Supplementary material
APPENDIX #1: HISTORICAL PERSPECTIVES: SLACKLINING AND AMI

1.1 SLACKLINING

Slacklining is a modern ‘trend-sport’ being an adaptation of the ancient performing art of traditional rope
walking®% 23] It was initially started by climbers and outdoor enthusiasts in the 1960s and 1970s in the
European Alps of Switzerland, France and Austria, as well as the National Parks in East and Central USA,
where ropes and cables were replaced with adapted lightweight webbing and ratchet technology that
incorporated an easier, safer and more elastic line®”). Slacklining was originally termed ‘Line-walking’ or
‘Funambulaire’ in Latin European regions, and ‘Jultagi’ or ‘Eoreum’ in Korea. Slacklining presumably
began from necessity in quite ancient times when rope-making originated (40,000-15,000BC)!"?# for
fastening and construction!'?’l; where movement along ropes enabled passage between elevated structures
and fixation points, including dwellings, across gorges, and eventually on boat-sails!'?*. It developed into
a performing art, social activity and recreational past-time, with marked notoriety in Ancient Greece and
Roman times (circa 15,000BC-500AD) and the late 19" century!*”). The graded incorporation into
rehabilitation was possible at any time, though medical literary writings by Galen-of-Pergamon insinuate
around 150AD being the most likely!!?®!. Though slacklining’s first published scientific literature was not
till around 2009/ 1231 modern formal pre-/re-habilitation started in the 1980s?% 3% when slacklining’s

applications were almost entirely for musculoskeletal conditions.

1.2 ARTHROGENIC MUSCLE INHIBITION (AMI)

In contrast AMI was likely first detailed by Hippocrates-of-Kos around 450BCI!® P314-611 a5 <qtrophy

associated with luxation of the femur at the knee’. However, a more considered understanding of its basis



took till around 160AD when the father of ‘Exercise in Medicine’, Greco-Roman physician
Galen-of-Pergamon noted ‘wasting in the absence of local muscle or nerve damage 9. This
muscle-wasting phenomena was also referred to by the distinguished 18™ Century Scottish
Surgeon-Scientist John Hunter as a ‘... sympathetic relationship between the muscles and the joint!'%.
In-depth scientific definition as ‘reflex inhibition> was provided by several 19" century scientists, most
notably the French with Vulpian (1875)1°% P3*] noting in his seminal publication that ‘reflex atrophy... is
the result of a modification caused, in ... the gray matter of the cerebrospinal nerve center, by the irritation
of the peripheral extremities of certain sensory nerves’. This centrally applied reasoning was also
supported by the English Surgeon-Pathologist Sir James Paget as a ‘... reflex action influencing the
trophic centers in the cord %/,

The progression to the terminology of AMI was initiated by Harding!'®! in her 1925 publication
entitled ‘Arthritic Muscular Atrophy’, and, subsequently, modified to Arthrogenic Muscular Atrophy’,
which was retained!!?”). Over the ensuing decades other researchers and scientists continued to use both
this terminology and ‘reflex muscle inhibition’. However, the 1984 seminal paper by Stokes and Young!"’!
introduced the term ‘arthrogenous muscle weakness’, before the current terminology of AMI was
formalized by Hurley®™” in 1994, which has been adopted consistently since. Each terminology, including
the Greco-Romanic patient descriptions by Hippocrates and Galen, have referred to the protective
inhibitory action, leading to muscular atrophy, predominantly around injured peripheral joints!!'® 20231,

19,21,22,58

particularly the knee! 1 but also the hip!”®, ankle!’*, elbow!*”), and shoulder!'®), and most recently

an expanded recognition to include the lumbar spine!® 16171,



APPENDIX #2: NEUROPHYSIOLOGICAL CONSIDERATIONS FOR AMI

The CNS neurophysiological aspects associated with AMI at the local, spinal and central level, as detailed

in the main manuscript, can be supplemented.

1. LOCAL/PERIPHERAL PATHWAYS IMPLICATED IN AMI
Local level changes result from sustained tissue damage causing altered afferent discharge in both muscle
resting motor thresholds and articular sensory receptors!®: 1 20: 38, 64,

1.1 Articular Sensory Receptors
Articular sensory receptor firing can vary due to the opposing effects that different joint afferent
populations have on motoneuron excitability. Joint structural trauma and local sensory nerve ending

damaged decreases afferent output!®>

1 whilst joint distention and laxity increases output which
reciprocates with AMI®!!, The articular sensory receptor processing roles, in relation to AMI, are
confirmed by the effects of small levels of inflammation or fluid within a joint space, e.g., 20-60 ml in a
knee reduces’ maximum quadriceps peak torque 30-40%[?* 62|, However, local interventions dramatically
affect AMI: being abolished through either a local anaesthetic (LA) injection or aspiration; or prevented,
by use of a LA injection prior to joint effusion(®®!,

1.2 Joint Laxity
Joint laxity facilitates increased intra-articular movement which increases mechanoreceptor and
nociceptor activation. This further alters sensory receptor activation and indicators of joint limitations
leading to AMI.

1.3 Distention from Swelling

Any swelling distends the joint, which increases the IAP and the pressure-sensitive and stretch

mechanoreceptors Group II afferents discharge. This inhibits periarticular muscles a-motoneurons



through spinal cord Group-I non-reciprocal (Ib) inhibitory interneurons, resulting in local and potentially
contralateral AMI?* 62 without need for local structural damagel®® 6! or inflammation!!'®: 8- 1,

1.4 Distention from Inflammation
Distention from inflammation causes AMI as with distention from trauma related swelling, however it is
due to peripheral sensitization and subsequent nociceptive signaling, including reduced activation
threshold in the articular free nerve endings supplied by Group III and IV joint afferents!®”). It has been
shown that these Group-III (lightly myelinated) and Group IV (unmyelinated) nerve endings are
high-threshold, constitute the majority of afferent fibers innervating joints, where they function
predominantly as nociceptors and mechanoreceptors, that signal potential and real joint damage from
structures that respond to strong chemical, mechanical, and thermal stimuli. However, they are also
activated by local mechanical stimulation and passive movements both of which are non-painful!®”,
Consequently, articular structure stimulation from normally non-noxious mechanical sources causes

Group III and IV afferent dischargel®”! which is compounded by inflammatory mediators’ that sensitize

free nerve endings innervated by Group III and IV afferents.

2. SPINAL PATHWAYS IMPLICATED IN AMI

2.1 The Group Ib non-reciprocal inhibitory pathway and Group Ia, 11, IIl and IV Fibers adjuvant role
The Ib spinal interneurons, within the spinal cord grey matter column lamina VI-VII, integrate
sensory-motor input through signal relay actions between sensory-afferent and motor-efferent neurons.
Afferent signaling derives from the musculo-tendinous junction adjacent the Golgi tendon organs,
supplemented by convergent input from joint afferents and peripheral sensory receptors, namely large,
myelinated afferent Group II and thinly myelinated/ unmyelinated Group III and IV fibers!’?!. The Group
Ia sensory fibers, from the muscle spindle stretch receptor, and Group II afferents, terminate in

corpuscular nerve endings being activated by mechanical based pressure and stretch stimuli. The Group
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III-IV muscle afferents play a dual autonomic control role via the Ib interneurons to mediate both central
and peripheral fatigue response during exercise. This occurs via: facilitating inhibition and reciprocal
excitation, through polysynaptic-pathways, to affect ventilation, cardiac output and, consequently
peripheral blood flow. The central projections limit exercise via negative output from spinal motoneurons
that decrease voluntary muscle activation which enhances central fatigue!’?), a documented phenomenon
with slacklining, particularly with neurological patients®"** and reported implications with NSLBP
patients!!”). In addition, the Groups III/IV have two subtype afferents: one responding to general aerobic
exercise via endogenous intramuscular metabolites; the other to noxious muscle metabolite levels from

ischemic contractions.

2.2 The Flexion reflex
The flexion reflex polysynaptic pathway with agonist excitability and reciprocal extensor inhibition is
demonstrated in the quadriceps!®®!. A similar pathway response has the potential to influence the MF and
NSLBP, though to a low degree as there is no link between the flexion reflex response threshold and AMI

severity[6® 73],

2.3 The Gamma (y)-loop
The y-loop spinal reflex circuit enables automatic regulation of muscle tension levels that ensures full
muscle activation during voluntary contractions. The y-motoneuron pool controls muscle fiber contraction
within the muscle spindle and transmits excitatory impulses to the y-motoneuron pool via Ia afferent fibers;

while the a-motoneuron pool controls skeletal muscle contraction!”3].

2.4 Spinal cord neuroplasticity
Spinal cord neuroplasticity contributes to human motor learning as neural reorganization and adaptive
changes to learning complex skill tasks are time dependent. Initially the changes are ‘acquired’ as a

general adaptation but after approximately 24 hours these adaptations become ‘retained’ and



task-specific. Consequently skill training induces a time-dependent reorganization of the spinal networks
modulation that reflects the process of feed-forward motor command as an optimization process that is

time-dependent[™,

3. SUPRA-SPINAL/CENTRAL PATHWAYS IMPLICATED IN AMI

Supra-spinal/central changes related to AMI are hypothesized as predominantly being from the
supraspinal projections from the joint afferents!?!: *1. The changes influence the four areas summarized
within the main manuscript and are further detailed below: cortico-spinal excitability/activity 2%!;
brainstem descending pathways!’®! and the flexion reflex!”*); individual voluntary effort?!); and ‘informed
awareness’ through ‘flow-experience’’”). These supra-spinal actions, subsequently, affect the capacity
and presence of both neuroplasticity!’® and resultant homunculus motor smudging*> **!, as well as the
individual desire and intention to achieve movement-fluency as reflected in HRM[”®), more-so than simply
achieving the activity and exercise itself. Consequently, the normalization of peripheral muscular
activation is the primary goal to facilitate global equilibrium control, as central sources override down

regulatory inhibition that enables muscles, normally repressed by central inhibition from

traumatized/distended joints negative afferent input, to be re-activated.

3.1 Changes in Corticospinal Excitability
Changes in efferent corticospinal excitability activity as a consequence of joint injury, distention, and
local manual intervention, is well documented as being associated with local muscle inhibition at the
knee!®!) and spinel®?!. This includes the presence of AMI, as the descending pathways extend widely into
the spinal level interneurons and motoneurons!’>), which provides the capacity for strong influence!?!>3],

These excitability changes at the area of the primary motor cortex projecting to the muscle’s motoneuron

pool can be either: decreased, due to lower muscle activity levels and diminished spinal-reflexive



excitability; or paradoxically increased, due to increased cortico-spinal drive!®!l. This latter circumstance
occurs despite reduced local muscle activity levels and capacity, as excitability increase consequentially
counteracts the a-motoneuron inhibition by the spinal reflex pathways as the brain attempts to
unsuccessfully increase the AMI affected muscle activation. This local AMI muscle affect is present as a
consequence of the down regulatory pathway inhibition preventing final signal distribution!® 2! 73], This
preventative action accounts for how various voluntary, involuntary, direct, and indirect mechanisms,
previously discussed, provide effective MF activation locally or centrally by overcoming the inhibition,
with such cortical changes being quantified with motor cortex Transcranial Magnetic Stimulation
(TMS)[23:42:631 Despite this mechanistic understanding of corticospinal involvement in AMI, supporting
evidence for its presence in experimental knee joint effusion has been questioned!?*). It has been
determined that the neural activation deficit could be sustained simply by ongoing spinal reflex inhibition,
however, this cannot be generalized to all regions, conditions, and patient groups!®*!. Recent investigations
in patients with rupture of the knee ACL, affirmed the generally agreed assumption that a link to central
brain origin output and inhibition would explain the presence of quadriceps AMI??!, and by extrapolation,
this would be indicative of the deficiency in the MF'®l. Consequently, there is a difference in brain motor
area activation between individuals with and without AMI, which can be visualized with brain functional
magnetic resonance imaging (fMRI)[3: 63691,

Altered electro-cortical brain activity occurs in the somatosensory cortex, with relation to the control of
working memory processes, and subsequent neurocognitive function variability!'?® 2], This is due to
changes in afferent proprioceptive information from the affected joint via the neural supraspinal
projections to the recipient centers during essential movement and joint position sense tasks!’” 2. This

results in intra-cortical inhibition and the need for: increased frontal cortex Theta power, which is related



to higher focused attention and measured by electroencephalogram (EEG); and decreased parietal Alpha-2

power, which is related to differences in sensory information processing!?2..

3.2 Brainstem Modulation and the Flexion Reflex

Descending brainstem pathways normally provide tonic inhibitory control over the varied spinal neurons
involved in pain processing!’®], and the flexion reflex!”*!. Consequently there is modulation of efferent
commands due to afferent information. In the presence of injury and inflammation the descending
brainstem pathways’ input is notably affected with paradoxical negative and positive components.
Consequently, local joint damage can cause either: reduced descending inhibition effectiveness®”’; and/or
enhanced descending facilitation!”®). This results in excitability increases in the flexion reflex pathways,

and subsequently increased AMI as demonstrated in the knee!?!- ®], and postulated in the spinel> ©l.

3.3 Reduced Voluntary Effort

Voluntary effort directly determines the level of muscle activation as a reflection of individual motivation
and exertion. It has been speculated that muscle strength and activation reductions may be partially a

consequence of adjustment in subconscious voluntary effort due to fear avoidance of a pain responsel’®],

{59, 69

or further damage to the injured join 1. However, to date, the experimental models utilized have not

substantiated this hypothesis, and observed reductions in quadriceps activation are deemed to be primarily
reflex related due to articular afferents, and not related to individual voluntary conscious or subconscious
volition changes. Similarly, this is supported by the statistically significant reduction in perceived and

observed exertion with concurrent statistically significant increased quadriceps activation during

1030, 31

slacklining for subjects with post trauma knee AM 1. However, such altered voluntary effort cannot

be completely excluded!!,



3.4 Informed Awareness and Flow

‘Informed awareness’ is information about oneself in relation to the surrounding environment, and plays
a critical role in survival through active positioning of conscious and unconscious actions. By contrast,
‘flow’ is the harmonious psychological state, involving movement-fluency and
task/activity-absorptivity!’’l. It is proposed that ‘informed awareness’ can be re-conceptualized as ‘flow

experience’ when exhibiting certain behaviors, or performance activities, that require highly complex

[77

movements, such as slacklining!””). The behavior-experience coupling can be empirically measured:

behavior by the ‘Hurst (H) exponent’ (which quantifies whether a time-series regresses toward the mean
or exhibits directional clusters)!*?, as determined by accelerometry time-series and CoM; and experience

on the 10-item ‘Flow Short-Scale’, where the total score derives from sub-scales on movement-fluency

and absorptivity!!],

As AMI is influenced by supra-spinal projections, cortical alterations influenced by ‘Informed
awareness’, due to the interactive behavior-experience coupling, could influence pre-synaptic inhibitions

through either a reductive or heightened input-level and, subsequently, change the level of AMI. This

>[97, 98

would potentially be under the FFFS from the ‘primordial imperative 1 where brainstem survival

2[97

reactionary influences cause ‘inhibition of action’®”) through the cumulative balance between the BIS

(behavioral inhibition system) and BAS (behavioral approach system), as outlined in RST (reinforcement

sensitivity theory)®.



APPENDIX #3: AMI SPECIFIC INTERVENTIONS AND APPLICABILITY TO NSLBP

The therapeutic interventions with a demonstrated effect in countering AMI have been predominantly
employed in the lower limb?* 74|, but the basis of their effect should equally apply to NSLBP. These
applications are discussed in detail in this section and considered within two broad categories: 1)

modulation of joint afferent discharge; and 2) muscle stimulation'** 2],

1) JOINT AFFERENT MODULATION TO REDUCE DISCHARGE
These techniques intend to reduce the neural signaling such that the CNS receives a lower degree of neural
information and, subsequently, lowers the muscles inhibitory levels. These include:

i) Joint Aspiration, particularly from acute effusion that damages articular receptors and changes capsular
compliance!"*!); however, for chronic situations the clinical value is limited due to local pathologically induced
reoccurrence.

ii) Intra-Articular Corticosteroid Injection in the presence of strong inflammatory conditions, such as
rheumatoid arthritis (RA), via the reduction in effusion afferent signaling; however, in osteoarthritis (OA), the
effects were non-significant!®®! .

iii) Nonsteroidal Anti-Inflammatory Drugs (NSAIDS) have conflicting evidence. They assist AMI reduction
in the presence of acute joint damage via effusion afferent signaling reduction, particularly with strong
inflammation from joint pathology. Negative effects relate to the analgesic action which results in increased
joint load with gravity based actions such as gait or loaded standing, sitting, and manual handling!*® 331 .

iv) Local Anesthetic (LA) also has opposing actions as it reduces joint afferent impulses, which,
subsequently, reduces AMI. However pain and AMI reduction are not directly related, as AMI can remain in
pain free joints!'® 1-21- €2 Fyrther LA is invasive, short-acting, and impractical in clinical settings due to the

number of injections required and the infection risk.
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v) Cryotherapy provides temporary AMI reduction of up to 30 min. The advantages are that it is
non-invasive, counters the H-reflex amplitude decline normally associated with joint swelling, negates joint
movement deficiencies, including peak torque and power found in the knee; and provides an opportunity for
adjuvant therapy, of which slacklining is an example, that facilitates or assists muscle activation!®’,

vi) Transcutaneous Electrical Nerve Stimulation (TENS) enables increased muscle activation during and
maximal voluntary contractions that vary with the output frequency. High-frequency (120 Hz, pulse width, 0.1
sec) negates the H-reflex amplitude, while low-frequency (4 Hz, pulse width, 1 sec) increases muscular force
output, indicating improved voluntary activity!®.

vii) Electro-Acupuncture has a recognised analgesic effect, particularly in the presence of peripheral joint
OA, which in turn improves health related quality of life (HRQOL). However, MF’s depth and overlying soft
tissue make this low evidence therapy for MF-AMI NSLBP!¢],

viii) Altering fluid distribution/capsular compliance induces a positive joint signaling effect, particularly
though the use of non-weight-bearing, submaximal contractions, and consequent local joint movement,

particularly at the knee. This enables dispersion of intra-articular effusion and improved capsular compliance.

Specific knee studies found positive results that have potential implications for MF-AMI related NSLBP!®!.

2) MUSCLE STIMULATION AND ACTIVATION
Therapy directed to target muscle stimulation and activation aims to restore stability, predominantly through
the MF segmental stabilizing action!® 3%, either alone!'?! or with other ‘core’ muscles, as noted previously!'*.

This is achieved through four combinations of direct/indirect activation through voluntary/involuntary

mechanisms.

i) Direct-Voluntary techniques use the various singular or hybrid approaches through traditional MCE. These

can be furthered with biofeedback, though with variable results and evidence levels!® 3],

ii) Direct-Involuntary techniques are based on stimulatory interventions for non-activating AMI quadriceps®*.

These include:
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1. NMES via a surgically implanted electrical stimulation device. This episodically contracts the MF™ ¢! via
the L2 dorsal ramus medial branch!'®!. However, the activation timing is non-specific and unrelated to
function. The reported findings are both negative and positivel> 1],

2. Transcutaneous NMES is a superficial technique and unsuitable as activation is nonspecific due to
soft-tissue interference from overlying muscles, MF being a deep position, and its diffuse naturel!.

3. Transcranial magnetic stimulation (TMS) affects the required muscle via motor cortex induced changes in
the central activation ratio (CAR)*!; however, the associated costs appears highly prohibitive for
widespread clinical uptake.

4. Peripheral/transcutaneous magnetic stimulation (PMS) is a noninvasive, painless muscle stimulatory
technique delivering a rapid and pulsed, high-intensity magnetic field to activate the muscle via its motor

nerve without brain involvement!3?!,

iii) Indirect-Voluntary techniques activate the deficient MF by either: specifically targeting the core muscle
group as a whole, while incorporating the MF!®; or through an overflow to the core from a global or
whole-body exercise approach, particularly using the aforementioned MMB (Modern Mind Body) regimes
(see Table 1). These include but are not limited to Yoga, Tai Chi, Pilates and so forth!”!, as well as

sling/suspension therapy, and may also include McKenzie’s manual diagnostic therapy (MDT)!!!,

iv) Indirect-Involuntary techniques are not currently recognized but would involve a strategy enabling
involuntary activation that recruits the MF muscle indirectly. This would occur via: a reflex reaction, or
centrally mediated activation processt’® 1%); or one that counters existing down-regulatory influences, such as

those causing AMIP® 3!, as with slacklining. Consequently the lack of local activation is overridden.

A major obstacle to such exercise programs is that voluntary MF muscle control can be difficult to
teach and the MF itself is virtually impossible to activate with efficacy and effectiveness in the presence of

AMI'®* Further, each mentioned exercise strategy, apart from indirect-involuntary techniques, focuses
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primarily on trunk/peripheral-based activation processes without accounting for CNS mediated down

regulatory actions.
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