and OC were enhanced, and these functional surfaces showed greater 
osteoinductivity than pure-Ti and HA-Ti surfaces. Cheng et al[104] used catechol as a 
template to modify a photo-crosslinked gel-based hydrogel to enhance its adhesion to 
the titanium surface, thereby improving the coating’s stability. Synthetic silicate 
nanoparticles (SNs) were introduced into the hydrogel formulation. The results 
showed that the addition of SNs to the hydrogel formulation can promote bone 
formation when co-cultured with BMSCs, suggesting the potential to promote new 
bone formation in surrounding tissues.

APPROACH TO INDIRECTLY AFFECT BONE MARROW MESENCHYMAL 
STEM CELL ADHESION, PROLIFERATION, AND OSTEOGENIC 
DIFFERENTIATION
In fact, once implanted, metallic implants would adsorb various proteins, elicit a 
clotting reaction, trigger an innate inflammatory response, and induce the bone 
regeneration process[105-107]. Intrinsic inflammation is undesirable but inevitable, and the 
result of the inflammatory response plays a vital role in the formation of new bone in 
and material around after implantation[108]. Therefore, it is important to take into 
account the immunomodulatory effects of biological materials[109]. Specifically, 
macrophages are involved in almost all-natural wound healing processes. Macrophage 
polarization has an important effect on wound healing and the biological properties of 
biological materials[110]. As the key participants of innate host immunity, classically 
(M1) and alternatively (M2) activated macrophages, the two main phenotypes, are 
pro-inflammatory and anti-inflammatory, respectively[111]. M1 macrophages express 
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Table 4 Local control release of bioactive molecules to promote bone marrow mesenchymal stem cell adhesion, proliferation, and 
osteogenic differentiation

Bioactive 
molecule Cell response Ref.

L-DOPA The new L-DOPA coating enhances the initial cell adhesion, mitochondrial activity, and proliferation of BMSCs on 
the titanium surface.

Kim et al[102]

DEX The HA-Ti surfaces with DEX carrier system potently induce BMSC osteogenic differentiation in vitro. Son et al[103]

SNs The addition of SNs to the hydrogel formulation can promote bone formation when co-cultured with BMSCs. Cheng et al[104]

L-DOPA: L-3,4-dihydroxyphenylalanine; BMSCs: Bone marrow-derived mesenchymal stem cells; HA: Hydroxyapatite; Ti: Titanium; DEX: 
Dexamethasone; SNs: Silicate nanoparticles.

high levels of interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNF-α), monocyte 
chemoattractant protein-1, inducible nitric oxide synthase, and others. M2 
macrophages synthesize IL-10, arginase-1, vascular endothelial growth factor A, and 
platelet-derived growth factor-BB (PDGF-BB), which support the homing, 
proliferation, and osteogenic differentiation of BMSCs[112].

Successful biomaterial implantation can be achieved by controlling immune system 
activation. Hence, many researchers have focused on indirectly regulating the 
behavior of BMSCs by regulating macrophage polarization. In a study, patterned 
titanium coatings were prepared by combining grit-blasting, ultrasonic washing, and 
atmosphere plasma spray which copper meshes were applied to block the molten 
titanium droplet when spraying. Macrophages tend to polarize to M2 on a patterned 
titanium surface, while macrophages on traditional titanium coatings exhibit higher 
M1 polarization.

Up-regulation of osteoinductive cytokines was detected, suggesting that 
macrophages provide a favorable osteogenic microenvironment[113]. In our previous 
study, a multi-biofunctional titanium implant was fabricated by covalently 
immobilizing titanium with the bacitracin. In vitro cell biology experiments showed 
that bacitracin-immobilized titanium could inhibit the secretion of inflammatory 
factors like TNF-α, IL-6, IL-8, and others, which represent M1 polarization of 
macrophages, and significantly promote the adhesion, proliferation, and osteogenic 
differentiation of BMSCs[114]. In another study, Ma et al[115] evaluated the osteogenic 
behavior of BMSCs on TiO2 nanotubular (NT) surfaces in conditioned medium (CM) 
generated by macrophages. BMSC morphology in CM from macrophages cultured on 
the NT surfaces was aligned in a consistent direction, while an unordered distribution 
was observed on the pure titanium surface. In addition, the modified titanium dioxide 
surface and CM in monocytes cultured on the surface jointly promoted the 
proliferation, migration, and osteogenic differentiation of BMSCs. The transition of 
macrophages from M1 to M2 at specific time points is very important for wound 
healing and tissue regeneration. In a recent study, a dual system hydrogel layer 
(chitosan/β-glycerophosphate disodium and carboxymethyl chitosan/genipin) of 
titanium dioxide nanotubes was fabricated to regulate the release of IL-4 and 
interferon-γ (IFN-γ). In the culture with BMSCs and macrophages, the system showed 
good cell compatibility and significantly promoted cell proliferation[116].

PERSPECTIVE OF OSTEOGENESIS ON TITANIUM SURFACE
BMSCs are used as core cells for the renewal and repair of local bone, cartilage, and 
medullary adipose tissue[117]. BMSCs perceive the titanium surface and become 
activated during the osteogenesis and osteointegration phases. BMSCs then establish 
contact with the titanium surface and maintain this relationship until they differentiate 
into osteoblasts and osteocytes, subsequently embedding in the mineralized matrix[118]. 
At present, many researchers are mainly focused on the effect of different modification 
methods on the behavior of BMSCs and have made great progress. However, 
problems also exist in the modified implants such as poor biological safety and poor 
stability[119].

In addition, it is important to note that there are great limitations to the existing 
methods of judging osteogenesis on titanium surface, and the current means of 
skeletal muscles mainly rely on magnetic resonance imaging (MRI), X-ray computed 
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tomography, and X-rays[120,121]. Nevertheless, there is still no effective method for the 
bone integration evaluation on metal implants, which can only rely on pathological 
biopsy examination. Therefore, the evaluation of osteogenesis on the surface of 
titanium and its alloys in vivo may be an important research target in the future. And 
more in depth basic and clinical research is necessary to develop more products.

CONCLUSION
In this article, we have summarized recent advances in the approaches for surface 
modification of titanium and its alloys, and systematically elaborated these 
modification methods and their effects on cell behavior. The methods like sol-gel, ion 
implantation, anodization, and micro-arc oxidation can promote osteogenic 
differentiation of BMSCs and improve the rate of osseointegration by changing surface 
roughness and hydrophilicity, or regulate the microenvironment of the bone-implant 
interface. We recommend that the application of modern surfaces in the clinical 
practice of orthopedics be encouraged to increase and accelerate the osseointegration 
of the implant and its alloys. To the best of our knowledge, few researchers have done 
similar work, so we hope that our work might develop some ideas for better methods 
to improve osseointegration efficiency.
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