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Abstract
The development of single-cell subclones, which can rapidly switch from dormant 
to dominant subclones, occur in the natural pathophysiology of multiple 
myeloma (MM) but is often "pressed" by the standard treatment of MM. These 
emerging subclones present a challenge, providing reservoirs for chemoresistant 
mutations. Technological advancement is required to track MM subclonal 
changes, as understanding MM's mechanism of evolution at the cellular level can 
prompt the development of new targeted ways of treating this disease. Current 
methods to study the evolution of subclones in MM rely on technologies capable 
of phenotypically and genotypically characterizing plasma cells, which include 
immunohistochemistry, flow cytometry, or cytogenetics. Still, all of these 
technologies may be limited by the sensitivity for picking up rare events. In 
contrast, more incisive methods such as RNA sequencing, comparative genomic 
hybridization, or whole-genome sequencing are not yet commonly used in clinical 
practice. Here we introduce the epidemiological diagnosis and prognosis of MM 
and review current methods for evaluating MM subclone evolution, such as 
minimal residual disease/multiparametric flow cytometry/next-generation 
sequencing, and their respective advantages and disadvantages. In addition, we 
propose our new single-cell method of evaluation to understand MM's 
mechanism of evolution at the molecular and cellular level and to prompt the 
development of new targeted ways of treating this disease, which has a broad 
prospect.
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Core tip: Current methods for determining prognosis in multiple myeloma are limited. The 
prototype device called Multi-Phase Laser-cavitation Single Cell Analyzer can perform 
reverse transcriptase polymerase chain reaction (RT-PCR) on single cells in a one-step 
microfluidics chip platform. The ability of the microfluidics chip platform to enrich 
plasma cell content by depleting CD45+ white blood cells has been demonstrated. Further 
studies will need to combine single-cell selection with RT-PCR to further enhance the 
diagnostic capabilities of this technology. This platform has the potential to be used for 
clinical risk stratification in multiple myeloma as well as minimal residual disease 
monitoring and selection of therapies to modulate the development of resistance.

Citation: Lee LX, Li SC. Hunting down the dominating subclone of cancer stem cells as a 
potential new therapeutic target in multiple myeloma: An artificial intelligence perspective. 
World J Stem Cells 2020; 12(8): 706-720
URL: https://www.wjgnet.com/1948-0210/full/v12/i8/706.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i8.706

INTRODUCTION
Epidemiology
With approximately 31000 new cases of multiple myeloma (MM) diagnosed in the 
United States (US) per year, the impact of this incurable disease on individual patients 
and society as a whole is profound. The median age at diagnosis is 70 years old[1]. All 
diagnoses of MM are believed to be preceded by a state of clonal expansion of plasma 
cells (PCs), including monoclonal gammopathy of unknown significance (MGUS) and 
smoldering myeloma (SM). The duration of these precursor conditions of MM has 
been demonstrated to be present up to 15 years prior to the diagnosis of MM[2].

Diagnosis and disease prognostication
The current diagnosis of MM requires a bone marrow biopsy and aspirate, which is 
used to enumerate plasma cel l  content  and to characterize PCs by 
immunohistochemical staining, cytogenetics, and flow cytometry. Detection of 
cytogenetic alterations, in particular, are paramount to provide prognostication and 
direct therapy and have been incorporated into the standardized staging system for 
MM[3]. For example, the presence of high-risk cytogenetics, including del17p, t(4,14), 
and t(14;16) prognosticates for survival 1/5th that of standard-risk cytogenetics[4]. 
However, the identification of such cytogenetic features may be used to guide therapy 
such as in patients with t(4;14), who have traditionally had significantly inferior 
outcome may be able to have an overall survival (OS) similar to patients with 
standard-risk MM when treated with bortezomib-containing regimens and autologous 
stem cell transplantation[5].

CURRENT SOLUTIONS TO OVERCOME THERAPEUTIC RESISTANCE
Initial treatment incorporating conventional drugs such as Dexamethasone (Dex) 
effectively induces MM cell death; however, prolonged drug exposures result in the 
development of chemoresistance. Thus, individual patients' survival within a risk 
category remains variable, and the patients relapse despite achieving a “complete 
response,” reflecting persistent disease that cannot be detected using the currently 
recommended disease evaluation techniques. It is becoming apparent that static 
cytogenetic categories alone are not sufficient to define subclone formation and 
stage[6]. Several methods are being evaluated to enhance further our ability to 
individualize treatment.

https://www.wjgnet.com/1948-0210/full/v12/i8/706.htm
https://dx.doi.org/10.4252/wjsc.v12.i8.706
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First, response assessment using minimal residual disease (MRD) at varying time 
points in a patient's disease process can further fine-tune response-adapted treatment 
strategies. MRD negativity at any given time point is closely correlated with more 
prolonged progression-free survival (PFS). It has been incorporated into the 
International Myeloma Working Group recommendation for response assessment, and 
ongoing studies are studying adaptive treatment strategies based on achieving MRD 
negativity[7]. Current methods for minimal residual disease testing include flow 
cytometry or next-generation sequencing. Multiparametric flow cytometry (MFC) 
MRD testing in MM has quite low sensitivity, detecting one cell in 104 cells and 
requires at least 2 × 106, preferably greater than 5 × 106 bone marrow cells to be 
measured[8], as recommended by the International Clinical Cytometry Society and the 
European Society for Clinical Cell Analysis. In addition to low sensitivity, MFC may 
be unable to differentiate between the dominant clone and various subclones[9]. In 
addition, there is heterogeneity between laboratories (cross-platform flow cytometry), 
which depends on instrumentation used and initial gating parameters (CD38, CD138, 
CD45, forward, and sideward light scatter)[10], within the same aliquot and is therefore 
entirely subjective. Next-generation sequencing (NGS) of immunoglobulin gene 
sequences is an alternative method for MRD assessment. While a more sensitive 
technique compared with MFC, detecting one tumor cell in 106, NGS cannot detect 
mutations that are present within individual cells[11]. Therefore, based on our current 
technologies for MRD detection, we can only say whether a patient is positive or 
negative without genuinely understanding the temporal and spatial heterogeneity 
within a given plasma cell population.

Second, we recognize the temporal and spatial heterogeneity in MM, as clinical 
observations revealed that several subclones of PCs exist at diagnosis and that there is 
selective therapeutic pressure for the evolution of individual subclones. This 
phenomenon can be tracked utilizing the whole-genome sequencing of paired 
tumor/normal samples. In one study, from 203 MM patients revealed frequent 
mutations in KRAS, NRAS, BRAF, FAM46C, TP53, and DIS3. Mutations were often 
present in subclonal populations, and multiple mutations within the same pathway (
e.g., KRAS, NRAS, and BRAF) were observed in the same patient"[12]. However, a more 
recent study utilizing plasma samples found mutations in the KRAS-MAPK pathway 
in 70% of samples in addition to multiple mutations within subclones including a 
notable mutation in PIK3CA[13] signifying perhaps the relative insensitivity of a one 
site biopsy in addition to the development of more mutated clones with the escape of 
PCs from the bone marrow microenvironment. Liquid biopsy utilizing cfDNA can 
provide us with information on targetable mutations, but is a way to study spatial and 
temporal heterogeneity present. The drawbacks for above current testing mistaken 
population phenomena for real physiological events happening only within a single-
cell (i.e., subclone) – mutations exist in different cells may not cross-talk - thereby not 
being able to manifest as clinically treatable phenotypes – which would not give early 
insight into the evolution of a given patient's MM[14].

Third, the identification of chemoresistant biomarkers offers a trace to the 
subclones, e.g., the oligonucleotide array analysis demonstrates that heat shock 
protein-27 (Hsp27) is upregulated in Dex-resistant, but not in Dex-sensitive MM cells. 
Proteomics analysis of Hsp27-immunocomplexes revealed the presence of actin in 
Dex-resistant, but not in Dex-sensitive cells. The activator protein-1 transcription factor 
family (JUNB) driving the JunB-mediated phenotype in MM cells: knockdown of 
JUNB restored the response to dexamethasone in dexamethasone-resistant MM cells. 
When JunB-ER fusion protein in dexamethasone-sensitive MM cells is activated by 4-
hydroxytamoxifen, Dex-sensitive cells become to be resistant to dexamethasone- and 
bortezomib-induced cytotoxicity[15].

Thus, the ability to track mutations within a single cell subclone lends to the study 
of mechanisms of drug resistance, possibly leading to a better selection of targeted 
therapies. To that end, new technology must be developed and raised its sensitivity 
sufficient to evaluate the low burden of MM cells, which is currently being 
investigated as a way to detect pre-biochemical relapse[16]. We propose to develop a 
technique that combines the detection of low-frequency events combines with the in-
depth characterization of the remaining subclones.

DEVELOPMENT OF AN INNOVATIVE SINGLE-CELL MOLECULAR 
PROFILING PLATFORM
While single-cell proteomics is still uncertain, single-cell RNA-seq is a widespread 
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practice in research laboratories now. Many microfluidic devices, including ours, have 
been developed for single-cell transcriptome analysis[17] but clinical application of 
single-cell transcriptome is still not common, especially in cancer characterization and 
classification. US Food and Drug Administration approved CellSearch™ (Janssen, 
Raritan, NJ) of circulating tumor cells (CTC) for predicting PFS and OS in metastatic 
breast cancer for clinical use in 2005. However, CellSearch® data correlate negatively 
with survival in patients with metastatic breast, colorectal, or prostate cancer[18]. 
CellSearch™, along with several other CTC enrichment techniques, relies on only 
fluorescent imaging analysis.

At least 50 competitor circulating tumor cell platforms exist (Table 1)[19,20], only one, 
“CellSearch™” (Janssen, Raritan, NJ) was cleared by the US Food and Drug 
Administration in October 2005. As we have a prototype Multi-Phase Laser-cavitation 
Single Cell Analyzer (MLSCA) device for single-cell transcriptome analysis (Figure 1), 
we develop a necessary commercialization 510k, and the CAP/CLIA component of 
this proposal must be side by side comparison of the applicant's technology to the 
CellSearch™ technology. This feature differentiates it from numerous competitor 
platforms used for single-cell counting. CellSearch™ can be used for predicting PFS 
and OS in metastatic breast cancer[19], however; CellSearch™ cannot generate 
consistent results for routine clinical use[21], due to the limit of the sensitivity of these 
devices[22]. CellSearch™ captures CTCs from blood using magnetic particles coated 
with anti-EpCAM (CD326; 17-1A antigen) antibodies[23], which relies on an antibody 
that binds to the protein EpCAM (epithelial cell adhesion molecule), present on the 
surface of malignant epithelial cells but not of blood cells. As CellSearch®, along with 
several other CTC enrichment techniques, relies on the presence of epithelial cell 
markers, CTCs that do not express EpCAM, such as those that have undergone an 
epithelial to mesenchymal transition may be missed[24,25].

Thus, CellSearch™ cannot generate consistent results for routine clinical use[21], and 
there is an unmet need to combine image analysis with RNA-seq for cancer 
classification. To fill this unmet need, we developed a microfluidic prototype device to 
connect FACS and imaging analysis (FISH) with molecular analysis (e.g., single-cell 
transcriptomes) - whose prototype device is called MLSCA (Figure 1).

Our MLSCA can overcome the limitation of “CellSearch™" [multiple-step 
processing, i.e., separated reverse transcriptase polymerase chain reaction (RT-PCR)], 
and the strength is the ability of our MLSCA to perform RT-PCR on a single cell 
isolated on the chip (one-step processing), eliminating process errors. Our microfluidic 
system is equipped with both single-cell isolation and cDNA synthesis capabilities. 
Thus, our MLSCA enables (1) microscale fluorescence-activated cell selection for 
separation of rare cell subpopulations; and (2) generation of the high-quality single-
cell transcriptome with nano-droplets. We have conducted and published a small 
Phase I clinical trial with our devices in myeloma risk stratification of MM[26]. As a 
proof-of-concept for instrumentation of our prototype device, we published the 
clinical trial using MLSCA/MF-CD45-TACs on MM 48 patients[17], which shed new 
light for scale-up applications in clinics.

Conventional single-cell isolation techniques with microliter carry-over volumes 
cannot be used for sensitive nano-liter RT directly. Unlike PCR, which is a repetitive 
event that itself may introduce bias, RT is a single biochemical reaction for which 
starting mRNA concentration is critical. Further, the resultant cDNA population is 
thought to be unbiased. The innovations of our device include: (1) The single cell 
analyzer (MLSCA) combines single-cell fluorescent-activated cell selection, reverse 
transcript synthesis of high-quality cDNA, transcriptome analysis - all in 0.1 nano-liter 
droplets (50 pico-liter), thereby reducing procedure errors to improve single-cell 
cDNA quality and to yield reliable single-cell transcriptomes down-stream; (2) The 
ability to create single artificial cells, a highly controllable test system, for evaluation of 
platform performance, using homogeneous droplets of known low abundant RNA; (3) 
Demonstration of such MLSCA analysis clinical specimens; (4) Development of 
statistical methods for defining and quantifying molecular heterogeneity in 
populations of cells; and (5) Linkage to an RNAseq platform (Helicos and Ion Torrent) 
that does not require PCR amplification of the input cDNA is crucial for ensuring the 
fidelity of the measured transcriptome: read counts can be directly related to RNA 
abundance, with no possible distortion due to differential PCR efficiencies. Thus, the 
strength is the ability of the MLSCA to perform RT-PCR on a single cell on the chip. 
This strength differentiates it from numerous competitor platforms only used for CTC 
counting. We tested the MLSCA by addressing MM heterogeneity to identify 
underlying tumor initiation, and relapse biomarkers in MM, which was inspired by 
that fact that single-cell transcriptomic analysis in medulloblastomas led to mapping 
oncogenic networks including HIPPO-YAP/TAZ and AURORA-A/MYCN 
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Table 1 Multi-Phase Laser-cavitation Single Cell Analyzer can perform both circulating tumor cells enumeration and single-cell 
molecular characterization

Technology for CTC CTC count Molecular profile Single CTC molecular 
profile Ref.

MF

Proposed MLSCA (uFACS and on-chip RT/PCR) Yes Yes Yes

CTC chip micropost Yes Yes No [47,48]

Isolate CTC by size with filter Yes Yes No [49]

Cytometer

Flow cytometry (i.e. FACS) Yes Yes No [50]

Multiphoton intravital flow cytometry Yes No No [51]

laser scanning cytometry Yes No No [52]

Photoacoustic flowmetry Yes No No [53]

Fiber-optic array scanning technology (FAST) Yes No No [54]

ICC (Ab)

CellSearch™ (Immunomagnetic enrichment, FDA 
approved)

Yes Yes No [55]

Immunomagnetic cell sorting for positive or 
negative selection

Yes Yes No [56]

Epithelial immunospot (EPISPOT) of CTC secreted 
proteins

Yes No No [57]

Others

Density gradient centrifugation Yes Yes No [58]

Dielectrophoresis Yes Yes No [59]

Collagen adhesion matrix ingestion assay Yes No No [60]

PCR detection of tumor-derived nucleic acid in 
serum/plasma

No Yes No [61]

RT/PCR detection of tumor-specific markers in 
nucleated blood cells

No Yes No [62]

Membrane arrays for detecting multiple tumor-
specific mRNA

No Yes No [63]

MLSCA: Multi-Phase Laser-cavitation Single Cell Analyzer; ICC: Immunocytochemical staining; MEMS: Microelectromechanical system; MC: Microfluidic 
channels; MF: Multiparametric flow; CTC: Circulating tumor cells; RT: Reverse transcriptase; PCR: Polymerase chain reaction.

pathways[27] and to identify pathways of drug resistance[28].
We applied this MLSCA for a clinical trial of risk stratification of MM[17]. As our MF-

CD45-TACs differs from CellSearch™, we expected single-cell features (FACS, 
biomarkers) of CellSearch™ differ from those of our MF-CD45-TACs (Figure 2). 
Specifically, our MF-CD45-TACs-based technology distinguished CD45- cells from 
MM PCs, which improved the detection of rare genetic alternation in PCs, which was a 
significant improvement over direct flow cytometry and FISH, and led to more precise 
diagnosis and prognosis of MM.

This attribute is of significance as MM is an incurable neoplasm of PCs that affects 
more than 20000 people annually in the United States. Risk stratification, primarily 
based on cytogenetic abnormalities, has emerged as essential for its management[29]. 
Thalidomide, lenalidomide, and pomalidomide, first to the third generation of 
immunomodulatory drugs (IMiDs), respectively, are used for maintenance therapy of 
MM. Cytogenetic alterations are the base of risk stratification for MM and the selection 
of which IMiDs for MM therapy[30].

The rarity and sporadic distribution of PCs in bone marrow often lead to false-
negative results of FACS and cytogenetic detection performed directly on a bone 
marrow biopsy sample. Target cell enrichment could overcome the rarity and sporadic 
distribution of PCs in the bone marrow. Density gradient centrifugation and 
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Figure 1  A prototype LSCAT device for single-cell transcriptome analysis.

magnetically labeled antibodies [DG/magnetic-activated cell sorting (MACS)] with 
MACS have been widely used to enrich target cells in blood samples. MACS 
enrichment of CD138+ cells for FISH in MM diagnosis has been reported[31]. However, 
MM cells with low levels of CD138 have also been associated with poor prognosis[32]. 
Therefore, a better enrichment method is needed. Here, we report a novel microfluidic 
approach, combining microfluidic size selection and CD45 depletion with tetrameric 
antibody complexes (TACs) for the enrichment of MM cells (MF-CD45-TACs) in bone 
marrow samples. Our study showed that this approach significantly improves the 
detection of rare genetic alternations in PCs. Parallel diagnosis performed for 48 
patients (Figure 3) showed that the microfluidic enrichment approach represents a 
significant improvement over direct flow cytometry and FISH and leads to more 
precise diagnosis and prognosis[17]. Implementation of this modified diagnostic assay 
in clinics could improve the current clinical outcomes of MM (Figure 4 and Figure 5).

APPLICATION OF SINGLE CELL SUBCLONE TRACKING TO THE FUTURE 
TREATMENT OF MM
At the MGUS/Smoldering stage
While all MM is preceded by an asymptomatic MGUS/smoldering myeloma stage[33], 
only a fraction of these individuals will evolve to symptomatic MM. Currently, some 
high-risk features such as high bone-marrow plasma cell burden, light chain ratios, 
and predicates the development of symptomatic MM. Still, we do not understand the 
oncogenesis of MM and, therefore, cannot accurately determine who will progress and 
who will remain asymptomatic. Using circulating tumor cell technology, we could 
track the occurrence of trigger genetic events in pre-symptomatic patients without the 
need to perform repeated invasive procedures and potentially intervene to eradicate 
these emerging malignant subclones using targeted therapies prior to the development 
of symptomatic disease or the acquisition of additional potent genetic mutations.

MRD monitoring
MRD monitoring has become one of the most relevant prognostic factors for MM. It 
has been shown that persistent MRD is associated with improved progression-free 
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Figure 2  Processing of single-cell droplets. A: A single-cell in an oil droplet travels to a trapping module of the 10-nl reactor (green, in inset). Other cells are 
forced to bypass to the next unit; B: FEOET push the droplet (with a cell) past the open valve (orange bar), which closes, locking the droplet into the 10-nl ring with 
RT/RT-PCR master mix (green); and C: The ring’s peristaltic pump breaks the droplet to mix the cell with master-mix. When the reaction is finished, oil (blue) pushes 
the product (cDNA) out of the ring in the form of a droplet (10-nL) for downstream molecular analysis (Refer to[17] for details).

survival and overall survival[33]. Not only is single cell tracking methodology as 
described in this article a sensitive method to detect MRD, but the characteristics of the 
residual cells will also be able to be elucidated. As such, one can detect the emergence 
of a “dangerous” clone.

Determining the sequencing of therapies including immunotherapy
Currently, we have more than 14 unique treatments for the MM, which, when used in 
combination, yields dozens of combination options for patients. Clinical trials using 
antibody drug-conjugate and bispecific antigen-directed CD3 T-cell engager targeting, 
by checkpoint inhibitors and an anti-T-cell immunoglobulin and ITIM domains 
antibody are currently underway and has the potential to further prolong survival 
times[34]. Chimeric antigen receptor T cell therapy targeting B-cell maturation antigen, 
immunoglobulin kappa chain, SLAM family member 7, or G-protein coupled receptor 
family C group 5 member D, the activated integrin beta7 is a promising treatment 
modality which can often give long progression-free survival in heavily treated 
patients[35,36]. Despite this arsenal of treatments, the elusive cure for MM has yet to be 
found, and the current approaches to the treatment of refractory disease produce 
progressively short-lived efficacy. Perhaps this is because the sequencing of these 
treatments is often borne out of trial and error and do not take into consideration the 
temporal changes and spatial relationships of MM subclones. The development of 
chemoresistance, leading to shorter progression-free with each subsequent treatment 
and overall survival, lies in understanding how therapies drive the evolution of 
subclones. Using sensitive methods for detection and characterization of subclones, we 
can understand whether therapy induces molecular alterations within myeloma cells 
or selects for the survival of specific clones over others. Knowing how the treatments 
we use drive the process of evolution can allow clinicians to choose combinations of 
therapies that will modulate the development of chemoresistance.
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Figure 3  Schematic designs of the proposed workflow. A: Consolidated Standards of Reporting Trials diagram. A total of 63 patients were screened for 
eligibility. Only 48 patients were newly diagnosed with multiple myeloma before receiving any treatment. These patients were enrolled, and their bone marrow 
obtained at diagnosis was divided into two aliquots: One aliquot underwent traditional flow cytometry and FISH analysis, and the other aliquot was subjected to 
microfluidic selection for enrichment of CD45-PCs, then subjected to flow cytometry and FISH analysis. Results from both methods were compared; B: Comparison of 
traditional method to microfluidic method (MF-CD45-TACs). MF-CD45-TACs significantly enrich plasma cells for flow cytometry and FISH assays and improve the 
accuracy of these assays; C: This proposed workflow (Note that we can use both bone marrow and circulating multiple myeloma cells[76]).

CONCLUSION
We envision that single-cell technology will innovate cancer stem cell subclonal 
evolution on time-space landscaping of heterogeneity and imply the lineage-tracking 
pathway-based prediction of therapeutic efficacies of cancer treatment. Accurately, 
temporal development and spatial distribution of quantitative subclonal measurement 
of MM will reveal therapeutic sensitizing mutations, thereby moving closer to 
developing a therapeutic window[37] of cancer in the advent of new, more productive, 
and less toxic therapies. We hypothesize that subclonal evolution, in conjunction with 
current standard care, will improve outcomes in patients with heterogeneous 
pathologies (Figure 6)[38]. Circulating MM counts and Cav-1 molecules early during 
radiotherapy are independently predictive of recurrence in MM. Physicians assert that 
every time that there is a reference to, visual or spoken, the patient view of the 
landscape of an MM diagnostics that they claim to predict the outcomes legitimately, it 
has to be as comprehensive and individualized as possible given the data package 
generated from AI-Med algorithms. Recently, we applied our microfluidic devices to 
myeloma risk stratification. However, like many current microfluidic devices, the 
device only enhanced and improved traditional FACS and FISH. The gap of 
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Figure 4  Improved clinical outcomes with microfluidic CD45 depletion (Patient 1). A: Bone marrow smear at the time of initial diagnosis; B: Bone 
marrow smear after effective treatment (complete remission); C: Flow-cytometry without microfluidic enrichment. Plasma cells (CD38+/CD138+) is only 4.24% and no 
FISH cytogenetic abnormalities were found (low risk); D: After microfluidic enrichment (center inset) plasma cells (CD38+/CD138+) increased to 36.1%; E: FISH on 
enriched plasma cells show 17p- (Red: D13S319; Green: P53); F: FISH showed del(13q14) in enriched PC (Red: D13S319; Green: RB1). With enriched plasma cell 
for FISH, the patient was reclassified and treated as high-risk multiple myeloma which leads to complete remission (Refer to[17] for details).

integrating genomic profiles into cancer characterization is still not filled. Therefore, it 
is a logical and necessary step for us to integrate our single-cell RNA-seq technology 
into cancer characterization, specifically molecular classification of MM in cancer 
genome landscape such as the Pan-Cancer Analysis of Whole Genomes consortium[39]. 
"Timing analyses suggest that driver mutations often precede diagnosis by many 
years, if not decades. Together, these results determine the evolutionary trajectories of 
cancer and highlight opportunities for early cancer detection"[40]. All of these must rely 
on "A deep learning system accurately classifies primary and metastatic cancers using 
passenger mutation patterns"[41] for integration of dynamic space-time changes. One 
such integrated platform was to scaffold the diverse datasets together, allowing them 
to interface not only across single-cell transcriptomics (scRNA-seq), but also across 
distinct cellular modalities – e.g., a bone marrow atlas to characterize lymphocyte 
populations[42] – to better understand cellular identity and function beyond the 
taxonomic listing of clusters of cellular heterogeneity[43].

Implementation of this modified diagnostic device in clinics proven to improve 
clinical outcomes of MM (Figure 3C). Our microfluidic-assisted stratification of single 
cancer cells may help understand the mechanisms underlying the temporal and spatial 
heterogeneities in solid tumors like brain cancer as testing is underway[44-46], thereby 
holding promise for using the single-cell analysis to guide treatment for targeted 
therapy (Table 2), as governed by artificial intelligence-based integration of genome, 
epigenome, and pathological measurements.
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Table 2 Therapeutics targets and corresponding agents in multiple myeloma and artificial intelligence medicine

Mechanism of action (clinical 
phenotype) Target Agent Ref.

Resistance to chemotherapy in 
MM

Bcl-2/Bcl-X(L)/Bcl-w (antiapoptotic proteins) Inhibitor ABT-737 (with bortezomib-, dexamethasone-
(Dex) and thalidomide)

[64]

Dexamethasone-resistance in 
MM

Heat shock protein-27 2-methoxyestardiol and bortezomib/proteasome-
inhibitor

[65]

JunB-mediated phenotype in 
dexamethasone-resistant MM 
cells

JunB: AP-1 transcription factor family Knockdown AP-1/JunB to down-regulate MM cell 
proliferation, survival and drug resistance

[15]

Cyclin D dysregulation and 
overexpression/growth arrest or 
caspase-dependent apoptosis in 
MM cells

cyclin D1 P276-00, a novel small-molecule cyclin-dependent 
kinase inhibitor

[66]

Sensitivity to bortezomib in MM 
cells

Cav-1 Sensitivity to bortezomib of RPIM8226 MM cells after 
co-cultured with down-regulated Cav-1 expression 
HUVECs

[67]

Heartbeat/pulse patterns – AI 
relevance

Flattening of the flow velocity (pulse) patterns 
correlates with the local severity of arteriosclerotic 
disease

[68]

Preventive medicine using pulse oximetry screening

Pulse transit time (PTT) is the time it takes a pulse 
wave to travel between two arterial sites R-wave-gated 
photo-plethysmography as of measurement of PTT as a 
surrogate for intra-thoracic pressure changes in 
obstructive sleep apnea)

[69]

Pulse oximetry screening for critical congenital heart 
defects

[70]

AI-Medicine algorithm Algorithm to track changes in cardiorespiratory 
interactions (heartbeat intervals and respiratory 
recordings under dynamic breathing patterns)

[71]

Respiratory sinus arrhythmia (RSA) with an algorithm 
for quantifying instantaneous RSA as applied to 
heartbeat interval and respiratory recordings to track 
changes in cardiorespiratory interactions elicited 
during meditation, otherwise not evidenced in control 
resting states)

[72]

The tongue is a critical organ for respiration and 
speech

[73]

18 voice features with posttraumatic stress disorder [74]

Breathing pattern parameters: Peak airway pressure 
(Pawpeek), mean airway pressure (Pawmean), tidal 
volume (VT, mL/kg), minute volume, respiratory 
muscle unloading (peak electricity of diaphragm 
(EAdipeak), P 0.1, VT/EAdi), clinical outcomes (ICU 
mortality, duration of ventilation days, ICU stay time, 
hospital stay time

[75]

Cited Literature. MM: Multiple myeloma; AP-1: Activator protein-1; ICU: Intensive care unit.
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Figure 5  Microfluidic risk-stratification improves clinical outcomes of multiple myeloma (Patient 2). A: Bone marrow at diagnosis. Active 
granulocyte hyperplasia; B: Partial remission was achieved with revised risk-stratification; C: At diagnosis, bone marrow plasma cell (PC) abnormalities included 
clustered and scattered distribution of primitive and immature PCs, with large cell body, fine chromatin, visible nucleolus, and abundant cytoplasm; D: After treatment 
for high-risk multiple myeloma, PCs were rare and had normal morphology; no typical abnormal PCs were observed; E: At diagnosis without microfluidic enrichment, 
PCs (CD38+/CD138+) were only 1.84 %; F: After microfluidic enrichment, PCs (CD38+/CD138+) increased to 40.79%; G: Without microfluidic enrichment, FISH 
showed IgH rearrangement and del(13q14), leading to classification as intermediate risk (Red: D13S319; Green: P53); H and I: After microfluidic enrichment, in 
addition to del(13q14), FISH showed t (4,14) fusion (yellow dots) and 17p- (Red: D13S319; Green: P53), patient was reclassified and treated as high-risk, which led 
to efficacious treatment (Refer to[17] for details).

Figure 6  Blockade of the dominating subclonal switchboard signals in cancer stem cells as a new therapeutic strategy to suppress the 
dominating subclone shift to control cancer progression and post-treatment cancer recurrence. Showed is the proposed new treatment paradigm 
that should target the subclonal-switchboard signals (SSS). Blocking the dominating subclonal SSS leads to subclonal quiescence, so keeping tumors alive but small 
and manageable (dormant/quiescent subclone). Note that SSS as mechanisms for leading to shifting dominating subclones as triggered by environmental cues 
(stress) for cancer progression and post-treatment. A cancer subclone may gain a mutation that, in the appropriate environment cue, leads to dominating subclonal 
activation due to positive selection. Showed lettering and lines/ arrows in the black color is the current concept of a treatment strategy for cancer- dominant subclonal 
cells (cancer stem cells) that may acquire a mutation in a suitable environment, triggering to dominating subclonal expansion and growth. When this dominating 
subclone is explicitly destroyed, it sends out dominating subclonal-SSS to a dormant/quiescent subclonal cell, which gets activated for dominating subclonal 
expansion and growth (adopted from[38]).
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