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Abstract
Tooth enamel, a highly mineralized tissue covering the outermost area of teeth, is 
always damaged by dental caries or trauma. Tooth enamel rarely repairs or 
renews itself, due to the loss of ameloblasts and dental epithelial stem cells 
(DESCs) once the tooth erupts. Unlike human teeth, mouse incisors grow 
continuously due to the presence of DESCs that generate enamel-producing 
ameloblasts and other supporting dental epithelial lineages. The ready 
accessibility of mouse DESCs and wide availability of related transgenic mouse 
lines make mouse incisors an excellent model to examine the identity and 
heterogeneity of dental epithelial stem/progenitor cells; explore the regulatory 
mechanisms underlying enamel formation; and help answer the open question 
regarding the therapeutic development of enamel engineering. In the present 
review, we update the current understanding about the identification of DESCs in 
mouse incisors and summarize the regulatory mechanisms of enamel formation 
driven by DESCs. The roles of DESCs during homeostasis and repair are also 
discussed, which should improve our knowledge regarding enamel tissue 
engineering.
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Core Tip: In the present review, we update the current understanding about the 
identification of dental epithelial stem cells (DESCs) in mouse incisors and summarize 
the regulatory mechanisms of enamel formation driven by DESCs. The roles of DESCs 
during homeostasis and repair are also discussed, which should improve our 
knowledge regarding enamel tissue engineering.
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INTRODUCTION
Tooth enamel, the most highly mineralized tissue in the human body, consists of 
hydroxyapatite organized into enamel rods and inter-rods which are interwoven, 
therefore serving as a protective covering for the tooth crown. During enamel 
formation, inner enamel epithelial cells in the enamel organ differentiate into enamel-
forming ameloblasts, which secrete enamel matrix and create an extracellular 
environment for mineralization[1-4]. These cells commit apoptosis once the enamel 
formation is accomplished and the tooth erupts into the oral cavity[5]. The loss of 
ameloblasts and neighboring environment renders enamel an acellular and nonvital 
tissue that, when insulted by dental caries or trauma, is incapable of repair or renewal. 
To restore the missing enamel tissue, current treatment is limited to using acid-etching 
techniques and artificial materials such as resin, amalgam, and porcelain, which are 
not perfect due to frequent microleakage, limited life span, or inherent inability to fully 
restore its function[6-8].

One potential remedy for this is to construct natural enamel. Enamel–dentin 
complex structure has been detected on polyglycolic acid fiber mesh using dissociated 
porcine third molar tooth germ cells, suggesting tissue engineering as an alternative 
strategy to regenerate enamel[9]. The classic tissue engineering relies on three elements, 
including stem cells, suitable scaffolds, and bioactive molecules to initiate a sequence 
of events inducing tissue formation[10,11]. However, unlike successful implementation of 
tissue engineering in other dental tissues, such as dentin and pulp regeneration, 
enamel tissue engineering is hindered since ameloblasts and dental epithelial stem 
cells (DESCs) are lost when the tooth erupts[5]. Consequently, the generation of potent 
and viable DESCs would be a major step toward promising enamel tissue 
engineering[12]. Interestingly, nature has provided us a good example, the rodent 
incisor, which grows continuously throughout the animal’s life[13]. Harada et al[14] have 
identified DESCs at the proximal end of mouse incisors, in a structure named the labial 
cervical loop (laCL). These cells can self-renew and differentiate into enamel-secreting 
ameloblasts and the other supporting dental epithelial lineages[15-18]. Owing to the 
ready accessibility of mouse DESCs and the wide availability of related transgenic 
mouse lines, mouse incisors serve as an ideal system to explore the identity and 
heterogeneity of dental epithelial stem/progenitor cells. The continuous 
replenishment of enamel tissue is fueled by the DESCs, making mouse incisors an 
excellent model to uncover the regulatory mechanisms underlying enamel formation[19] 
(Figure 1). Moreover, studying how the homeostasis and repair are maintained by 
DESCs in mouse incisors can help us answer the open question regarding the 
therapeutic development of enamel engineering.

In the present review, we update the current understanding about the identification 
of DESCs in mouse incisors and summarize the regulatory mechanisms of enamel 
formation driven by DESCs. The roles of DESCs during homeostasis and repair are 
also discussed, which could improve our knowledge regarding enamel tissue 
engineering.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-0210/full/v12/i11/1327.htm
https://dx.doi.org/10.4252/wjsc.v12.i11.1327
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Figure 1 Schematics of adult mouse incisor and cervical loops. A: Most of adult mouse incisor is embedded in the jawbone. Enamel (red) exists only at 
the labial side, which is produced by dental epithelial stem cells (DESCs) of the labial cervical loop (laCL). Dental pulp (yellow) is surrounded by dentin (gray), which 
is produced by dental mesenchymal stem cells. The lingual root analog is covered by cementum; B: Cervical loop is located in the proximal end of mouse incisor. The 
enamel and dentin are produced by the ameloblasts (AMB) and odontoblasts; C: Diagram of sagittal section of the proximal incisor. In growing adult mouse incisor, 
lingual cervical loops (liCL) and laCL persist throughout the adult stages. Slow-cycling DESCs are located in the outer enamel epithelium (OEE) and underlying 
stellate reticulum (SR). Transit-amplifying (TA) cells, also considered as actively cycling progenitors, undergo massive proliferation in the inner enamel epithelium. 
These cells give rise to pre-ameloblasts (Pre-AMB) and fully differentiated ameloblasts (AMB). Compared to the laCL, liCL is smaller and does not normally give rise 
to ameloblasts. SI: Stratum intermedium; AMB: Ameloblasts; OEE: Outer enamel epithelium; IEE: Inner enamel epithelium; SR: Stellate reticulum; Od: Odontoblasts; 
liCL: Lingual cervical loop; laCL: Labial cervical loop.

IDENTIFICATION OF DESCS
Classical model 
In the classical model of tissue supported by stem cells, rare slow-cycling stem cells, 
which divide infrequently, contribute to the production of active-cycling transit-
amplifying (TA) cells, which then generate all the related lineages[20-23]. Therefore, the 
stem cells in the adult tissue are always identified by their characteristics, for instance, 
their quiescent feature and their potential of uni- or multilineage differentiation[21].

A credible approach to locate the stem cell niche in adult tissue is to take the benefit 
of their quiescent property by positioning the distribution of label-retaining cells 
(LRCs)[21]. LRCs are capable of retaining DNA synthesis labels, including tritiated 
thymidine (3H-thymidine) and 5-bromo-2’-deoxyuridine (BrdU), after a long-term 
chase[24,25]. Active-cycling cells, such as TA cells, remove the DNA label following cell 
divisions within a short time. On the contrary, the quiescent stem cells retain the label 
during a long chasing period owing to their infrequent division[21-23]. LRCs have been 
confirmed as stem cells in various tissues and organs, such as the epidermis, intestine, 
and mammary gland[26-28]. With one administration of 3H-thymidine, an early study 
showed proliferating cells in the adult rat enamel organ, which exited the cell cycle 
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and migrated distally. After 32 d, the cells retaining the label were detected in the 
outer enamel epithelium (OEE) and underlying stellate reticulum (SR) of laCL, 
suggesting the existence of DESCs at the proximal end of the laCL[29,30]. To detect LRCs 
in vivo, the neonatal mice were pulsed with BrdU, to label the cycling cells in the 
dental epithelium at the time of tissue expansion and subsequently to identify the 
LRCs that rarely divide and retain the label till adulthood. The distribution of BrdU+ 
LRCs in the OEE and underlying SR confirmed the presence of slow-cycling cells in 
laCL[14,31]. Later, this assumption was demonstrated with K5Tta; H2B-GFP mice, in 
which the expression of doxycycline-repressible H2B-GFP is regulated by the keratin 5 
promoter[32]. All dental epithelial lineages uniformly express green fluorescent protein 
(GFP) in the absence of doxycycline administration. Following 2 mo administration of 
doxycycline, H2B-GFP-retaining cells were observed in the same compartments, 
suggesting that putative DESCs were present in these compartments and might have 
contributed to the continuous growth of the incisor enamel[33,34].

To further assess the uni- or multilineage differentiation potential of putative stem 
cells, the cells and their progeny are permanently genetically marked and chased using 
lineage tracing, an essential strategy in the identification of stem cells in adult 
mammalian tissue[21,35]. Genetic lineage tracing in mice is preferably achieved with the 
Cre-loxP system. In this system, the Cre specifically activates the reporter in cells upon 
the control of the tissue- or cell-specific promoter, by excising the loxP-STOP-loxP 
sequence. With inducible recombination (Cre recombinase is fused to estrogen 
receptor), the Cre recombinase activity can be manipulated temporally and spatially 
with tamoxifen[36-38]. The application of inducible Cre for lineage tracing has provided 
maximum information about all the progeny of the stem cells in postnatal tissue. With 
CreER controlled by Gli1 promoter (GliCreER), Gli1+ cells residing in the LRCs region 
(OEE and underlying SR) have been demonstrated to be capable of generating 
functional ameloblasts and supporting epithelial lineages, such as stratum 
intermedium (SI) cells[31]. The distribution of Bmi1+ cells in laCL is consistent with that 
of LRCs and Gli1+ cells. Similarly, Bmi1+ cells also give rise to enamel-producing 
ameloblasts and neighboring SI cells[33]. Unlike Gli1 and Bmi1, Sox2 has a broader 
expression domain, which expands both distally and proximally in the laCL. Genetic 
lineage tracing in vivo has revealed that Sox2+ cells could generate all the mouse incisor 
epithelial lineages[15]. Later, Lrig1 has been proposed as a putative stem cell marker by 
gene coexpression module analysis. Moreover, Lrig1+ cells have been shown to 
contribute to dental epithelial lineages via in vivo lineage tracing[17]. These previous 
studies have constructed the classical model of enamel renewal, in which slow-cycling 
DESCs, residing in the OEE and underlying SR of the laCL, regularly move to the 
inner enamel epithelium (IEE) and generate active-cycling TA cells[16]. These active-
cycling cells migrate distally, exit the cell cycle, and differentiate into enamel-
producing ameloblasts. However, identification of cell types, properties, and cellular 
relationships remains unknown in this classical model. Furthermore, the latest study 
has shown that the expression of the putative DESCs markers, including Bmi1, Gli1, 
and Sox2, are broader than we expected, since they have been detected in the IEE as 
well, which unravels the limitation of the currently available genetic strategies 
(Figure 2).

Updated model 
The previous studies mentioned above characterized stem cells based on the known 
properties, which would inevitably introduce researchers’ preconceptions, such as 
significant signaling pathways certified in the putative stem cell niche[39]. Therefore, 
unbiased technology is desired to identify cells and characterize cells with new 
clusters of markers. Single-cell sequencing, in particular, mRNA sequencing from 
single cells (scRNA-seq), contributes to the unbiased profiling of cells from tissues and 
organs[40-42]. Generally, single cells are isolated and assigned to a specific barcode; thus, 
gathered mRNA can be sequenced and reassigned to its cellular origin. According to 
the transcriptomes, cells are divided into groups with unsupervised clustering[43]. This 
scRNA-seq shows a series of advantages in uncovering heterogeneity within the 
population which was considered to be homogeneous, discovering novel and rare cell 
types, and raveling the relationships between cell types.

Sharir et al[18] performed scRNA-seq of sorted dental epithelial cells to resolve the 
cellular heterogeneity and lineage dynamics of the adult incisor epithelium in an 
unbiased manner. Single cells from mouse incisors were generated and sequenced. 
The high-dimensional, whole-transcriptome data were visualized using SPRING[18], 
which is suitable for analyzing differentiation trajectories as maintaining relationships 
of cells with the similar transcriptome. Mouse incisor epithelial cells are divided into 
three groups, including cycling cells (class 1), ameloblast lineages (class 2), and 
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Figure 2 Identification of dental epithelial stem cells in mouse incisor. Lateral: Represents different cell compartments of labial cervical loop. Vertical: 
Represents the stem cell marker genes. AMB: Ameloblasts; SI: Stratum intermedium; IEE: Inner enamel epithelium; OEE: Outer enamel epithelium; SR: Stellate 
reticulum; LRCs: Label retaining cells; DESCs: Dental epithelial stem cells.

nonameloblast epithelial cells (class 3)[17]. With the expression of cell-cycle markers like 
Cdc20 and Ccnb2, class 1 cells have the majority of dividing and cycling cells, located in 
the IEE and adjacent SI region. Moreover, class 1 cells maintain active self-renewal as 
their transcriptomes have shown successive phases of the cell cycle, and several cells 
return to their original state at the end of the cell cycle. Signatures reflecting classes 2 
and 3 populations have also been observed in class 1 cell populations, suggesting that 
progenitors are cycling with upregulated expression of differentiation genes. 
Combined with differentiation trajectories and kinetics experiments, class 1 houses 
progenitor cells considered as the root, which produces cells of classes 2 and 3[18]. 
Therefore, distinct from the classical views, an updated dynamic model of stem cells in 
mouse incisors reveals that the IEE (class 1) possesses active cycling stem cells that 
differentiate into both the functional ameloblasts and the surrounding nonameloblast 
epithelial lineages (classes 2 and 3).

Difference between the classical and updated models
The classic model of DESCs in mouse incisors is similar to that of hematopoietic stem 
cells. The homeostasis of mouse incisor enamel is fueled by the quiescent stem cells in 
the OEE and underlying SR of the laCL[13-17,19]. These slow-cycling cells produce TA 
cells in the IEE that undergo limited divisions before terminal differentiation 
(Figure 3A). Even though scientists stick to this concept for a long time, the concept is 
still incapable of accounting for the great demand of ameloblasts in daily production 
of enamel. In this model, DESCs were identified with LRCs and lineage tracing of 
specific stem cell marker candidates, including Sox2, Bmi1, Gli1, and Lrig1. On the 
contrary, the novel model is based on scRNA-seq, an unbiased method. The dental 
epithelial cells in laCL can be divided into three different groups. The daily production 
of enamel is supported by a group of actively cycling progenitor cells in the IEE, which 
are responsible for the production of ameloblasts and nonameloblast epithelial 
lineages, including the OEE and underlying SR, which are considered as DESCs in the 
classic model[18] (Figure 3B). Previously established stem cell markers, including Sox2, 
Bmi1, Gli1, and Lrig1, are not expressed specifically in any groups of the updated 
model.
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Figure 3 Classical and updated models of dental epithelial stem cells in mouse incisors. A: In classical model, slow-cycling dental epithelial stem 
cells (pink) from the outer enamel epithelium (OEE) and underlying stellate reticulum (SR) of the labial cervical loop, generate active-cycling TA cells in the inner 
enamel epithelium (IEE) (blue), which undergo several divisions, migrate distally, and differentiate into pre-ameloblasts (Pre-AMB) and AMB (purple); B: In updated 
model, actively cycling progenitors in the IEE contribute to the formation of both AMB and the adjacent non-ameloblast epithelial cells (SR, stratum intermedium and 
OEE) during homeostasis; C: After injury induced with 5-fluorouracil, the proliferation region of IEE is impaired and reduced. During recovery stage, additional 
progenitors from OEE enter the cell cycle and then recover ameloblast differentiation trajectory, and SI cells can also convert to differentiate into active-cycling cells 
and AMB. AMB: Ameloblasts; SI: Stratum intermedium; IEE: Inner enamel epithelium; OEE: Outer enamel epithelium.

REGULATORY NETWORK OF DESCS IN MOUSE INCISORS
Genetic regulation 
The proliferation and differentiation of DESCs are regulated by genetic regulatory 
signals in a temporospatial manner[39]. Surrounding dental mesenchymal cells provide 
essential signals for maintenance and differentiation of DESCs[44]. To date, several 
signaling pathways have been found to be important for the steady state of the DESCs 
niche and subsequent differentiation in mouse incisors[16,19]. Fibroblast growth factor 
(FGF) signaling was first put forward. Fgf3, Fgf9, and Fgf10 are key mesenchymal 
signals for stimulating the proliferation of DESCs in the developing cervical 
loops[30,45-48]. Transforming growth factor (TGF)-β signaling participates in DESC 
maintenance and TA cell proliferation by regulating the activity of FGF signaling[47,48]. 
The expression of Fgf3 and Fgf10 and the number of BrdU+ LRCs are markedly 
reduced in the laCL of mice with mutation of the Alk5 gene, which is responsible for 
encoding the TGF-β type I receptor[48]. The reduction of Fgf3/10 expression by TGF-β 
type II receptor (Tgfbr2) deletion in mesenchyme-promoted differentiation of DESCs 
results in wavy mineralized structure formation[49]. Sprouty genes, which encode the 
intracellular antagonists of receptor tyrosine kinase signaling, ensure lineage 
differentiation of DESCs through the FGF signaling pathway[50]. Once Sprouty genes 
are deleted, the inhibitory signal is removed, leading to increased sensitivity to Fgf3/10 
expression in both liCL and laCL as well as the adjacent mesenchyme[51]. The inhibitory 
effect of Sprouty protein on FGF signaling functions is mediated by changing the 
expression of TBX1 and BCL11B indirectly in the Spry4-/- mice[52,53]. The removal of 
BCL11B affects the differentiation and proliferation of DESCs, reduces the size of the 
laCL, and shortens the zone of ameloblast progenitors[53]. Conversely, an allele of 
BCL11B promotes the proliferation of TA cells, thus ensuring a stable number of 
DESCs[54]. Cao et al[55] have demonstrated that TBX1 regulates DESCs by suppressing 
the transcriptional activity of Pitx2 which is in connection with a cell cycling inhibitor 
p21. The downstream of FGF signaling has been explored by Goodwin et al[56]. Ras 
signaling is activated after FGFs bind to receptor tyrosine kinases (RTKs) and then 
regulate the proliferative activity of DESCs through the mitogen-activated protein 
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. Further evidence 
about the role of MAPK and PI3K in amelogenesis has been proposed through a 
mouse incisor model of Ras dysregulation[57].

Another important signaling pathway is Hedgehog (Hh), which is essential for 
maintaining epithelial cell size, proliferation, and polarization[58]. Runx2 mutation 
results in downregulated expression of Shh in the dental epithelium[59]. It has been 
shown that Runx gene and its binding protein core binding factor β gene (Cbfb) 
modulate the continuous proliferation and differentiation of DESCs by activating FGF 
signaling loops and maintaining the expression of Shh mRNA[60]. The BMP–Smad4 
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signaling cascade inhibits the activity of Shh–Gli1 signaling to maintain Sox2+ DESCs 
in the CL region of mouse molars. Conversely, loss of Smad4 prolongs maintenance of 
the CL and affects cell expansion and differentiation[61]. Ptch1 and Ptch2 are binding 
receptors of Hh ligands and have distinct functional roles. Ptch1 transduces Hh 
signaling to maintain Sox2+ stem cells, whereas Ptch2 with Desert hedgehog negatively 
regulates P-cadherin expression, suggesting that Hh signaling contributes to the 
maintenance and differentiation of DESCs simultaneously[62]. Several studies have 
revealed that the Notch signaling pathway is required for survival of DESCs and the 
formation of ameloblasts[63]. Multiple genes of this pathway are expressed in the CL, 
including Delta-like 1 (Dll1) and Jagged 2 (Jag2) genes encoding the Notch ligands, as 
well as lunatic fringe (Lfng) encoding transferase that modifies Notch receptors[63-65]. The 
notch responsive gene Hes1 is expressed in the SR. When dissected CL is cocultured 
with the Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-
phenylglycine t-butyl ester (DAPT), the size of the CL is reduced because of increased 
apoptosis and reduced proliferation of DESCs[63]. Jag2 and Lfng genes are regulated by 
FGF and bone morphogenetic protein (BMP) signaling. Deletion of Jag2 results in 
abnormal ameloblast differentiation[65]. The number of SI cells was increased when CL-
derived dental epithelial cells were cultured with Jagged 1 protein and overexpressed 
the Notch1 internal domain. Differentiation of SI cells was inhibited when Jagged1 was 
neutralized with specific antibody, suggesting that Notch signaling regulates SI cells, 
which function as a reserve progenitor pool[66]. Elimination of Notch1+ cells disrupted 
the repair process of injured epithelium and obstructed the regeneration of damaged 
dental epithelium[18]. The essential role of Hippo signaling has been suggested in 
coordinating the proliferation and differentiation of DESCs[67]. The effectors of the 
evolutionarily conserved Hippo signaling pathway, Yes-associated protein (YAP) and 
transcriptional coactivator with PDZ-binding motif (TAZ), are expressed in TA cells[67]. 
It has been reported that YAP/TAZ induce the ITG43–FAK–CDC42 signaling axis in 
the TA zone and activate mammalian target of rapamycin (mTOR) signaling by 
controlling Rheb expression, maintaining TA cell proliferation and survival, and 
inhibiting precocious differentiation[67].

Intriguingly, there is neither expression of the Wnt-responsive gene Axin2 nor 
expression of Wnt pathway mediators or inhibitors in the region of putative stem cells. 
These signs indicate that DESCs are not modulated directly by Wnt/β-catenin 
signaling[68]. However, Wnt/β-catenin can inhibit expression of Fgf10, a key 
antiapoptotic signal, to maintain a proper rate of apoptosis in DESCs[69]. And Lgr5, a 
Wnt signaling target gene and stem cell marker, is expressed in the putative stem cell 
region, the SR region underlying the OEE. These Lgr5+ cells are identified as slow-
cycling stem cells and a subpopulation of Sox2+ DESCs[70,71]. A recent study reports that 
Runx1 regulates the Lgr5-expressing epithelial stem cells and differentiation of 
ameloblast progenitors in the developing incisors. The Runx1–Lgr5 axis is partially 
modulated by signal transducer and activator of transcription 3 (STAT3) 
phosphorylation in the CL of growing incisors. Runx1 deficiency results in 
downregulated expression of Lgr5 and Sox2 and underdevelopment of the CL[70].

Apart from signaling pathways, stem cell markers, like Bmi1 and Sox2, are 
functional in the maintenance and differentiation of DESCs. The deletion of Bmi1 
decreased the number of stem cells, disorganized gene expression, and impaired 
enamel production. Knockdown of Ink4a/Arf partially rescued Bmi1-null phenotypes. 
Ink4a/Arf is one critical target gene of Bmi1, which encodes the cell cycle inhibitors. 
Bmi1 also targets Hox genes, which maintain the undifferentiated state of stem cells 
and prevent inappropriate differentiation[33]. Conditional removal of Sox2 during 
incisor renewal resulted in the morphological change of laCL and slowed down incisor 
growth[72]. Conditional overexpression of lymphoid enhancer-binding factor (Lef-1) in 
the dental epithelium increased cell proliferation, created a new stem cell 
compartment in the laCL, and rescued tooth arrest resulting from deletion of Sox2[72]. 
These results show that Lef-1 regulates maintenance of DESCs and enamel formation, 
but the underlying mechanism remains unresolved.

Epigenetic regulation
In addition to transcription factors, epigenetics also regulates the gene expression in 
mammalian development without alterations in the DNA sequence[73-75]. Epigenetic 
mechanisms involve DNA methylation, modification of histone tails, and gene 
regulation by noncoding RNAs and miRNAs[76]. Although various studies have shown 
the epigenetic regulation in tooth development and regeneration, there are only a few 
reports about the epigenetic effects in DESCs in mouse incisors.

Several studies have demonstrated that miRNAs play a role in enamel formation 
and the renewal and differentiation of DESCs in mouse incisors. Conditional deletion 
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of Dicer1, an essential factor for mature miRNA formation, led to the complete loss of 
miRNA genesis, resulting in ectopic formation of the CL[77]. This was the result of 
increased proliferation of incisor epithelial stem cells and impaired differentiation of 
ameloblasts. Furthermore, microarray analysis unraveled that the distinct expression 
pattern of miRNAs in different compartments of the dental epithelium, including the 
laCL, lingual CL, and ameloblasts, suggests the potential role of miRNAs in the self-
renewal and differentiation of DESCs[77]. miR-200c, one of the differentially expressed 
miRNAs, participates in differentiation by repressing noggin, an antagonist of BMP 
signaling. Noggin induces expression of E-cadherin and Amelogenin to maintain cell 
adhesion and promote ameloblast differentiation, respectively[74]. BMP signaling is 
simultaneously the upstream regulator of miRNA-200c, and a positive-feedback loop 
has been shown between miR-200c and BMP signaling. Another upstream regulatory 
pathway has also been identified in which endogenous Pitx2 interacts with the miR-
200c/141 promoter to activate miR-200c[75]. Also, miR-200a-3p is activated by Pitx2 and 
targets the BMP antagonist Bmper to further regulate BMP signaling[74]. Recently, miR-1 
expressed at the CL of the dental epithelium was revealed by an in situ hybridization 
assay and its expression was inversely correlated with its target connexin (Cx) 43. 
Deletion of miR-1 induced DESCs to express Cx43, which regulated cell proliferation 
during DESC differentiation, by formation of cell–cell gap junctions and hemichannels 
at the plasma membrane[78].

Regulators from adjacent cells and extracellular matrix
Interactions among different cell populations and between cells and the extracellular 
matrix are indispensable for the homeostasis of the stem cell niche in the dental 
epithelium[79]. For instance, integrin β3 is required for the formation and maintenance 
of the CL and proliferation of DESCs. The knockdown of the CD61 gene results in a 
reduction of the CL size with downregulated expression of Lgr5 and Notch1[80]. E-
cadherin, a protein for cell–cell adhesion, regulates proliferation in TA cells and 
controls differentiation of DESCs[81]. Prominin-1(Prom1/CD133), an essential protein 
for ciliary kinetics, regulates DESCs to respond appropriately to extracellular signals. 
Conditional removal of Prom1 impairs ciliary dynamics and the positive effects of SHH 
treatment, leading to the destruction of stem cell activation and homeostasis in mouse 
incisor tooth epithelium[82].

Finally, DESCs are regulated by other factors, such as follistatin, activin, heparin-
binding molecule midkine, and heparin-binding growth-associated molecule[45,83]. 
Exogenous retinoic acid (RA) has negative effects on DESCs via inhibition of Fgf10. It 
has been demonstrated that supplementation of FGF10 in incisor cultures blocks RA’s 
negative effects to antagonize apoptosis and increase proliferation of DESCs in the 
laCL[84].

FUNCTION OF DESCS
Role of DESCs during homeostasis
The renewal and differentiation of DESCs are critical drivers of continuously growing 
mouse incisors[16]. The heterogeneity in DESCs has been discovered, hinting that 
different stem cell populations play a distinct function in mouse incisors[19]. Numerous 
studies have found that renewal of mouse incisors requires a balance of proliferation 
and differentiation of DESCs, which is controlled tightly by a complex regulated 
network, to maintain proper lineage ratios (Figure 3).

The renewal process of incisor enamel has been studied by constantly developing 
investigation methods. Continuous renewal of mouse incisors was initially observed 
by cutting the erupted enamel[85,86]. Sequential 3H-thymidine tracing showed the 
growth rate of rat incisors to be approximately 365 μm/d[13]. It was confirmed that 
proper incisor growth requires proliferative dividing cells in an early experiment in 
animals treated with mitotic arrest agents[87]. The discovery of stem cell marker 
candidates and genetic lineage tracing helped researchers to propose a classical model 
of renewal of mouse incisors. It is thought that quiescent stem cells residing in the OEE 
generate actively proliferating TA cells, which migrate distally and differentiate into 
ameloblasts that are responsible for enamel formation[16,19]. How the slowly cycling 
DESCs meet the daily requirement of ameloblasts has been an open question for a long 
time. To address this, Sharir et al[18] established a novel model of mouse incisor DESCs, 
in which actively cycling dental epithelial progenitor cells generate both the functional 
ameloblasts and the surrounding nonameloblast epithelial cell populations, which are 
subsequently responsible for the homeostasis of mouse incisor enamel (See session 
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‘Updated model’ for details)[18,19]. Even though this study identified the DESCs 
responsible for the homeostasis, the mechanism responsible for the committed 
differentiation is still absent. More studies are needed to determine the underlying 
mechanisms by which incisor epithelial self-renewal and cell lineage distribution 
remain stable under physiological conditions.

Role of DESCs during injury repair
DESCs also support damaged incisor epithelium regeneration after injury (Figure 3). 
The number of Sox2 and Lgr5 transcripts decreased significantly and the spherical 
shape of the laCL was lost after transient deletion of Sox2. Some Sox2 transcripts could 
be detected and the laCL shape was restored after 5 d. During recovery, the percentage 
of EdU+ cells was significantly increased in the central and proximal sections of the SR. 
These findings demonstrated that the Sox2+ DESC population could be regenerated 
quickly from the SR[87].

A recent study has demonstrated the migration and plasticity of DESCs during 
recovery. In the IEE of mouse incisors, the proliferative cells eliminated by 5-
fluorouracil (5-FU) treatment were supplemented by the burgeoning proliferating cell 
population after 3 d. After 10 d, abnormal ameloblast organization and disorganized 
enamel matrix resulting from 5-FU treatment both recovered to normal. The function 
and dynamic changes of DESCs were further analyzed by scRNA-seq during injury 
repair. After cytotoxic injury, the number of cycling cells was increased with expanded 
expression domains of Ccnb1 and Birc5, but the numbers of pre-ameloblasts and 
ameloblasts were significantly decreased with the distal shift. Expression of Sfrp5 and 
Cldn10 was upregulated and expanded towards the proliferating regions, suggesting 
an increased nonameloblast population. Further study has demonstrated that Notch1+ 
SI cells are induced to differentiate into ameloblasts and critical for tissue recovery. 
These findings have shown that dental epithelium regeneration after injury is driven 
by recruiting more progenitors or nonmitotic pre-ameloblasts to divide, shortening the 
cell cycle, and delaying onset of ameloblast differentiation. Therefore, DESCs play an 
essential role in an appropriate and rapid response to tissue damage[18].

Potential of DESCs in tooth regeneration and tissue engineering
Whole tooth regeneration based on epithelial and mesenchymal interaction through 
simulating tooth development is a promising strategy for replacing lost teeth. The 
odontogenic potential could be retained in epithelial and mesenchymal cells isolated 
from the tooth germ of early development. Tooth-like structures can be produced in 
vitro based on individual dental epithelial cells and mesenchymal cells from mouse 
embryos[88]. Bioengineered tooth germs, which are reconstructed by epithelial and 
mesenchymal cells, have generated functional teeth when they were placed into the 
alveolar socket of adult mice[89]. In addition to the mouse regenerative model, a recent 
study, using an allogeneic cell reassociation approach, achieved whole-tooth 
regeneration in minipig jawbone in situ[90].

To resolve the problem of a source of DESCs for tooth engineering, DESCs from 
mouse incisors have been demonstrated as an excellent tool. Besides, several studies 
have attempted to induce available stem cells to form dental epithelial cells. It has been 
reported that human tooth germ stem cells can differentiate into epithelial cell types, 
but not functional ameloblasts[91]. Mouse induced pluripotent stem cells (miPSCs) can 
differentiate into dental epithelial-like cells in serum-free culture conditions, with the 
addition of neurotrophin-4. These cells derived from miPSCs can express dental 
epithelial surface marker CD49f and ameloblast-specific markers[92]. As possible 
alternative sources for the human dental epithelium, human embryonic stem cells 
(hESCs) and human induced pluripotent stem cells (hiPSCs) may be options due to 
their potency of multilineage differentiation[93,94]. Based on the vital role of interactions 
between dental epithelial and ectodermal mesenchymal cells in dental development, 
both hESCs and hiPSCs are induced to differentiate into epithelial-like stem cells by 
the HERS/ERM cell line[95]. Newly ex-vivo-formed differentiated hESCs express special 
epithelial stem cell markers including E-cadherin, ABCG2, Bmi-1, p63, and p75[94]. 
Even though rare ameloblasts, enamel, or dentin-enamel tissue were detected in this 
study, some progress has been made on how to obtain DESCs.

Ameloblast cell lines are indispensable for enamel formation and regeneration, 
because they secrete amelogenin, which is an essential constituent of enamel[96,97]. The 
generation of ameloblasts is still an obstacle. Although several mouse ameloblast-like 
cell lines, such as ALC and LS8, have been established, they do not generate 
enamel[98,99]. Human gingival epithelial cells have been a source of ameloblast-like cells 
induced by BMPs and TGF-β. It has been reported that there are 20 ameloblast-specific 
genes as cell surface markers, which will contribute to the isolation of human 
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ameloblast-like cells[100].

CONCLUSION
To replace enamel defects due to caries or trauma, dentists use several artificial 
materials, which do not completely resemble the mechanical, physical, and esthetic 
features of the lost enamel[101]. Enamel regeneration has been considered as an 
alternative clinical strategy. Our understanding of identification, regulation, and role 
of DESCs has been strengthened by studying continuously growing mouse incisor 
models. By scRNA-seq, the heterogeneity of DESCs in the laCL has been identified and 
a novel mouse incisor model distinct from early evidence has been established. The 
updated understanding of the regulation and role of DESCs in tissue homeostasis and 
repair contributes to the therapeutic development of enamel engineering. Despite all 
this progress with DESCs in recent years, enamel regeneration still faces various 
challenges, which have been outlined in two recent conferences[97,102]. The difficulties 
include the acellular structure, high mineralization, essential epigenetic regulation 
during mineralization, unique migration of ameloblasts during crystal formation, and 
ultimate organization with prismatic and interprismatic structures of natural enamel. 
Several issues remain to be addressed before clinical application, such as the 
combination of regenerated enamel with natural teeth and the control of shape, size, 
color, and time. Although there are limitations in enamel tissue engineering, the 
exciting progress with DESCs provides researchers with novel insight into stem cell-
based tooth engineering, and consequently, to pave the way for future treatments.
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