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Abstract
Umbilical cord blood (UCB) is a primitive and abundant source of mesenchymal 
stem cells (MSCs). UCB-derived MSCs have a broad and efficient therapeutic 
capacity to treat various diseases and disorders. Despite the high latent self-
renewal and differentiation capacity of these cells, the safety, efficacy, and yield of 
MSCs expanded for ex vivo clinical applications remains a concern. However, 
immunomodulatory effects have emerged in various disease models, exhibiting 
specific mechanisms of action, such as cell migration and homing, angiogenesis, 
anti-apoptosis, proliferation, anti-cancer, anti-fibrosis, anti-inflammation and 
tissue regeneration. Herein, we review the current literature pertaining to the 
UCB-derived MSC application as potential treatment strategies, and discuss the 
concerns regarding the safety and mass production issues in future applications.

Key Words: Umbilical cord blood; Mesenchymal stem cell; Stem cell therapy; 
Immunomodulation; Regenerative medicine; Therapeutic cell manufacturing processing
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Core Tip: Umbilical cord blood (UCB) is a primitive and rich source of mesenchymal 
stem cells (MSCs). UCB-derived MSCs have the potential of exerting profound 
immunomodulatory effects with the secretion of factors and cytokines. However, the 
safety and yield of UCB-derived MSCs are still a concern. Next-generation stem cell 
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therapy is necessary, referring to the mass production of efficient stem cells based on 
the fundamental technology, to improve whole cell processing.
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INTRODUCTION
Regenerative medicine is a medical technology specialty whereby tissues and organs, 
irreparably damaged by injury or disease, are restored through reconstruction or 
replacement in order to reestablish normal function. A current approach within the 
field of regenerative medicine is the development of stem cell research. Over the past 
50 years, stem cell biology has advanced and focused on finding new sources of stem 
cells. Understanding the characteristics and the therapeutic potential of stem cells 
forms the basis for future prospective research in evaluating this field of regenerative 
medicine for clinical benefit. Mesenchymal stem cells (MSCs), known as mesenchymal 
stromal cells or medical signaling cells, are multipotent stromal cells that have the 
potential to differentiate into various cell types[1]; thus are attractive candidates for 
regenerative medicine. Recently, adipose tissue (AT), bone marrow (BM), dental pulp, 
peripheral blood, menstrual blood, fallopian tube, cord blood, liver, and lung MSCs 
have gained much attention due to the high proliferation and differentiation capacity 
of the cells obtained from these sources[2-4].

Human umbilical cord blood (UCB) contain the youngest and most primitive MSCs, 
and a rich source is obtained at birth[5]. The collection of UCB is relatively easy, with no 
risk to the mother or baby as it does not require invasive procedures for procurement, 
and is ethically non-controversial. UCB collected after birth can be frozen and banked 
for future clinical use, without losing viability nor function[6]. Moreover, UCB has a 
low risk of transmitting viral infections and somatic mutations after clinical 
transplantation[7]. Both public and private cord blood banks have been developed to 
store umbilical cord blood for future use. Currently there are around twenty public 
cord blood banks worldwide[8-11]. The main advantages of UCB-MSC result from their 
properties in self-renewal, multipotency, hypo-immunogenicity, non-tumorigenicity, 
and immunomodulation; therefore have a broad therapeutic potential[12-16]. Despite the 
similar spindle-shaped morphology, UCB-derived MSCs have unique and significant 
advantages over adult source-derived MSCs[14,17-19]. UCB-derived MSCs are easier to 
obtain than BM stem cells, which are the most widely studied and harvested. The MSC 
proliferation rates and yield per unit volume in UCB is greater than that in BM. 
Further, transplantation of MSCs derived from UCB results in fewer immune system 
incompatibilities, such as graft-versus-host disease (GvHD). UCB-derived cells exhibit 
class I human leukocyte antigen (HLA), showing inherent immunoprivileged 
properties[6,20,21]. A typical UCB unit of approximately 100 mL includes approximately 
1000 to 5000 MSCs[22]. UCB-derived MSCs are more tolerant of HLA mismatches than 
those derived from BM[23,24]. Additionally, the capability of storing MSCs in a bank 
allows UCB-derived MSCs to be used “off-the-shelf” for the treatment of various 
diseases. More than 5 million cord blood samples are stored in private cord blood 
banks for the treatment of blood and immune system disorders[11]. To date, UCB-
derived MSCs have been used in around 133 clinical trials (ClinicalTrials.gov). 
Regardless of the success achieved in MSC clinical trials, manufacturing a therapeutic 
cell-based product is and will remain a challenge. Herein, we discuss the many 
concerns surrounding potential and current clinical applications of UCB-derived 
MSCs. Nonetheless, we foresee that the use of UCB-derived MSCs will continue to 
increase and diversify within the field of regenerative medicine.

https://www.wjgnet.com/1948-0210/full/v12/i12/1511.htm
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CHARACTERISTICS OF UCB-MSCS
Surface markers and self-renewal
According to the International Society for Cellular Therapy guidelines, multipotent 
human MSCs show fibroblastic morphology with adherent properties during culture 
conditions. In addition, they express positive (≥ 95%) immunophenotypic markers 
CD105, CD73, and CD90, as well as negative expression (≤ 2%) of CD11b, CD14, CD19, 
CD34, CD45, CD79, and HLA-DR[25]. Several studies support the finding that MSCs 
derived from both UCB and BM express the same surface markers and differentiation 
capacity. However, MSCs derived from UCB have a faster population doubling time 
and higher fibroblast colony-forming units frequency (CFUF) in comparison to MSCs 
derived from BM[14,18,26]. Despite the similar cell surface immunophenotypes, the higher 
proliferation rate increases the potential therapeutic value. MSCs are heterogeneous 
populations of cells, and the diversity of the existing tissue sources adds to its 
complexity. The origin of the tissue can affect the secretion of MSC factors. Donor age 
is a critical factor affecting MSC efficacy. MSCs obtained from neonatal tissues show a 
longer lifespan than those obtained from adult tissues, such as adipose tissue and BM. 
Interestingly, UCB-derived MSCs are reported to have the lowest CFUF frequency but 
can be cultured for the longest period and show the highest proliferation 
capacity[14,18,27].

Senescence and apoptosis
The optimal MSC characteristics for clinical selection and application are slow 
senescence and low apoptosis rates. The function of MSCs appear to decrease with 
age; therefore, understanding the MSC aging process is critical for the development of 
therapeutic interventions to enhance the repair processes. Earlier passages of cultured 
MSCs are reported to have better colony efficiency[28,29]. Comparative analysis showed 
significantly higher CD146 expression in UCB-derived MSCs, compared to BM- and 
umbilical cord (UC)-MSCs[30]. Suppression of CD146 accelerates cellular senescence in 
MSCs, correlating with studies that showed high levels of CD146 expression delayed 
the cellular senescence of UCB-derived MSCs compared to other source-derived 
MSCs[31]. CD106 expression was weakly positive in UCB-derived MSCs, whereas 
umbilical cord vein - and umbilical cord Wharton’s jelly - MSC lacked cell surface 
CD106 expression[18,30,32]. Furthermore, a significantly higher expression of HLA-ABC 
on the cell surface of UCB-derived MSCs was shown, compared to umbilical cord 
tissue-derived MSCs[33]. Comparative studies on the cellular senescence of BM-, AT, 
and UCB-derived MSCs demonstrated that MSCs derived from UCB had significantly 
lower expressions of senescence markers p53, p21, and p16. Dramatically increased 
senescence-associated β-galactosidase expression in BM- and AT-derived MSCs was 
observed in UCB-derived MSCs at the same passage[14]. Telomere lengths shorten after 
each division cycle, undergoing cellular senescence[34-37]. UCB-derived MSCs have 
demonstrated greater telomerase activity and longer telomere length, associated with 
shorter doubling time, than adult tissue-derived MSCs[38]. A higher proportion of UCB-
derived MSCs in the quiescent state (G0/G1) was observed, compared to BM-derived 
MSCs, which possess shorter cell cycles. Taken together, the longer telomere activities 
and higher expression of senescence-related genes in UCB-derived MSCs results in a 
higher proliferative potential, maintaining the self-renewal abilities of stem cells 
compared to other source-derived stem cells[39,40].

MECHANISMS OF ACTION
Homing and migration
In cell-based therapies, homing and migration of MSCs to sites of injury and tumors is 
a critical mechanism for delivering trophic signals[41,42]. Chemoattraction to 
inflammation sites facilitates trafficking of MSCs, adhesion, and infiltration to injured 
site. Accumulated chemokines and cytokines, platelet-derived growth factor, vascular 
endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1, and 
inflammatory cytokines, stimulate the mobilization of MSCs[41,43,44]. Chemokine 
receptors, C-X-C chemokine receptor type 1 (CXCR1) and CXCR4, expressed on UCB-
derived MSCs are attracted to the accumulation of chemokines and cytokines at target 
sites[45-47]. Previous independent reports demonstrated that secretion of SDF-1 by UCB-
derived MSCs plays a pivotal role in mobilization and homing via protein kinase B 
(PKB/Akt), extracellular signal-regulated kinase (ERK), and p38 signaling 
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pathways[48]. Subsequent adhesion of UCB-derived MSCs is brought about by adhesion 
molecules, vascular cell adhesion molecule, CD62, and integrins[18,44,49]. MSCs finally 
infiltrate into the site aided by enzymatic proteins, matrix metalloproteinase (MMP)-2 
and MT1-MMP[43].

Tissue regeneration 
Although MSCs appear to have similar potential for differentiation, significant 
differences have also been observed. Many studies have provided insights into the 
distinct differentiation capacities of UCB-derived MSCs, compared to BM- or adipo-
derived MSCs[14,32]. Induction of osteogenesis in UCB-derived MSCs demonstrated 
higher increases in Alizarin Red S and developed alkaline phosphatase activity than 
other adult tissue-derived MSCs, respectively[17]. Gene expression profiles showed that 
UCB-derived MSCs had osteogenic key transcription factors, Runx2 and Osterix, 
similar to BM-derived MSCs[50]. Runx2 expression peaked at 3-7 d in induced BM-
derived MSCs, far ahead of UCB-derived MSCs[51]. Significant increase in Runx2 gene 
expression in UCB-derived MSCs has been reported in polyglcolic acid scaffolds[52]. 
Similarly, the arginine-glycine-aspartic acid on 3-dimensional polyurethane scaffolds 
and GHK peptides (Gly-His-Lys) on oxidized alginate hydrogel scaffolds have 
bolstered attempts to harness the osteogenic differentiation potential of UCB-derived 
MSCs, expressing enhanced alkaline phosphatase activity and osteogenic gene 
markers[53,54]. In addition, osteo-induction efficiency of UCB-derived MSCs was 
analyzed and assessed by metabolomics analysis of osteogenic differentiation. This 
revealed that UCB-derived MSCs showed sensitivity to osteogenic agents[55]. UCB-
derived MSCs from bone defects promoted new bone formation in osteoporotic 
models, similar to non-osteoporotic bone regeneration[56,57].

While comparing the therapeutic potentials of other adult tissue- and UCB-derived 
MSCs, a similar pattern in the extent and level of chondrogenic differentiation capacity 
was demonstrated[58,59]. Moreover, similar increases in proteoglycans were detected by 
safranin O staining[14]. Chondrogenic differentiation of UCB-derived MSCs has been 
shown by collagen type 2a1 (COL2a1) antibody staining[60]. Except for cartilage 
oligomeric matrix protein, chondrogenesis-related gene markers, SOX9, Runx2, AGC1, 
and COL10a1 were not significantly different between BM- and UCB-derived MSCs, as 
shown by microarray analysis[15]. Using UCB-derived MSCs 3D culture systems, 
increased levels of mature chondrocyte-specific markers, COL2a1, COL2b, and ACAN 
were detected[61,62]. In rabbit and rat models, cartilage repair was observed after 
transplantation of UCB-derived MSCs with hyaluronic acid hydrogel composites[63-65]. 
Additionally, hypoxia triggered the chondrogenesis of UCB-derived MSCs in the 
presence of bone morphogenetic protein (BMP)-2 and transforming growth factor 
(TGF)-β1[66].

Interestingly, several studies demonstrated that UCB-derived MSCs showed low 
levels of adipogenic differentiation capacity, in contrast to BM- and AT-derived 
MSCs[14,17,18,67]. It is difficult to induce adipogenic differentiation in UCB-derived MSCs, 
to reveal the production of fat droplets, identified by Oil red O staining[68,69]. However, 
microarray results revealed the up-regulation of adipogenesis-related genes, such as 
LPL and PPARγ, in UCB-MSC, which was corroborated by quantitative RT-PCR 
analysis[70]. Additionally, calcium induction increased the adipogenic differentiation 
capacity of UCB-derived MSCs via Wnt5a/β-catenin signaling pathways[71,72].

UCB-derived MSCs can also differentiate into neural-like cells. Similar 
developmental and functional characteristics to neurons were observed in neuronal 
differentiated UCB-derived MSCs, which expressed neuronal transcription factors 
mammalian achaete scute homolog-1, distal-less homeobox 1 (DLX1), and DLX2, and 
is reported to develop into human cortical GABAergic neurons[73]. Neuronal 
differentiation of UCB-derived MSCs, showing glial fibrillary acidic protein (GFAP) 
and nestin gene expression, was demonstrated together with a combination of 
chemical and growth factors during neuronal induction[74]. Disialoganglioside 2 
proteins regulate neuronal differentiation of UCB-derived MSCs[75]. After transplanting 
UCB-derived MSCs intravenously into the animal brain area, only a small portion of 
MSCs remained, and expressed the neuronal markers neuron-specific nuclear protein, 
microtubule-associated protein-2, GFAP and class III beta-tubulin[76,77]. Brain-derived 
neurotrophic factor (BDNF) mediates and activates the mitogen-activated protein 
kinases/ERK and PI3K/Akt-dependent signaling pathways to stimulate the neural 
differentiation of UCB-derived MSCs[78]. Inducing the differentiation of UCB-derived 
MSCs with antioxidants, tropical factors, and stimulated microgravity 
microenvironments, resulted in the differentiation of neuronal-like cells, such as 
oligodendrocytes, neurons and astrocytes[79-81].

UCB-derived MSCs can also differentiate into cells of the cardiomyocyte lineage. 
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Myocardial proteins with or without application of oscillating pressure augmented 
cardiac-specific genes, α-MHC, Cx43, cTNT, and ANP. Consistent with in vitro data, the 
transplantation of UCB-derived MSCs into acute myocardial infarction models, lead to 
improved cardiac function and expression of cardiomyocyte-specific markers after 8 
wk[82]. VEGF, which induces angiogenesis, was also engineered into UCB-derived 
MSCs to control the VEGF level and applied to a rat myocardial infarction (MI) model. 
The VEGF-inducible MSCs showed significant improvement in left ventricle ejection 
fraction. Fractional shortening with decreased MI size, fibrosis, and increased muscle 
thickness protected the cardiomyocytes from MI damage[83]. TGF-β1, a key anti-fibrosis 
factor can be secreted by UCB-derived MSCs and acts upon the tissue by improving 
both muscle and skin regeneration after cleft repair[84]. VEGF, IL-10, and tumor 
necrosis factor-stimulated gene (TSG)-6 secreted by UCB-MSCs also affects wound 
healing in a severe burn model in rats[85].

Immunomodulation
The differentiation capacity of UCB-derived MSCs suggests that umbilical cord blood 
is a highly appropriate cell source for regenerative purposes. Additionally, the main 
advantage of UCB-derived MSCs in injured tissue regeneration is immunomodulation 
(Figure 1). It is well known that MSCs release growth factors and cytokines along with 
extracellular vesicles to modulate immune responses. Among different origin-derived 
MSCs, UCB-derived MSCs showed higher immune modulatory effects by both direct 
immune cell contact and secretion factors[86]. Secreted factors from UCB-derived MSCs 
affect angiogenic properties in animal models. UCB-derived MSCs possess unique 
paracrine properties that can affect angiogenesis, as confirmed by the formation of 
vascular tubular structures[87]. Thrompospondin-2 secreted by UCB-derived MSCs also 
induced chondrogenic differentiation[88,89]. Growth/differentiation factor -15 secretion 
from UCB-derived MSCs is reported to induce hippocampal neurogenesis and 
synaptic activity in an Alzheimer’s disease mouse model[90]. Secreted proteins, decorin 
and progranulin, from UCB-derived MSCs induced anti-apoptotic and anti-neurotoxic 
activity of amyloid-β42, which is involved in the pathogenesis of Alzheimer’s 
disease[91]. Intercellular adhesion molecule (ICAM)-1 secreted by UCB-derived MSCs 
also reduced amyloid β plaques in Alzheimer’s disease mouse model[92]. Another 
group also demonstrated that cortical neurogenesis was enhanced by sequential 
induction of UCB-derived MSCs[93]. GDNF, BDNF, and VEGF secreted by UCB-derived 
MSCs significantly increased the neurogenic and neurorescue effects in an ischemic 
stroke rat model[94]. In monocrotaline-induced pulmonary artery hypertension, the 
secretory factors, ICAM-1 and MMP-2, from UCB-derived MSCs inhibited immune 
reactions[95]. Monocyte chemoattractant protein (MCP)-1 secreted by UCB-derived 
MSCs downregulated BMI-1 proteins to control senescence[96]. Notwithstanding the 
immunosuppressive effect of MSCs, it was recently shown that UCB-derived MSCs 
can be used in cancer therapy. Tumor necrosis factor-related apoptosis-inducing 
ligand-secreting UCB-derived MSCs delivered the gene to treat intracranial glioma[97]. 
Similar to BM-derived MSCs, TSG-6 secreted by UCB-MSCs controlled the anti-
inflammatory reaction by inhibiting the activation of P38 and JNK signaling[98,99].

Another aspect of immunomodulation is triggered by direct contact of immune cells 
with UCB-derived MSCs. Macrophage polarization-mediated paracrine factors from 
UCB-derived MSCs were determined using bronchopulmonary dysplasia (BPD) 
model. Decorin secreted by MSCs attenuated the anti-inflammatory reaction of 
macrophages, polarized toward an anti-inflammatory phenotype via CD44. 
Knockdown of decorin on UCB-derived MSCs showed less recovery of lung 
alveolarization in BPD model[100]. Similarly, UCB-derived MSCs also released 
pentraxin-related protein (PTX3), while interacting with macrophages in hyperoxic 
lung injury rat model. PTX3 secretion induced increased cell survival levels, lung 
alveolarization, and Dectin-1 Levels along with anti-inflammatory cytokine release in 
macrophages of the BPD model[101]. Decorin-overexpressing UCB-derived MSCs 
revealed decreased levels of inflammatory cytokines, MCP-1, MCP-3, MIP-2, and 
eotaxin by targeting pro-fibrotic factors and T-regulatory cells[102]. UCB-derived MSCs 
pretreated with IFN-γ suppressed the functional activity of mature dendritic cells, 
stimulating T-lymphocyte proliferation after direct contact[103].

CURRENT APPROACH FOR THERAPEUTIC EFFECTS
New culture conditions of UCB-MSCs for cellular therapy benefits 
Recent applications of stem cells have been presented as potential therapeutic 
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Figure 1 Mechanisms of action mediated by umbilical cord blood-derived mesenchymal stem cells. SDF: Stromal cell-derived factor; VCAM: 
Vascular cell adhesion molecule; MMP: Matrix metalloproteinase; HGF: Hepatocyte growth factor; PDGF: Platelet-derived growth factor; MCP: Monocyte 
chemoattractant protein; FGF: Fibroblast growth factor; PTX: Pentraxin-related protein; TGF: Transforming growth factor; TRAIL: Tumor necrosis factor-related 
apoptosis-inducing ligand; GDF: Growth/differentiation factor; ICAM: Intercellular adhesion molecule; BDNF: Brain-derived neurotrophic factor; VEGF: Vascular 
endothelial growth factor; FGF: Fibroblast growth factor; UCB: Umbilical cord blood; MSC: Mesenchymal stem cell.

strategies for incurable diseases. However, unsolved issues still remain regarding early 
senescence during cell culture and low treatment efficacy after transplantation. To 
apply UCB-derived MSCs to clinical settings, several conditions need to be verified. 
Firstly, acquiring a large number of MSCs, is related to improved proliferation and 
delayed senescence. Secondly, a highly efficient cell culture condition is needed to 
enhance the therapeutic efficacy of MSCs. The current verified and developed culture 
conditions are described in Table 1.

The preexisting cell culture is mostly based on normoxia conditions (20%). 
However, recent culture conditions have changed to favor a hypoxic state with 1 to 5% 
oxygen, similar to oxygen deficiency of the body in a biotic environment. Hypoxia 
improved cell proliferation, neurogenic gene expression, and stem cell capacity of 
UCB-derived MSCs. In particular, apoptosis and enhanced angiogenesis of MSCs 
promote therapeutic efficacy in a mouse hindlimb ischemia model[77,104-106]. The classic 
characteristics of MSCs are adherence to cell monolayers in two-dimensional cell 
cultures. Recent reports have shown that three-dimensional cell culture techniques, 
including aggregation, microcarrier formation, spheroid formation, and sponge form, 
increase cell viability, stem cell potential, and differentiation capacity on osteogenesis, 
adipogenesis, chondrogenesis, and neurogenesis of UCB-derived MSCs. Moreover, the 
therapeutic efficacy of UCB-derived MSCs is improved in several disease-related 
animal models[61,65,107,108]. In an MI animal model, the therapeutic benefits of MSCs 
formed by spherical bullets were affected by the increased secretion of various 
paracrine factors[109]. With spherical bullets or aggregation formation of UCB-derived 
MSCs, high levels of paracrine factors are stimulated by increased protein interactions 
between SOD2 or E-cadherin[61,109].

Another aspect to consider regarding cell collection, is the size of MSCs. Cell size 
may compromise the therapeutic efficacy of UCB-derived MSCs. A small size ranging 
between 7 to 10 μm showed a high MSCs proliferation rate, referred to as recycling 
stem cells or rapid stem cells[110,111]. UCB-derived MSCs from neonatal tissue are small 
in size compared to other adult tissues, such as BM and adipose tissue[112]. The efficacy 
of small stem cells isolated from UCB-derived MSCs to have high proliferative rates, 
enhanced stem cell capacity, and delayed senescence has been confirmed. In an animal 
model of emphysema, the therapeutic efficacy of small cells on UCB-derived MSCs has 
been proven[112].

Additional reports on the improvement of the stem cell capacity have been 
confirmed after pretreatment with cobalt chloride (CoCl2). The anti-inflammatory 
function of UCB-derived MSCs increased with CoCl2 via the ERK-HIF-1α-MicroRNA-
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Table 1 New culture condition of umbilical cord blood-derived mesenchymal stem cells

Subject Conditions Title Year

5 % Effects of hypoxia on proliferation of human cord blood-derived mesenchymal stem cells. 2016

1 % Protein profiling and angiogenic effect of hypoxia-cultured man umbilical cord blood-
derived mesenchymal stem cells in hindlimb ischemia.

2017

2.5 % The effect of hypoxia preconditioning on the neural and stemness genes expression 
profiling in human umbilical cord blood mesenchymal stem cells.

2017

Hypoxia

1 % Hypoxia preconditioning increases survival and pro-angiogenic capacity of human cord 
blood mesenchymal stromal cells in vitro.

2015

Spheroid Up-regulation of superoxide dismutase 2 in 3D spheroid formation promotes therapeutic 
potency of human umbilical cord blood-derived mesenchymal stem cells.

2020

Spheroid effect on multipotency and phenotypic transition of unrestricted somatic stem cells from 
human umbilical cord blood after treatment with epigenetic agents

2016

Collagen sponge Chondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells 
in collagen matrices for cartilage engineering.

2016

Collagen constructs Enhanced survival and neurite network formation of human umbilical cord blood neuronal 
progenitors in three-dimensional collagen constructs.

2013

3D 

Spheroid Spherical bullet formation via E-cadherin promotes therapeutic potency of MSCs derived 
from human umbilical cord blood for myocardial infarction.

2012

Small size 8 µm size ≤ A small-sized population of human umbilical cord blood-derived mesenchymal stem cells 
shows high stemness properties and therapeutic benefit.

2020

CoCl2 100 µmol/L Cobalt Chloride Enhances the Anti-Inflammatory Potency of Human Umbilical Cord Blood-
Derived Mesenchymal Stem Cells through the ERK-HIF-1α-MicroRNA-146a-Mediated 
Signaling Pathway 

2018

Ca2+ (1.8 mmol/L) and 
hypoxia (3%)

Optimization of culture conditions for rapid clinical-scale expansion of human umbilical 
cord blood-derived mesenchymal stem cells.

2017

Size (10 µm ≤) and Ca2+ 

(1.8 mmol/L) and hypoxia 
(3%)

Small hypoxia-primed mesenchymal stem cells attenuate graft-versus-host disease. 2018

Hypoxia (5%) and 3D 
(collagen sponge)

Hypoxia is a critical parameter for chondrogenic differentiation of human umbilical cord 
blood mesenchymal stem cells in Type I/III collagen sponges 

2017

Combine condition

IL-1β (5 ng/mL) andIFNλ 
(20 ng/mL)

Preconditioning with interleukin-1 beta and interferon-gamma enhances the efficacy of 
human umbilical cord blood-derived mesenchymal stem cells-based therapy via enhancing 
prostaglandin E2 secretion and indoleamine 2,3-dioxygenase activity in dextran sulfate 
sodium-induced colitis.

2019

HGF and VEGF (TALEN) Coronary stents with inducible VEGF/HGF secreting UCB-MSCs reduced restenosis and 
increased reendothelialization in a swine model.

2018

LEF-1 (adenoviral) Transplantation of hMSCs genome edited with lef1 improves cardio-protective effects in 
myocardial infarction.

2020

LIGHT (lentiviral) Gene therapy of gastric cancer using LIGHT-secreting human umbilical cord blood-derived 
mesenchymal stem cells.

2013

BMP-2 (lentiviral) Lentiviral gene therapy for bone repair using human umbilical cord blood–derived 
mesenchymal stem cells.

2019

BMP-2 (non-viral) Transfection of hBMP-2 into mesenchymal stem cells derived from human umbilical cord 
blood and bone marrow induces cell differentiation into chondrocytes.

2014

Gene 
overexpression

FGF-20 (adenoviral) The effect of MSCs derived from the human umbilical cord transduced by fibroblast growth 
factor-20 on Parkinson’s disease

2016

ERK: Extracellular signal-regulated kinase; HIF: Hypoxia-inducible factor; VEGF: Vascular endothelial growth factor; HGF: Hepatocyte growth factor; 
TALEN: Transcription activator-like effector nuclease; UCB: Umbilical cord blood; MSC: Mesenchymal stem cell; LEF: Lymphoid enhancer-binding factor; 
LIGHT: TNFSF14 (tumor necrosis factor superfamily member 14); BMP: Bone morphogenetic protein; FGF: Fibroblast growth factor.

146 signaling pathway in an animal model of asthma[113]. Recent studies have 
generated a synergic effect by combining hypoxic conditions and calcium treatment to 
improve the stem cell capacity. UCB-derived MSCs showed increased cell viability 
through ERK signaling, and improved beneficial effects by increasing anti-
inflammatory processes in an animal emphysema model[114]. Stable culture conditions 
were demonstrated with small stem cells isolated from UCB-derived MSCs with 
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calcium treatment and hypoxia. Small MSCs primed with hypoxia and calcium 
improved stem cell capacity and immunomodulatory function in vitro, as well as the 
therapeutic effectiveness against organ failure in a GvHD animal model using key 
regulator, polo-like kinase 1[115]. In addition, UCB-derived MSC culture with collagen 
sponge under hypoxic conditions enhanced chondrogenic differentiation capacity[66]. In 
vitro pre-conditioning of UCB-derived MSCs with inflammatory cytokines, IL-1β and 
IFN-γ, suppressed inflammation, and increased the gene expression of PGE2; while the 
therapeutic effect of MSCs had increased in colitis and cerebral ischemia models[116,117].

Various culture conditions have been verified by past research and technical 
approaches to obtain low-cost cell therapy products. Emerging studies evaluating new 
culture conditions need to be expanded consistently to develop successful stem cell 
therapies for intractable diseases.

Gene editing techniques have been applied to stem cell therapy to improve stem cell 
efficacy. In particular, most studies on UCB-derived MSCs have used gene 
overexpression to achieve the desired therapeutic effects (Table 1). UCB-derived MSCs 
overexpressed with VEGF/hepatocyte growth factor (HGF) using the transcription 
activator-like effector nuclease (TALEN) system, showed high proliferative rates, cell 
viability, angiogenesis, and progress in coronary restenosis in a swine model with 
stent material[118]. Additionally, TALEN-mediated HGF editing in UCB-derived MSCs 
promoted angiogenesis to improve the tube-formation ability and anti-apoptotic 
responses to oxidative stress[119]. Overexpression of lymphoid enhancer-binding factor 
1 in UCB-derived MSCs using an adenoviral vector increased proliferation and anti-
apoptotic effects by improving the cardioprotective effect in an animal model of 
MI[120]. In addition, TNFSF14 (LIGHT, tumor necrosis factor superfamily member 14) -
overexpressed UCB-derived MSCs using a lentiviral system demonstrated suppressed 
growth and augmented apoptosis of tumors in a gastric cancer model[121]. Similarly, 
BMP-2 overexpression in UCB-derived MSCs using a lentiviral system, showed high 
osteogenic differentiation, which was confirmed in an animal model with bone 
repair[122]. Additionally, non-viral BMP-2 overexpressed in UCB-derived MSCs 
demonstrated increased chondrogenic marker, ColII, and induced chondrocyte 
differentiation in a disease model[123]. Overexpression of SRY-related high-mobility 
group box 9 (SOX9), a cartilage-specific transcription factor, enhanced the 
chondrogenic differentiation of UCB-derived MSCs[124]. Adenoviral transduction of 
FGF-20 in Parkinson’s disease (PD) promotes the degradation of the proinflammatory 
cytokine NF-kB, expressed in nigrostriatal dopaminergic regions in PD patients[125]. In 
future stem cell approaches, modified therapy must focus on fundamental treatment 
of the disease; therefore specific target-based modifications will be needed. However, 
the development of desired gene-edited stem cells will increase the price and safety 
considerations in manufacturing and quality control processes. The concerns 
regarding stem cell gene editing warrants further assessments for obtaining viable 
solutions.

CONCERNS
Safety of UCB-MSC treatments
Stem cell therapy is based on adequate availability due to the innate biological 
characteristics of stem cells, such as self-renewal, differentiation, and motility 
potential. However, these biological characteristics of stem cells can affect safety 
issues. The most representative problem is the possibility of inducing tumorigenicity, 
brought on by chromosomal abnormalities. MSCs, mostly used in stem cell therapy, 
have a relatively low risk of potential tumorigenicity compared to multipotent stem 
cells. Emerging studies have demonstrated that tumor formation cannot be avoided 
due to stem cell characteristics and external conditions[126]. Analytical techniques for 
testing tumorigenicity are based on in vivo experiments. Additional in vitro tests with 
karyotyping and molecular and cellular genetic analysis (fluorescence in situ 
hybridization, chromosomal comparative genomic hybridization, single nucleotide 
polymorphisim et al) need to be used for genetic stability analysis. Karyotyping 
analysis demonstrated that UCB-derived MSCs did not have any abnormalities on 
chromosome until passage 15[112]. In addition, the carcinogenicity evaluation of UCB-
derived MSCs confirmed that tumors were not induced in vitro and that tumor 
formation in vivo was not observed at 13 wk after a single injection of UCB-derived 
MSCs administered subcutaneously in the internal organs of BALB/c-nude mice[127].

As per the expectation and demand for stem cell therapy in regenerative medicine, 
the application of various administration routes, such as spinal cord, subcutaneous, 
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intramuscular, and intravenous injection, had increased, followed by confirmation of 
biological distribution. The Food and Drug Administration recommended that data for 
biological distribution, mobility, and residual period were needed and retained on the 
aspect of safety probability. In particular, the confirmation of cell fate after injection is 
important in order to analyze the mode of action of cell therapy and to decide whether 
the activation of cell engraftment is necessary and critical. Direct single injection of 
cells into the topical site of the disease, by intraparenchymal, intratracheal, 
intramyocardial, and intra-articular routes, demonstrated the residue of cells from 3 to 
10 wk[65,92,109,128]. Therapeutic efficacy was observed before the verification of cell 
distribution, confirming anti-apoptosis, anti-fibrosis, anti-inflammation, and tissue 
regeneration. The cells injected intravenously in lung disease models, emphysema, 
and asthma have remained for 7 d[96,112]. The residual cells in the bladder were observed 
until day 7 after injection for the treatment of cystitis[129]. From the above studies, 
intravenous administration showed rapid extinction of cells compared to direct 
injection at the disease site. Intravenous injection also revealed therapeutic efficacy 
with anti-inflammation, anti-apoptosis, anti-fibrosis, and angiogenesis. Collectively, 
the results indicate the stability of injected UCB-derived MSCs in various diseases.

Heterogeneity 
Heterogeneity remains a critical problem, not only for gaining a general 
understanding of the mechanism by which MSCs maintain their growth rate and 
undergo differentiation toward specific lineage potentials, but also with respect to 
achieving better outcomes in therapeutic applications[130]. It is mainly affected by 
growth media, two-dimensional adherence to plastic culture dishes, and sub-culturing 
methods; therefore, these processes were repeated until an adequate number of MSCs 
were obtained for large-scale expansion in vitro[131]. In this context, researchers have 
tried to establish a standard set of criteria for attaining more homogenous populations 
of MSCs. Firstly, for clearer cell origins, studies have attempted to clone UCB-MSCs 
derived from single cells by limiting dilution assays. Single cell-derived clones were 
identified by evaluating MSC features including growth, surface marker, stemness, 
and multi-lineage potential. As a result, one clone showed a faster growth rate and 
higher differentiation potential than the original populations. However, other clone 
cells showed weak growth ability and differentiation potential compared to the 
original cells, except for one clone that had superior data[132]. Further, this processing 
draws attention to the selection criteria as a possible marker related to the excellent 
MSC clones. Secondly, several protocols have been developed to isolate more 
homogeneous cells using several specific antigens such as CD143, CD146, and 
CD271[16,133,134]; however, none of these processing methods have gained wide 
acceptance, and a unique single marker has not been identified to date. Moreover, to 
obtain primitive homogeneous, multi or pluripotent stem cells have been introduced 
with different names in adult hematopoietic tissues, for example, unrestricted somatic 
stem cells[135], depending on the isolation strategy, ex vivo expansion protocol, and 
markers employed for their identification; however, these factors remain unclear and 
are a major obstacle for heterogeneity. Despite such an attempt, there is still no defined 
culture protocol to overcome MSC heterogeneity.

Low yield
Despite the many advantages of UCB-MSCs, their utility remains controversial due to 
their low isolation efficiency. Many groups have reported that UCB has a 65%-90% 
maximum isolation efficiency in various culture protocols, including the depletion of 
lymphocytes and monocytes from mononuclear cells before cell seeding, delivery time, 
volume, addition of cytokines supplements or platelet lysate to the medium, density 
gradient purification, or cultivation of cells under hypoxia[12,18,136-139]. This could also 
help improve the utility of UCB-MSCs as a therapeutic resource. Further studies 
should be performed to validate these methods for clinical use.

Current good manufacturing practices for development
For advanced therapy development using UCB-derived MSCs, standard operation 
procedures are necessary, as well as the reliable application into Good Manufacturing 
Practice procedures. The current established and developed MSC therapy has 
limitations in commercialization and market expansion because of the high cost 
caused by the manufacturing process and quality control with conventional static 
monolayer culture. Therefore, cost reduction from improving the efficacy of cells is 
essential to develop the next-generation stem cell therapies, based on fundamental 
technologies over conventional culture. Consequently, evaluation of optimized and 
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innovative manufacturing processes is needed (Figure 2).
The study of therapeutic manufacturing focuses on the workflow process for 

selecting the outstanding upstream cells. However, various commercialization 
products have been introduced to academic researchers as well as to industrial 
companies, in accordance with the higher interest in downstream areas to develop the 
product. Stem cell therapy is affected not only by the skill of the workforce but also by 
the massification and automation of equipment to guarantee consistent products. The 
adhesive characteristics of MSCs make it difficult to expand cells for mass production, 
making it difficult to develop a bioreactor. However, many companies have developed 
related and combined bioreactors for the extensive production of stem cells[129,140,141]. 
This system demonstrated that the scale-up of a stem cell batch in a single progression 
reduced the cost for production, followed by an increase in the level of quality control 
with regards to the development of automated systems in manufacturing cell 
cultures[142]. A bioreactor is defined as a culture system where the organism is 
controlled and regulated to produce the specific material or cells, by removing the 
unnecessary metabolic products while culturing the cells and continuously 
maintaining the proper levels of nutrients and growth factors. For this reason, the 
selection of the bioreactor, which is appropriate for specific cells, is important in the 
final manufacturing process to complete the efficient scale-up applied while 
maintaining the characteristics of cells based on the technical equipment.

Recently developed manufacturing bioreactors, which are fully closed, controllable, 
and have scalable culture systems, have been used to monitor and control the 
metabolic state in real time including, dissolved oxygen, glucose, ammonia, pH, and 
lactate[143-145]. As the collection of large cell quantities takes a long time using manual 
methods, a reduction in collection times using automated equipment, increases the 
efficacy and consistency of the quality control. Current commercialized stem cell 
therapy-based products are temperature sensitive, resulting in a short expiration 
period. The development of frozen preservation techniques and the appropriate 
storage of these cell products are important for their viable export overseas. The 
preservative solution in basic culture media or saline solution, is not appropriate for 
maintaining long-term cell viability. Several frozen preservative solutions have 
recently been developed, such as serum-free, Xeno-free media and DMSO. However, 
these result in a low stability of cells with a low cell recovery rate. Therefore, the 
development of an efficient preservation system needs to be complemented[146-149]. 
Ideally, a division system has been developed for the automated manufacturing of 
frozen storage of bulk cultured cells, allowing improvements in the accuracy, 
repetition, time consumption, and number of workers needed compared to the current 
manual workspace.

CONCLUSION
Stem cell therapy is an outstanding method for regenerative medicine. With significant 
advantages, such as self-renewal, differentiation capacity, and immunomodulation, 
the use of stem cells is appropriate for the treatment of several disorders and diseases. 
UCB is a primitive and rich source of MSCs. UCB-derived MSCs have the potential of 
exerting profound immunomodulatory effects with the secretion of factors and 
cytokines. However, the safety and yield of UCB-derived MSCs are still a concern. 
Next-generation stem cell therapy is necessary, referring to the mass production of 
efficient stem cells based on the fundamental technology, to improve whole cell 
processing. This will solve problems of limited product expansions caused by short 
expired periods and high production costs. In accordance with the advanced process, a 
manufacturing system is needed to produce quantity in order to reduce production 
costs, as well as enhancing yield output, and delivering consistent quality by 
automated production processes. Overall, advanced manufacturing systems will 
improve and trigger the commercialization and globalization of stem cell therapy.
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Figure 2  Workflow for therapeutic cell manufacturing processing.
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