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Abstract
Mesenchymal stromal cells (MSCs) have attracted great interest in the field of 
regenerative medicine. They can home to damaged tissue, where they can exert 
pro-regenerative and anti-inflammatory properties. These therapeutic effects 
involve the secretion of growth factors, cytokines, and chemokines. Moreover, the 
functions of MSCs could be mediated by extracellular vesicles (EVs) that shuttle 
various signaling messengers. Although preclinical studies and clinical trials have 
demonstrated promising therapeutic results, the efficiency and the safety of MSCs 
need to be improved. After transplantation, MSCs face harsh environmental 
conditions, which likely dampen their therapeutic efficacy. A possible strategy 
aiming to improve the survival and therapeutic functions of MSCs needs to be 
developed. The preconditioning of MSCs ex vivo would strength their capacities 
by preparing them to survive and to better function in this hostile environment. In 
this review, we will discuss several preconditioning approaches that may improve 
the therapeutic capacity of MSCs. As stated above, EVs can recapitulate the 
beneficial effects of MSCs and may help avoid many risks associated with cell 
transplantation. As a result, this novel type of cell-free therapy may be safer and 
more efficient than the whole cell product. We will, therefore, also discuss current 
knowledge regarding the therapeutic properties of MSC-derived EVs.

Key Words: Cell-therapy; Mesenchymal stromal cells; Safety; Extracellular vesicles; 
Efficiency; Preconditioning
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injured tissues by displaying trophic and immunomodulatory functions. The tissue 
environment plays a significant role during the reparative process of MSCs. 
Preconditioning of MSCs with a specific signal promotes the adequate response. As the 
therapeutic functions of MSCs are mainly linked to their secretome, the use of 
extracellular vesicles as an acellular tool is strongly recommended. Thus, new insights 
on the properties of MSCs as well as their mechanisms of actions will help to develop a 
safe and efficient therapeutic strategy.

Citation: Najar M, Martel-Pelletier J, Pelletier JP, Fahmi H. Novel insights for improving the 
therapeutic safety and efficiency of mesenchymal stromal cells. World J Stem Cells 2020; 
12(12): 1474-1491
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INTRODUCTION
Due to the high prevalence of tissue injury and damage, new therapeutic strategies 
should be considered[1]. Tissue regeneration is a complex process encompassing 
several interplays between tissue progenitor/stem cells, local environment, and 
immune cells. The healing ability is generally attributable to a pool of undifferentiated 
cells capable of replacing damaged cells in order to guarantee the integrity of the 
tissue[2]. These cells can sense several signals of injury and damage, which can in turn 
modulate their biological features. However, the pool of tissue-specific stem/stromal 
and progenitor cells may show functional exhaustion. Depending on the injury and 
damage, these endogenous cells may display low efficiency regarding their healing 
mechanism. Impairments of cell self-renewal, function, differentiation capacity, and 
homing may thus be observed[3].

New therapies using ex vivo-expanded stem/stromal and progenitor cells have been 
developed to enhance the healing process. In this context, mesenchymal stromal cells 
(MSCs) have been reported as an attractive candidate for cell therapy. Originally 
identified within the bone marrow niche, MSCs were subsequently identified in 
different tissues. Morphologically similar to fibroblasts, MSCs are characterized in vitro 
by plastic-adherent proliferation, a specific immunophenotype and multipotency as 
defined by the International Society for Cellular Therapy (ISCT)[4]. They express CD73, 
CD90 and CD105 and lack the expression of CD14, CD19, CD34, CD45 and human 
leukocyte antigen (HLA)-DR. To date, their multipotent capabilities have not been 
clearly demonstrated in vivo, particularly because of the lack of methods to identify 
and define differentiated populations. However, the trophic and immunomodulatory 
properties of MSCs are likely the key attributes that mediate tissue repair[5,6].

In parallel, harsh environments within damaged and diseased tissues such as 
ischemia, inflammatory/immunological reactions, oxidative stress, and infectious 
episodes may influence the fate and functions of cells[7]. By sensing such signals, MSCs 
respond by migrating, proliferating, and initiating regenerative mechanisms. MSCs 
will try to reconstitute the immune microenvironment and empower tissue 
stem/progenitor cells and other resident cells, thereby facilitating tissue repair[8]. A 
rapid detection of the primary insult allows to display the adequate response 
attempting repair[9]. In general, a tight regulation of the balance between the native and 
activated states of MSCs appears essential for their functional properties during tissue 
repair. It has been shown that MSCs require specific signals to display adequate 
therapeutic potential[10]. Such behavior indicates that MSCs possess functional 
plasticity, and that, under specific conditions, it is possible to polarize their biological 
response toward an adequate response. Depending on tissue injury or disease 
conditions, the secretome may change allowing MSCs to exert different effects. These 
changes generally modulate the type and level of cytokines and growth factors 
important for the tissue repair process[11]. The results obtained from clinical 
applications of MSCs indicate that therapeutic outcomes could be improved. The 
secretome of MSCs is mainly responsible for the modulation of immune responses and 
the function empowerment of local progenitors. It consists of a diverse range of 
growth factors, cytokines, chemokines, and extracellular vesicles (EVs) that govern 
different paracrine signaling. MSCs convey regulatory messages to recipient cells to 
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initiate tissue repair[6]. The release of EVs has emerged as an important mediator of 
cell-to-cell communication. They have been shown to effectively mimic the effects of 
MSCs, thus participating in their therapeutic process. In fact, EVs may transfer 
proteins, lipids, and genetic material, which also contribute to the modulation of the 
biology and fate of recipient cells, without requiring the presence of MSCs. The use of 
this cell-free tool would certainly enhance the safety of MSC-based therapy (Figure 1).

The safety and efficiency of MSCs are the two major aspects that need to be 
managed to improve the therapeutic effects of MSCs[4]. These two goals are closely 
linked to their acellular component and preconditioning strategy, respectively. A 
broader understanding of the tissue environment characteristics and components that 
allow to modulate the plasticity of MSCs and therefore set up more specific MSC 
responses by using preconditioning strategies. Here, we focus on the influences of 
inflammatory and infectious signals, mostly found within the injured tissue, on several 
features of MSCs. The secretome of MSCs, in particular EVs, make them an attractive 
tool as cell-free based therapy. More insight into the biology, production, composition 
and role of EVs would increase the quality and safety of the therapy. Of note, 
preconditioning should be applied to enhance the production of EVs as well as 
empower their effects by maximizing their contents of regulatory and trophic factors. 
This deeper understanding would improve the capacity to manipulate MSCs and 
ultimately lead to safer and more efficient therapeutic effects (Figure 2).

PRECONDITIONING STRATEGIES OF MSCS
The cellular and molecular tissue microenvironment is a dynamic compartment where 
several signals can modulate MSC features[12]. The balance between the physiological 
and pathological states of the tissue critically influences the reparative process. After 
injection, MSCs can migrate into the injured tissues where they encounter an 
unfavorable environment coupled with death signals, infections, oxidative stress, and 
immune/inflammatory responses[13]. Moreover, clinical data suggest that the outcomes 
of MSC-based therapy are affected by medication or the presence of infections[14]. 
Hurdles including poor homing, survival, engraftment, and functions may hamper the 
therapeutic effect of transplanted MSCs[15]. In the quest to circumvent these challenges, 
several strategies can be utilized including preincubation with growth factors, 
cytokines, receptor agonists, optimization of culture conditions (e.g., hypoxia, glucose), 
and the use of bioactive or biomimetic scaffolds[16,17]. Also called licensing or priming, 
these strategies may be considered as cell preconditioning (Figure 3).

It consists of boosting cells for a specific function in a specific challenging 
environment[18]. The goal is to not only maintain, but also enhance the inherent 
biological activities and therapeutics effects of MSCs with respect to migration, 
homing to target site, tissue engraftment, survival, and improved reparative/trophic 
functions[19-24]. Thus, these features should be carefully evaluated in vitro and in vivo[24]. 
Overall, MSCs should withstand the inhospitable environment in the recipient tissue 
(transplanted cell-preconditioning). At the same time, the damaged tissue becomes 
more receptive to the transplanted cells favoring their engraftment and interplay 
(tissue-preconditioning)[21]. Such development may accelerate the process to translate 
experimental evidence from preclinical studies to daily clinical practice[22].

Optimized culture conditions
After isolation, MSC are typically cultured under normoxic conditions (21% oxygen). 
However, the physiological niches for MSC in the bone marrow and other sites have 
much lower oxygen tension. When used as a therapeutic tool to repair tissue injuries, 
MSCs cultured in standard conditions must adapt from 21% oxygen in culture to less 
than 1% oxygen in the ischemic tissue[23]. Several data suggest that preculturing MSCs 
under hypoxic conditions prior to transplantation improves their tissue regenerative 
potential. Interestingly, hypoxia pretreatment significantly increased the proliferation 
and chondrogenic differentiation of adipose tissue-derived stem cells but decreased 
their osteogenic differentiation in a vascular endothelial growth factor (VEGF)-
dependent manner[25]. In parallel, hypoxia-preconditioned olfactory mucosa 
mesenchymal stem cells inhibits pyroptotic and apoptotic death of microglial cell in 
response to cerebral ischemia/reperfusion insult by activating hypoxia-inducible 
factor-1 (HIF-1) in vitro[26]. Hypoxia preconditioning of human dental MSCs empowers 
their immunoregulatory functions. Overexpression of HIF-1α leads to the modulation 
of the adaptive and innate immune responses. Following an increase of C-C motif 
chemokine ligand 2 (CCL2, also referred to as monocyte chemoattractant protein-1) 
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Figure 1 A flow chart showing the use of the cell-free approach to enhance the safety of mesenchymal stromal cell-based therapy. MSC: 
Mesenchymal stromal cell; EVs: Extracellular vesicles.

Figure 2 Mesenchymal stromal cells as a promising therapeutic strategy with improved efficiency and safety. MSC: Mesenchymal stromal cell; 
EVs: Extracellular vesicles.

production, monocytes are significantly recruited and induced to acquire M2 
macrophage phenotypes known for their immunosuppressive properties[27]. These 
effects could be linked to the expression of interleukin (IL)-10 and Fas-ligand. Indeed, 
the IL-10/CD210 axis is functionally relevant during immunomodulation by 
regulating several features of T cell response[28].

Because melatonin exhibits antioxidant and anti-inflammatory properties, it has 
been used as a preconditioning tool to optimize the response of MSCs within a 
unreceptive microenvironment[29]. Preconditioning of rat bone marrow (BM)-MSCs by 
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Figure 3 Strategies applied in the preconditioning of mesenchymal stromal cells. MSCs: Mesenchymal stromal cells.

omentin-1, a fat depot-specific secretory adipokine, allowed to display improved 
therapeutic functions. Such a condition promotes proliferation, inhibits apoptosis, 
increases secretion of angiogenic factors, and enhances the ability to stimulate tube 
formation by human umbilical vein endothelial cells via the PI3K/AKT signaling 
pathway[30]. In line with this, ex vivo antioxidant preconditioning by using n-
acetylcysteine and ascorbic acid 2-phosphate improved the viability of MSCs and 
protected them in the presence of diabetic wound fluid[31]. The preconditioning of 
MSCs by glutathione-allylsulfur conjugates can enhance their survival after post-
ischaemic myocardial implantation. In a concentration dependent manner, such 
treatment increased the proliferation, migration, and differentiation of cardiac lineage 
marker-negative/stem cell antigen-1-positive human mesenchymal stem cells. These 
beneficial effects are consecutive to the upregulation of proteins involved in oxidative 
stress protection, cell-cell adhesion, and commitment to differentiation[32].

Recently, treatment of human decidua basalis MSCs with a high level of glucose 
was shown to enhance the engraftment and therapeutic potential of MSCs. 
Preconditioning with glucose increased gene expression related to survival, 
proliferation, migration, invasion, and immunomodulatory properties[33]. Glutamine 
(GLUT) is a nonessential amino acid that can become conditionally essential under 
stress conditions, being able to participate in the modulation of the immune responses 
in several ways. GLUT has been reported to enhance the immunosuppressive 
properties of MSCs. In a dose dependent manner, the addition of GLUT augmented 
the proliferation of MSCs, reduced lymphocyte and macrophage proliferation. This 
effect was probably reached by decreasing levels of pro-inflammatory cytokines and 
by increasing levels of anti-inflammatory cytokines[34].

The use of biomaterial scaffolds may lead to higher clinical benefits in patients 
treated by MSCs. Triggering the expression of cytoprotective genes that aim at 
enhancing the longevity of MSCs and the duration of their regulatory effects is a very 
promising strategy[10]. MSC-biomaterial constructs retain MSCs in situ and prolong 
their survival. Moreover, biomaterial scaffolds can both preserve the tissue 
architecture and provide a three-dimensional biomimetic milieu for embedded MSCs, 
which enhance their paracrine functions[35]. In accordance with these achievements, our 
group accomplished a cutting-edge feat by developing a feasible, safe and 
physiological process that increases the level of MSCs in the BM niche with a specific 
commitment[36]. Injection of autologous platelet-rich plasma activated by the 
recombinant human soluble tissue factor in the iliac crest, enhanced the production of 
autologous MSCs. This strategy avoids the use of allogeneic MSCs and the need of 
their expansion through ex vivo culture with the accompanying risks of contamination 
and cell differentiation.

Complement inhibition
The viability and/or function of MSCs seems to be altered as they may undergo a 
complement-dependent lysis. Results indicate that the complement system is 
integrally involved in recognizing and injuring MSCs after their infusion[37]. MSCs 
activate the complement system, which triggers complement-mediated lymphoid and 
myeloid effector cell activation in blood. MSCs were found to present complement 
component (C3)-derived fragments inactivated C3b (iC3b) and C3dg and to generate 
complement-derived anaphylatoxins (C3a and C5a) with chemotactic activity[38]. It has 
been suggested that complement anaphylatoxins C3a and C5a participate in activation 
and recruitment of MSCs to sites of tissue damage and repair[39]. Of importance, 
complement bound to MSC enhanced their phagocytosis by classical and intermediate 
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monocytes which may explain, at least in part, why MSCs are not found in the blood 
circulation after infusion[40]. The inhibition of complement activation has been 
proposed for improving the outcome of MSC-based therapy. Thus, cell-surface 
engineering of MSCs with heparin has been shown to improve their viability and 
enhance their function after infusion. Heparin by directly inhibiting the complement 
protein and by recruiting factor H inhibited complement activation on MSCs[41]. Of 
note, treatment of MSCs with all-trans retinoic acid protected them from immune 
thrombocytopenia by regulating the complement-IL-1β loop. All-trans retinoic acid 
increased the number and improved the function of the complement-positive MSCs by 
upregulating DNA hypermethylation of the IL-1β promoter[42].

Inflammatory preconditioning
The role of the cytokine environment: Tissue injury is usually associated with 
inflammation, cell-damage products release and subsequent infiltration of neutrophils 
and macrophages. The inflammatory response is thought to act as a regulator of tissue 
stemness either by directly affecting tissue stem cells or by shifting differentiated cells 
toward a stem-like cell character. During the phagocytosis of damaged cells, pro-
inflammatory cytokines mainly interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), 
and IL-1 are secreted[43]. Other pro-inflammatory mediators (e.g., various chemokines, 
leukotrienes, and free radicals) are released by immune cells and may contribute to 
inflammation. In this context, MSCs are known to preferentially migrate to the sites of 
inflammation and tissue damage which are typically characterized by cytokine 
outburst[44]. The specific cytokine milieu is pivotal in determining the fate and 
behaviors of MSCs (Figure 4).

Accordingly, we reported that inflammation may induce critical changes in the 
phenotype, multilineage potential, hematopoietic support, and immunomodulatory 
capacity of MSCs[45].

IFN-γ as a master regulator: One of the most used strategy for this purpose has been 
the IFN-γ preconditioning of MSCs prior to clinical application. This approach 
enhances both the immunomodulatory properties and viability of MSCs[46]. In depth 
proteomic analysis of IFN-γ treated BM-MSCs indicated that approximately 30% of the 
altered proteins were linked to immunoregulation[47]. The expression levels of selected 
candidates including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death 
ligand 1 (PD-L1), vascular cell adhesion molecule 1, intercellular adhesion molecule 1 
(ICAM-1) and bone marrow stromal antigen 2 (BST-2) were markedly increased 
following IFN-γ treatment. These factors may contribute to the immunoregulatory 
activities of MSCs. In addition, there are significant immunological and 
immunoregulatory mediators that are not currently described as IFN-γ responsive [
e.g., prostaglandin-endoperoxide synthase 2, prostaglandin I2 synthase, FAM20A 
(FAM20A golgi-associated secretory pathway pseudokinase), FAM20C (FAM20C 
golgi-associated secretory pathway kinase) and glycoprotein A repetitions 
predominant (GARP)/leucine rich repeat containing 32] that were upregulated. 
Moreover, MSCs isolated from the dental pulp of human exfoliated deciduous teeth 
and fragments of the orbicularis oris muscle showed enhanced immunomodulatory 
properties probably linked to increased HLA-G expression[48] in the presence of IFN-γ. 
Indeed, a recent study highlighted the key role of the HLA-G gene in modulating the 
immune response, and the importance of its polymorphisms and alleles associated 
with the outcome of the transplants[49].

A pro-inflammatory cytokine cocktail: INF-γ has also been used in combination with 
other potent inflammatory cytokines namely TNF-α and IL-1-β. We have shown that 
preconditioning BM-MSCs with a pro-inflammatory cytokine cocktail increased the 
expression of cyclooxygenase (COX)-2, leukemia inhibitory factor (LIF), hepatocyte 
growth factor (HGF), IL-11, IL-8, and IL-6, while it reduced that of COX-1, galectin-1, 
and transforming growth factor-beta (TGF-β)[50]. BM-MSCs may inhibit complement 
activation by producing factor H, which could be another mechanism underlying the 
broad immunosuppressive capabilities of MSCs. Of note, the production of factor H by 
MSCs is upregulated by inflammatory cytokines TNF-α and IFN-γ in both a dose- and 
a time-dependent manner[51]. Using such a preconditioning strategy may empower the 
immune fate of MSCs and, as a result, enhance their value for cell-based 
immunotherapy. Under IFN-γ and TNF-α preconditioning, BM-MSCs have been 
shown to synergistically express PD-L1 and PD-L2, which suppress T-cell activation 
and functions[52]. Interaction of PD-L1 with its known ligands, PD-L1/B7-H1 and PD-
L2/B7-DC, provides an inhibitory signal in regulating cellular activation and 
proliferation. MSCs also secrete significantly higher levels of sPD-L2 compared to sPD-
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Figure 4 The inflammatory specific cytokine environment is pivotal in determining the fate and behaviors of mesenchymal stromal cells. 
IFN-γ: Interferon-γ; IFN-β: Interferon-β; IDO: Indoleamine 2,3-dioxygenase.

L1 in preconditioning conditions, indicating the potential importance of sPD-L2 in 
MSC immunomodulation. In line with this, we have shown that the percentage of 
adipose tissue-derived MSCs expressing PD-L1 (i.e., CD274) significantly increased 
upon pro-inflammatory stimulation reaching around 90% of the whole cell 
population[53]. CD274 is known to downregulate T-lymphocyte proliferation and 
cytokine secretion by binding to the PD-L1 receptor. Interestingly, IFN-γ priming of 
human amnion-derived MSCs boosted their immunomodulatory potential through 
different mechanisms. They induced a remodeling of the immune response toward an 
anti-inflammatory phenotype. In this context, a significant production of chemokines 
such as C-X-C motif ligand 10 [CXCL10, also known as IFN-γ-induced protein 10 (IP-
10) or small-inducible cytokine B10], CXCL9 [also known as monokine induced by 
gamma interferon (MIG)], C-C motif ligand 3 [CCL3, also known as macrophage 
inflammatory protein 1-alpha (MIP-1-α)] and CCL4 (i.e., MIP-1-β) was involved in the 
chemotaxis of innate immune cells. The suppression of the immune response was 
linked to the expression of PD-L1, IL-10, IDO, and prostaglandin E2 (PGE2), as well as 
release of different immunomodulatory exosome-derived miRNAs[54]. Within these 
exosomes, 46 miRNAs were upregulated and 114 were downregulated. Moreover, a 
miRNA-target network analysis revealed that these miRNAs were associated with 
immune and inflammatory responses/regulation pathways. Indeed, they were 
involved in the regulation of both T cell activation/anergy and monocyte 
differentiation pathways.

In order to increase the efficiency of the preconditioning, encapsulated MSCs with 
IFN-γ was thus developed. Tethering IFN-γ to the hydrogel increased the retention of 
IFN-γ within the biomaterial while increasing their immunomodulatory functions[55]. 
However, such strategy does not work universally as some progenitor cells showing 
immune-modulatory activities are less responsive to TNF-α and IFN-γ[56]. In 
comparison to BM-MSCs, human fetal cartilage progenitor cells preconditioned with 
either TNF-α or IFN-γ did not affect the expression LIF, TNF-stimulated gene-6 (TSG-
6), IDO, and HGF known for their immunoregulatory roles. In contrast, adult-derived 
human liver stem/progenitor cells significantly induced the expression of pro-
inflammatory cytokines (IL-1β, IL-6, IL-8, TNFα, CCL5, IL-12a, IL-12b, IL-23p19, IL-
27p28, and EBI-3) as well as immunoregulatory cytokines (IL1-RA, IDO-1, and TDO-1) 
under an inflammatory setting[57]. Within this context, liver derived stem/progenitor 
cells demonstrate marked immunological plasticity that has main importance for 
future cell therapy application.
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The role of IFN-β: On the other hand, IFN-β was reported to enhance the 
immunomodulatory functions of MSCs isolated from mouse BM. This increase was 
linked to the induction of secretory leukocyte protease inhibitor and HGF following a 
rapid and transient phosphorylation of the transcription factors of signal transducer 
and activator of transcription (STAT) 1 and 3[58]. In a recent study, a long-lasting 
induction of mammalian target of rapamycin signaling supported by IFN-β was 
associated with an increased glycolytic capacity in umbilical cord blood-derived MSCs 
(UCB-MSCs). These UCB-MSCs also showed an improved ability to control T-cell 
proliferation[59].

Alternative regulatory cytokine: The preconditioning of BM-MSCs with macrophage-
derived soluble factors, either TNF-α or IL-10, enhanced their immunomodulatory 
potential through increased PGE2 secretion[60]. Cell-to-cell contact with pro-
inflammatory macrophages increased TSG-6 production by MSCs, thereby enhancing 
the suppressive regulation of T cells and switching macrophages to M2. Both cells are 
associated with wound healing and tissue repair by reducing immune inflammation 
and infiltration.

Moreover, the expression of CD200 was increased on MSCs thus facilitating the 
reprogramming of macrophages towards an anti-inflammatory skew through the 
interaction of CD200 with CD200 receptor on pro-inflammatory macrophages[61]. 
CD200 is differentially expressed and modulated on MSCs depending on their tissue 
of origin and culture conditions. A high constitutive expression of CD200 by 
Wharton's jelly (WJ)-MSCs may represent a distinctive marker of MSCs[62]. In parallel, 
GARP is proposed as a novel biomarker and new target to improve the therapeutic 
efficiency of MSCs. Results showed that GARP is constitutively expressed on mouse 
BM-MSCs and is required to activate locally produced latent TGF-β1, thus inhibiting 
the proliferation of T-cells and inflammatory cytokine production[63]. However, the 
presence or absence of GARP on adipose-derived MSCs (ASCs) was noted to display 
distinct TGF-β responses with diametrically opposing effects on ASC proliferation and 
survival[64]. Inflammation induces the balance towards a more pronounced tissue 
regenerative and anti-inflammatory phenotype. Indeed, IFN-γ preconditioning of 
ASCs enhanced their anti-inflammatory potency. Within the secretome, sixty miRNAs 
accounted for > 95% of the genetic message that resulted to be chondroprotective and 
M2 macrophage polarizing[65].

IDO as the main regulatory candidate: IDO is seemingly the most convincing 
candidate for a crucial role in T-cell inhibition by MSCs. The induction of IDO, which 
converts tryptophan to kynurenine, is substantially dependent on the preconditioning 
of MSCs with IFN-γ. Decreased concentration of tryptophan and increased 
kynurenine, both interfere with effective immune response[66]. It was demonstrated 
that IDO-mediated tryptophan starvation triggered by MSCs inhibited T-cell 
activation and proliferation through induction of cellular stress[67]. Both BM-MSCs and 
dental pulp MSCs were shown to inhibit T-cell activation and proliferation through 
IDO-mediated tryptophan starvation[67]. Also, preconditioned-adipose tissue-derived 
MSCs by INF-γ presented a higher immunosuppressive potential probably due to an 
elevated expression of IDO and ICAM-1[68]. An important immunoregulatory link 
between IDO and TSG-6 expression was observed in human umbilical cord-derived 
MSCs. Kynurenic, a metabolite of IDO, controls the TSG-6-mediated anti-
inflammatory therapeutic effects of MSCs[69]. In agreement with these observations, we 
recently demonstrated that pro-inflammatory cytokines-stimulated skin-derived 
precursors (SKP) were able to suppress the graft-vs-host response when co-
transplanted with human peripheral blood mononuclear cells in severe-combined 
immune deficient mice[70]. Significant changes in the expression and secretion profile of 
chemo/cytokines and growth factors involved in the immunomodulatory effects of 
SKP were also reported. Of importance, IFN-γ-preconditioned MSCs were shown to 
take up and process antigens as well as upregulate HLA class II expression, thus 
granting the conditions necessary to transform BM-MSCs into unconventional antigen-
presenting cells. These MSCs maintained their ability to inhibit lymphocyte 
proliferation in an antigen-specific manner, without overtly increasing the 
immunogenicity of allogeneic MSCs[71]. These encouraging findings pave the way to 
use activated HLA-haplotype matched allogeneic MSCs as a cellular immune 
intervention therapy by combining their immunomodulatory properties with their 
antigen-presenting features.
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Infectious triggering
Toll-like receptors as active sentinels: Infection of the wound triggers the body's 
immune response, causing inflammation and tissue damage, as well as slowing the 
healing process. In parallel to innate cells, there are other cells spread within the tissue 
that may be involved in pathogen detection. These may express sensors and 
transducers that can actively monitor invasion by viruses and bacteria[72]. The presence 
of microorganisms could be detected by germline-encoded pattern recognition 
receptors (PRRs) such as toll-like receptors (TLRs). These receptors are responsible for 
the sensing of structures conserved among microbial species called pathogen-
associated molecular patterns. After this recognition, these PRRs may activate different 
signaling pathways resulting in the secretion of different cytokines and chemokines 
involved in the immune response against the present infection[73]. PRR ligation may 
also trigger the activation of phagocytic cells and the phagocytosis of damaged cells. 
TLRs represent one of the bridges that regulate the crosstalk between the innate and 
adaptive immune systems. TLRs interact with molecules shared and preserved by the 
pathogens of origin but also with endogenous molecules (damage/danger-associated 
molecular patterns) that derive from injured tissues[74]. By being in the surrounding 
area, MSCs will act as sensors of various signals and accordingly regulate the tissue 
repair process[75]. We have extensively described how infections such as obtained 
following TLR-agonist engagement may modulate MSCs at different levels. The 
phenotype, multilineage potential, hematopoietic support and immunomodulatory 
capacity of MSCs may thus present relevant changes, which could further affect their 
therapeutic potential[76]. Moreover, several environmental conditions modulate the 
pattern and function of TLRs expressed by MSCs (Figure 5).

Specific effects of TLRs: TLR activation may affect MSCs immunomodulatory 
functions by modulating their cytokine profile. Indeed, a decrease in the 
immunosuppressive capabilities of BM-MSCs is observed following TLR3 and TLR4 
activation by poly(I:C) and lipopolysaccharides (LPS), respectively. Moreover, TLR3 
activation augmented IL-6, IL-12p35, IL-23p19, and IL-27p28 transcription, whereas 
TLR4 activation increased IL-23p19 and IL-27p28 transcription[77]. In a comparative 
study, TLR3 [poly(I:C)] and TLR4 (LPS) ligation have differentially affected the 
suppressive functions of BM-, WJ- and adipose tissue (AT)-MSCs[54]. Remarkably, the 
immunosuppressive potential of WJ- and AT-MSC was not affected while BM-MSC 
showed reduced ability to inhibit lymphocyte activation. Differences in the levels of 
HGF and PGE2 secreted by MSCs following TLR activation have been hypothesized to 
underline these changes[78]. Similarly, the expression profile and function of TLR3 and 
TLR4 in human olfactory ecto (OE)- and AT-MSCs were reported to be different[79]. 
Both cell types differentially responded to their agonist engagement by presenting 
distinct cytokine and chemokine profiles. OE-MSCs exhibited significantly higher 
levels of chemokine CCL5, IL-8, and TGF-β production, in comparison with AT-MSCs. 
IL-6 secretion by AT-MSCs was considerably more elevated than that by OE-MSCs. 
These changes may explain why OE-MSCs exhibited a high proliferative potential and 
AT-MSCs a more immunomodulatory function. In parallel, injection of LPS-
preconditioned MSCs into wounds resulted in a significant acceleration of wound 
closure. Sensing an infected microenvironment and subsequently activating several 
innate immune cells by adipose MSCs is linked to TLR4 expression which are 
triggered by LPS[80]. Preconditioned MSCs with LPS not only trigger innate immune 
cells by recruiting and activating neutrophils and macrophages, but also initiate a 
cascade of cellular events which contribute to accelerated repair of skin injury. A 
network of genes mediating the adaptive immune response including chemokine 
CXCL6 [also known as granulocyte chemotactic protein 2 (GCP-2)], IL-8, and IL-1β 
was upregulated through the TLR4 pathway and may be responsible for the 
acceleration of wound healing. Of note, MSCs isolated from the mouse's abdominal 
adipose tissues presented a secretome with a dipeptidyl peptidase-IV (DPP-IV)/CD26 
and aminopeptidase N/CD13 activity that was decreased following stimulation of 
MSCs by TLR4 agonist. The DPP-IV/CD26 are ubiquitous ectoenzymes, which can 
digest various substrates including some chemokines and neuropeptides that are 
involved in inflammatory conditions[81].

Paradoxically, another study showed that TLR3 is predominantly upregulated in 
UCB-MSC and its activation leads to their senescence. Additionally, Janus kinase 1 
(JAK1) was identified as a key regulatory factor linked to the cellular senescence 
triggered by TLR3 activation in MSCs. JAK1 activation mediates the IFN-β increased-
TLR3 expression, thereby reinforcing TLR3-mediated MSC senescence[59]. In a separate 
study, TLR ligation was reported to differentially affect the in vitro osteogenic potential 
of MSCs depending on their tissue origin. Indeed, TLR3 [Poly(I:C)] or TLR4 (LPS) 
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Figure 5 The infectious environment may modulate mesenchymal stromal cells through different pattern and function of toll-like 
receptors. TLRs: Toll-like receptors.

triggering increased the osteogenesis in AT-MSCs and, to a lesser extent, in BM-MSCs. 
However, WJ-MSCs constitutively disclosed a lower osteogenic potential as compared 
with other MSCs, which is not affected by TLR[82]. Further findings support that 
triggering TLR2 may enhance the proliferation and immunomodulatory functions of 
BM-MSCs. More specifically, the increased immunomodulatory capacity of MSCs was 
associated with an increased expression of anti-inflammatory cytokine expression and 
diminution of pro-inflammatory cytokine expression[83]. MSCs can potently regulate 
the functions of immune cells by attracting them or by migration to inflammatory 
sites. TLR3-stimulated MSCs exhibit increased migration and chemotaxis within and 
toward damaged tissues through the expression of forkhead box protein O1-activated 
genes[84]. The understanding of TLR involvement in the response of stem/progenitor 
cell to specific tissue damage and in the reparative processes is decisive for the 
development of new therapeutic strategies[75].

In line with this, we reported approaches using empowered MSCs for the treatment 
or prevention of different immunological diseases. Preconditioning by new licensing 
stimuli will empower the immune fate of MSCs and, therefore, promote a better and 
more efficient biological response[50]. We reported several new pathways induced by 
inflammatory signals such as fibrinogen-like 2, GAL, semaphorin (SEMA) 4D, 
SEMA7A, and IDO-1 and can contribute to immunomodulation. These pathways 
allow distinct MSC populations to display enhanced immunomodulatory effects, 
particularly during inflammation[85]. Our data also demonstrated that MSCs depending 
on their tissue-source, may present several relevant receptors potentially involved in 
the regulation of inflammatory and immunological responses. The expression of 
advanced glycation end-product receptors, C-type lectin receptors (including 
DECTIN-1, DECTIN-2 and MINCLE), leukotriene B4 receptors (BLT1 and BLT2) and 
cysteinyl leukotrienes receptors (CYSLTR1 and CYSLTR2) was substantially 
influenced by inflammatory conditions[86]. These data strongly support that 
inflammatory signals are important for the immunological plasticity of MSCs allowing 
them to display specific responses.

It is important to increase our knowledge about these preconditioning methods and 
better understand the molecular and cellular mechanisms underlying their effects. It is 
noteworthy that inadequate manipulation of MSC plasticity may lead to aberrant 
immune hemostasis and tissue regeneration[87]. The development of the most suitable 
strategy should not only aim at enhancing the therapeutic value of MSCs but also 
confirm the absence of any potential adverse effect.

Cell-free based therapeutics
The therapeutic potential of MSCs for tissue repair and wound healing is essentially 
based on their paracrine effects[88]. The secretome is defined as series of factors 
including chemokines, cytokines, extracellular matrix molecules and growth factors 
that are secreted into extracellular space. Once collected, the secretome is considered 
as “сell-free therapeutics” because it is derived from MSCs and devoid of cells[89]. 
Moreover, some advantages such as the easy storage/thaw process with a preserved 
quality and function of the factors are associated with the use of the secretome[90]. The 
deep analysis of the secretome composition will enable us to evaluate its utility as a 
new therapeutic option[91]. Thus, advances in the characterization of the secretome 
composition pointed out the presence of EVs with functional activities.

EVs are small lipid membrane-enclosed particles released by cells into the 
extracellular space. EVs are very heterogeneous in size and content and can be 
released naturally or after specific induction. They contain a variety of bioactive 
components which promote cell-to-cell communication both in a healthy and diseased 
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state[92]. EVs facilitate intracellular communication by carrying and delivering 
biological materials, such as proteins, lipids, and nucleic acids[93]. Depending on their 
cellular origin, EVs cover different structures such as exosomes, microvesicles (MVs), 
and apoptotic bodies[94]. Exosomes are the smallest secreted vesicles (40-140 nm) which 
are formed by the invagination of the membrane of the multivesicular bodies and 
fusion with the plasma membrane, to be finally released into the extracellular 
environment. MVs (50-1000 nm) are budded directly off the plasma membrane and 
apoptotic bodies (1-5 µm) released from cells undergoing apoptosis[95]. More 
specifically, MSCs may secrete at least three types of EVs based on their affinities for 
membrane lipid-binding ligands. As their cargo load are different for each EV type, 
they are likely to have a different biogenesis pathway and possibly different 
functions[96]. Several scientific societies (such as SOCRATES, International Society For 
Extracellular Vesicles, ISCT and International Society of Blood Transfusion) propose to 
optimize the methods and harmonize the criteria that identify and characterize MSC-
derived EVs[97]. These preparations should be defined physically, biochemically, and 
functionally by quantifiable features and using reproducible and standardized 
assays[97].

Donor-to-donor variability and heterogeneity of MSC therapeutics are significant 
factors that interfere with their sustainable translation to the clinic. The use of EVs has 
multiple advantages in overcoming the limitations and adverse events observed with 
cell-based therapy[98]. Moreover, the use of MSCs may raise some concerns regarding 
the purity, viability, identity, recovery after cryopreservation, functional and genomic 
stability of the cellular product. The choice of the cell source, phenotype, infusion-
related toxicities and immunological complication (donor graft-vs-host disease and 
recipient graft rejection), ectopic tissue formation represent risks associated with the 
use of MSCs[99]. Thus, MSC-derived EVs can be evaluated as cell-free based 
therapeutics. EVs have been shown to effectively mimic the therapeutic effects of 
MSCs, in several preclinical models[100]. Indeed, MSC-derived EVs exert both 
immunomodulatory as well as pro-regenerative effects[101]. Several observations 
indicate that EVs may suppress pro-inflammatory processes and reduce oxidative 
stress. By switching the pro-inflammatory response into a tolerogenic one, MSC-
derived EVs are likely to promote tissue regeneration by creating a pro-regenerative 
environment allowing endogenous stem and progenitor cells to successfully repair 
affected tissues[102]. Accumulating evidence indicates that MSC-derived EVs exhibit 
immunomodulatory effects by delivering biologically active nucleic acid and proteins. 
There is a strong correlation between the expression levels of TGF-β1, pentraxin-
related protein-3 (also known as TNF-inducible gene 14 protein), let-7b-5p, or miR-21-
5p in MSC-derived EVs and their suppressive function[103]. Moreover, a recent study 
demonstrated that BM-MSC-derived EVs were incorporated by lymphocytes and 
decreased their proliferation and differentiation. Interestingly, MSC-derived EVs, by 
increasing forkhead box P3 expression and reducing the production of IFN-γ, 
generated a subpopulation of regulatory T cells with suppressive properties. 
Mechanistically, MSC-derived EVs decreased miR-23a-3p expression and increased 
expression of its target gene, transforming growth factor beta receptor 2, suggesting 
active participation of TGF-β pathway in this regulation[104]. Furthermore, early 
indications suggest that the favorable effects of MSC-derived EVs could be further 
enhanced by modifying the way in which the donor MSCs are cultured[105]. In general, 
the preconditioning of MSCs by an inflammatory milieu is the most used method to 
increase the immunotherapeutic function of MSC-derived EVs[106]. Exosomes derived 
from BM-MSCs preconditioned with a low dose of dimethyloxaloylglycine (DMOG) 
were reported to exert enhanced proangiogenic activity during bone regeneration[107]. 
Several classical pathways related to proliferation and osteogenic and angiogenic 
differentiations, including yes-associated protein of the Hippo pathway, JAK of the 
JAK/STAT pathway, p65 of the NF-κB pathway, and β-catenin of the wnt pathway 
were significantly elevated. In contrast, PTEN and key factors that regulate apoptosis 
such as p53 and p21 were significantly downregulated[107]. To mimic hypoxic 
conditions, DMOG degrades peroxisomes by selectively activating pexophagy in a 
HIF-2α dependent manner involving autophagy receptor p62[108]. In addition, thrombin 
preconditioning of human UCB-MSCs significantly accelerated EV biogenesis and 
enriched their cargo contents largely via protease-activated receptor-1-mediated 
pathways[109]. Recently, MSCs from rat BM were preconditioned with melatonin 
resulting in an improved therapeutic potential for acute liver ischemic injury[110].

Depending on both MSC origin and environment, EVs may display stimulatory or 
suppressive immune functions. It is likely that the composition of EVs is a critical 
determinant of their functions. As previously reported, both the immunomodulatory 
capabilities of distinct vesicle preparations and the responsiveness of individual 
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patients towards MSC-derived EVs are critical factors for a successful therapeutic 
application of MSC-derived EVs preparations[111]. Previous studies reported that EVs 
derived from hypoxic-primed MSCs are packaged with numerous metabolites that are 
directly associated with immunomodulation, including M2 macrophage polarization 
and regulatory T lymphocyte induction[112]. The expression of some cytokines, 
chemokines, and chemokine receptors such as IL-10, HGF, LIF, CCL2, VEGF-C, 
CCL20, chemokine CXCL2, CXCL8, CXCL16, defensin alpha 1, human hect domain 
and RLD 5, and interferon induced transmembrane protein 2 were reported to 
underline the interplay between EVs and their cellular targets[112]. These mediators may 
participate in migration to the site of injury, regulation of inflammation/immune 
response and modulation of the repair and regeneration process[113,114]. As we 
discussed, both pro- and anti-inflammatory signals are present during tissue healing. 
A critical requisite of MSC-derived EVs is their capacity to support the diametrically 
opposite pro- and anti-inflammatory functions at the appropriate time. Recently, 
preconditioned MSC-derived EVs were described as a novel cell-free strategy for 
expanding hematopoietic stem cells (HSCs) in vitro[115]. Therefore, MSC-derived EVs 
contribute to the BM homeostasis but may also display multiple roles in the induction 
and maintenance of abnormal hematopoiesis[116].

Currently, the number of clinical trials involving MSC-derived EVs as listed in 
www.clinicaltrials.gov is substantially limited. Future experimental designs are still 
required to deeply understand the therapeutic effects of EVs and their mechanisms of 
action[100]. Of importance, the current coronavirus disease 2019 (COVID-19) pandemic, 
which leads to severe and increased worldwide morbidity and mortality, has rapidly 
promoted MSCs as potential therapeutic agents to suppress COVID-19. In this context, 
some registered clinical trials using EVs from MSCs are now under investigations. The 
rationale for these approaches is supported by a growing body of evidence showing 
that MSC-derived EV preparations are therapeutically safe and efficient in a wide 
range of diseases[117].

More highlights on optimal production, isolation, storage, therapeutic dose, and 
schedule of EV administration, will increase the safety and efficiency of the 
therapy[118]. We also need to consider the state of health of the patient before injection, 
the immune-biology of MSCs and adequate pre-clinical models[99]. The use of a cell-free 
preparation based on EVs makes MSCs an important material for the development of 
new approaches for non-cell-based therapies. Moreover, modulating or 
preconditioning MSCs to achieve a specific composition of the EV cargo for the ex vivo 
expansion of HSCs is, therefore, a promising strategy that can overcome several 
challenges associated with the use of naïve/unprimed MSCs.

CONCLUSION
The research field of MSCs is innovating but needs more studies to address optimal 
therapeutic efficiency and safety. MSCs hold great promise in the field of 
immunotherapy and regenerative medicine. Accordingly, a better understanding of 
MSC immune biology will improve their therapeutic value and use[4]. The 
development of a cell-free product derived from MSCs such as EVs is the most 
promising tool to increase the safety of such therapy. EVs should be well-identified in 
terms of phenotype, functions, and effects. In parallel, enhancing the survival and 
functions by evaluating the optimal preconditioning strategy, will improve the 
therapeutic beneficial actions of MSCs. It is of the utmost importance that this feature, 
which is closely dependent on disease environment and patient health status, be 
identified and understood. The development of both features should enhance the 
value of MSCs by providing a therapeutic product with high quality, safety, and 
efficiency.
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