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Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed type of liver 
cancer and the fourth leading cause of cancer-related mortality worldwide. The 
early identification of HCC and effective treatments for it have been challenging. 
Due to the sufficient compensatory ability of early patients and its nonspecific 
symptoms, HCC is more likely to escape diagnosis in the incipient stage, during 
which patients can achieve a more satisfying overall survival if they undergo 
resection or liver transplantation. Patients at advanced stages can profit from 
radical therapies in a limited way. In order to improve the unfavorable prognosis 
of HCC, diagnostic ability and treatment efficiency must be improved. The past 
decade has seen rapid advancements in artificial intelligence, underlying its 
unique usefulness in almost every field, including that of medicine. Herein, we 
sought and reviewed studies that put emphasis on artificial intelligence and HCC.

Key Words: Hepatocellular carcinoma; Artificial intelligence; Diagnosis; Prognosis; 
Therapy; Genomic
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Core Tip: We performed electronic searching in PubMed, Web of Science and 
EMBASE. Artificial intelligence (AI) or in-depth learning and hepatocellular 
carcinoma were used as mesh terms. We found that AI showed favorable results in 
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early diagnosis and treatment response prediction and prognosis estimation in patients 
with hepatocellular carcinoma. The past decade has seen rapid advancements in AI, 
underlying its unique usefulness in almost every field, including that of medicine. 
Herein, we sought and reviewed studies, and we expect that AI will be an important 
complement to traditional diagnosis, treatment and prognosis estimation of 
hepatocellular carcinoma.

Citation: Yi PS, Hu CJ, Li CH, Yu F. Clinical value of artificial intelligence in hepatocellular 
carcinoma: Current status and prospect. Artif Intell Gastroenterol 2021; 2(2): 42-55
URL: https://www.wjgnet.com/2644-3236/full/v2/i2/42.htm
DOI: https://dx.doi.org/10.35712/aig.v2.i2.42

INTRODUCTION
According to GLOBOCAN 2018[1], liver cancer was the sixth most commonly 
diagnosed (4.7%) type of cancer and the fourth leading cause (8.2%) of cancer-related 
mortality. It has been estimated that there are approximately 841000 new liver cancer 
cases and 782000 liver cancer-related deaths annually. Hepatocellular carcinoma 
(HCC) accounts for the majority of primary liver carcinoma[1]. The widely accepted 
risks of HCC include chronic hepatitis B virus/hepatitis C virus infection, alcohol 
consumption, cirrhosis, aflatoxin intake as well as nonalcoholic fatty liver disease. Due 
to its atypical radiological appearance and the possibility of false-negative biopsy 
results, early-stage HCC is likely to be missed. Only a few HCC patients are suitable 
for radical resection, and even fewer can receive a liver transplant due to the limited 
availability. The high recurrence rate of HCC also undermines the benefits of surgery. 
Patients in intermediate and advanced stages can only benefit from noncurative 
treatments, including transarterial chemoembolization (TACE), radiofrequency 
ablation (RFA), targeted agents and systemic therapies, albeit in a limited way[2]. 
Managing HCC is a major challenge in the clinic.

In the past few years, rapid progress has been made in artificial intelligence (AI) due 
to improvements in computer science. AI techniques, including machine learning 
(ML), artificial neural networks (ANNs) and computer vision, were combined with 
surgery, radiology, bioinformatics and pharmaceuticals and played an innovative role 
in boosting the development of those techniques[3,4]. At present, AI is applied in drug 
design, patient monitoring, diagnostics and imaging, risk prediction and management, 
wearables and virtual assistants[5].

As AI is now frequently used in diagnosis, treatment and patient managing of many 
types of cancer, including lung, gastric, prostate and colon cancers[6-17], the assistance of 
AI in enhancing our diagnostic, therapeutic and prognostic ability to control HCC was 
not unexpected. In addition, the combination of AI and big data also performed much 
better than traditional methods[18].

Recent studies have exhibited promising applications of AI in HCC. In the present 
study, the latest developments in the use of AI in HCC were studied, and both 
methods and improvements were reviewed.

DIAGNOSTIC ASSISTANCE FROM AI
An HCC diagnosis is based mostly on imaging and laboratory tests. Radiological and 
nonradiological imaging holds a dominant position in the diagnosis, staging, 
therapeutic decisions and management of patients, while laboratory biomarkers [e.g., 
α-fetoprotein (AFP)] offer some support. For certain patients, histological examination 
is recommended[19]. By introducing AI into the evidence-based diagnostic procedure, 
more accurate classification was provided to assist clinical determination. Recent 
developments were summarized in Table 1.

In a study in 2010, a total of 250 HCC patients, including 200 patients who 
underwent hepatectomy and 50 who underwent liver transplantation, were randomly 
divided into a test group (n = 75; 30%) and a training group (n = 175; 70%)[20]. Factors 
including serum AFP, preoperative tumor number, maximum tumor size and tumor 
volume were found by univariate analysis to be strongly related to tumor grade 
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Table 1 Recent developments in artificial intelligence assisted diagnosis

AI category Data adopted Advantages Control Ref.

ANN Preoperative serum AFP, tumor 
number, size and volume

The ANN showed higher AUCs in 
identifying tumor grade (0.94) and MVI 
(0.92)

LR model (0.85 and 0.85) [20]

CNN Enhanced MRI The CNN showed comparable accuracy 
(90%)

Traditional multiphase MRI 
(89%)

[24,25]

Open-source framework 
“caffe” based CNN model

DWI CNN trained with three sets of b-values 
found better grading accuracy (80%)

CNN trained with different 
b-values (65%, 68%, 70%)

[26]

CNN Nonenhanced MRI The deeply supervised and pretrained CNN 
model performed better in characterizing 
HCC (accuracy 77.00 ± 1.00%)

CNN-based method 
pretrained by ImageNet 
(65.00 ± 1.58%)

[27]

DL-based segmentation 
model

Contrast-enhanced CT The model with a combination of 2D 
multiphase strategy showed higher ability 
of segmenting active part from the tumors

Traditional CT estimation [28-30]

RF based ML model HE-stained histopathological 
images

The classifying model showed an AUC of 
0.988 in the test set and 0.886 in the external 
validation set

- [31]

1D CNN Hyperspectral and HE-stained 
images

The models had a higher average AUC of 
0.950

RF (0.939) and SVM (0.930) 
models

[33]

Shiny and Caret packages-
based prediction model

Clinical and laboratorial 
information

The optimal model had an AUC of 0.943 Single factor-based 
predictors (0.766, 0.644 and 
0.683)

[34]

1D: One-dimensional; 2D: Two-dimensional; AFP: α-fetoprotein; AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the curve; 
CNN: Convolutional neural network; CT: Computed tomography; DL: Deep learning; DWI: Diffusion-weighted imaging; HE: Hematoxylin and eosin; LR: 
Logistic regression; ML: Machine learning; MRI: Magnetic resonance imaging; MVI: Microvascular invasion; SVM: Support vector machine; RF: Random 
forest.

and/or microvascular invasion. Those four factors were used to build both a 
traditionally used logistic regression (LR) model and an ANN, which was set as a 3-
layer feedforward neural network with a learning rule of backpropagation of error, 
endowing the ANN with a capacity of reducing overall error. It was clear that ANN 
[area under the curve (AUC) = 0.94; 95% confidence interval (CI): 0.89-0.97] had a 
notably higher (P < 0.001) predictive ability for tumor grade than LR analysis (AUC = 
0.85; 95%CI: 0.78-0.89). At the same time, its ability to predict microvascular invasion 
was also significantly stronger (AUC = 0.92, 0.85; 95%CI: 0.86-0.96, 0.74-0.89; P < 
0.001). Compared with single factor prediction, which cannot effectively predict tumor 
grade and microvascular invasion[21-23], ANN provided a significantly improved ability 
to stratify tumors in a multidimensional way.

Magnetic resonance imaging (MRI) is highly valued in clinical diagnosis due to its 
outstanding ability to locate lesions. Recent research has shown the potential of deep-
learning systems to distinguish HCC from other hepatic diseases, in which all 494 
typical imaging features of six types of hepatic lesions were divided into a training set 
(n = 434) and a test set (n = 60)[24]. An AI model was used to classify hepatic lesions 
through multiphasic contrast-enhanced MRI scans. A custom convolutional neural 
network (CNN) with iteratively optimized architecture was trained by 43400 samples 
generated from 434 patients of the training set via augmentation techniques. The test 
set included 60 lesions (10 lesions from each category) randomly selected by Monte 
Carlo cross-validation. Eventually, the CNN consisted of three convolutional layers for 
generating filtered images, two maximum pooling layers for providing spatial 
invariance and two fully connected layers for outputting matched lesion types. As a 
result, a 90% sensitivity and an AUC of 0.992 for HCC classifying were observed in the 
test set, with an average 90% sensitivity and 98% specificity for a total of six classes of 
lesions. It had comparable efficiency to traditional multiphase MRI, which was 
reported to have an overall sensitivity of 89% and specificity of 96% for HCC[25].

Another recent study, in which imaging data was partitioned into a training and 
validation set (60 HCCs) and a fixed test set (40 HCCs), paid attention to the tumor 
grading potential of diffusion-weighted imaging[26]. An AI model was constructed 
based on an open-source deep-learning framework, “caffe”, to grade HCC by 
diffusion-weighted imaging. Edmondson grade I and II HCCs were defined as low-
grade (n = 47), while Edmondson grade III and IV HCCs were defined as high-grade (
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n = 53). Diffusion-weighted imaging was performed with three sets of b-values (0, 100, 
600 s/mm2), logarithmically transformed into log maps and then extracted by a 
specifically designed two-dimensional CNN to collect spatially deep features for 
grading tumors. The two-dimensional CNN was established with two convolutional 
layers, two pooling layers, two fully connected layers and a softmax layer. A deeply 
supervised loss functioned as the cross-entropy loss of the proposed CNN, which 
combined the three loss functions of CNN in the three b-value images and the loss 
function of the concatenated deep features. In terms of grading accuracy, the proposed 
CNN (80%; AUC, 0.83) performed better than other CNNs derived from original b 0 
(65%), b 100 (68%), b 600 (70%) images and an apparent diffusion coefficient map 
(72.5%).

Jian et al[27] reported a novel method of training a deep-learning HCC diagnosis 
model with nonenhanced MRI scans. A total of 112 HCC patients (115 HCC tissue 
samples) with histological HCC proofs and enhanced MRI scans (including 
precontrast phase, arterial phase, portal vein phase and delayed phase) were classified 
into four Edmondson grades and further defined as low-grade (Edmondson grades I 
and II) and high-grade (Edmondson grades III and IV) HCCs. A deep-learning 
framework was established in two steps. The first step was the pretraining process, in 
which the relationship between precontrast (nonenhanced) and enhanced MRI scans 
was identified in order to find out malignant characterizations of nonenhanced MRI 
scans. The identified characterizations were transferring-learnt using a supervised 
cross modal method in the second step. Results showed that the CNN-based method 
performed better in characterization than the traditional way, and the deeply 
supervised model pretrained by the cross modal from the three phases (precontrast, 
arterial and portal vein phase) performed the best compared with nonsupervised CNN 
and deeply supervised methods pretrained by the cross modal from two out of three 
phases (precontrast + arterial phase and precontrast + portal vein phase). This result 
revealed a new diagnostic approach for patients not receptive to enhanced imaging.

A deep-learning automatic segmentation model was built on multiphase computed 
tomography (CT) images to discriminate tumors from healthy liver tissue and further 
identify between active and necrotic tumor areas[28]. A total of 13 contrast-enhanced CT 
sequences from 7 HCC patients were manually segmented by four experts into 104 
labeled CT scan slices, containing images captured before contrast agent injection and 
images reflecting the arterial phase and the portal venous phase. The U-Net 
architecture was configured in a hierarchical method to specially segment by applying 
separate networks for each type of specific tissue. Two opposite strategies were 
investigated: Dimensional MultiPhase strategy, in which single-phase images were 
processed in a multi-dimensional feature map and the MultiPhase Fusion strategy, in 
which each phase was independently processed and then merged into the final 
segmentation. The softmax was introduced in the final layers of the different networks. 
The weighted cross-entropy functioned as the cost to optimize the weights and balance 
classes problem. Finally, a commonly used Dice similarity coefficient was used to 
estimate segmentation quality. Results indicated a better competency of multiphase 
methods in segmenting the liver and active part of tumors as compared with single 
phase ones. Between the two multiphase methods, Dimensional MultiPhase 
outperformed MultiPhase Fusion in the segmentation of the liver (P = 0.004) and active 
part of the tumors (P = 0.005). Furthermore, the combination of two Dimensional 
MultiPhase methods displayed the highest ability in spotting active areas from tumor 
tissues, making it reliable (mean error rate = 13.0%) in estimating the necrosis rate in 
which traditional CT estimation is not[29,30]. With a more accurate assessment method, 
more beneficial clinical decisions may be made.

Histological examination provides solid evidence for the diagnosis, grading and 
prognosis analysis of HCC. Hematoxylin and eosin staining is the most common 
method used for biopsy. A total of 491 whole-slide hematoxylin and eosin-stained 
histopathological images of HCC and adjacent normal tissues downloaded from the 
Genomic Data Commons data portal were used for supervised training of ML 
classifier based on Breiman’s random forest (RF)[31]. The 31 most valuable image 
features (IFs) identified from the training set by principal component-based analysis 
(PCA) were used during the establishment of the classification model. An external 
validation set of tissue microarray images from the West China Hospital was 
employed in addition to the randomly partitioned training (70%) and test (30%) sets. 
The IF classification model showed an AUC of 0.988 (95%CI: 0.975-1.000) in the test set, 
while that of the external validation set was 0.886 (95%CI: 0.844-0.929). This 
outstanding performance of the IF model indicates its possible applications in the 
future.



Yi PS et al. AI in HCC

AIG https://www.wjgnet.com 46 April 28, 2021 Volume 2 Issue 2

Hyperspectral imaging (HSI) was regarded as a promising diagnostic technique[32]. 
A one-dimensional CNN was designed to discriminate HCC from normal tissues 
through HSI images[33]. HCC samples were cut into two adjacent slices, one of which 
was hematoxylin and eosin-stained and the other one underwent HSI. A total of 14 
sets of HSI images, each containing 107 images photographed under different 
wavelengths, were used in a leave-one-out cross-validation approach, resulting in 14 
different models. The framework consisted of a convolution layer, a max-pooling layer 
and a fully connected layer. The convolution layer could extract features from HSI 
images supervised by annotated tumor areas on the paired hematoxylin and eosin-
stained slice, with a rectified linear unit that was shown to avoid gradient vanishing 
and accelerate the training process. Extracted features were processed in the max-
pooling layer to reduce dimension and classified afterward in the fully connected 
layer. The average accuracy, sensitivity, specificity and AUC of those models was 
0.881, 0.871, 0.888 and 0.950, respectively. Further evaluation was carried out and 
exhibited a salient capacity of the one-dimensional CNN model as compared with the 
RF and support vector machine (SVM) models.

Information was extracted from 539 HCC patients and 1043 non-HCC patients to 
train and test a predictive ML framework developed using R version 3.4.3 and the 
Shiny and Caret packages[34]. Patients were randomly divided into the training (80%), 
development and test sets. Clinical information, including AFP, AFP-L3, des-g-
carboxy prothrombin (commonly referred to as DCP), aspartate aminotransferase, 
alanine transaminase, platelet count, alkaline phosphatase, gamma-glutamyl 
transferase, albumin, total bilirubin, age, sex, height, body weight, hepatitis B surface 
antigen and hepatitis C virus antibody, was obtained for ML. The framework had 
several classifiers and two components. In the first component, a grid search was 
performed to select the best classifier and its specific hyperparameter, which would be 
introduced in the second component to output probabilities of HCC. Among a total of 
seven classifiers, gradient boosting showed an AUC of 0.940 as the highest one, with 
that of the optimal, based on the framework, classifier at 0.943; single-factor prediction 
using thresholds of 200 ng/mL for AFP, 40 mAu/mL for DCP and 15% for AFP-L325 
performed AUCs of 0.766, 0.644 and 0.683, respectively.

THERAPY RESPONSE PREDICTION BY AI
Surgical resection remains the first-line treatment for early-stage patients, with 5-year 
survival in appropriately selected cases exceeding 70%. However, it has been reported 
that HCC diagnosis is usually delayed, especially in countries with limited screening 
resources[19]. Out of patients who miss the optimum surgical time window or are 
unsuitable for operative therapy, only a few benefit from loco-regional (e.g., RFA), 
intra-arterial (e.g., TACE), systemic and targeted therapies[2]. Thus, enhancing the 
accuracy of surgical indications and promoting treatment benefits of nonoperative 
therapies would effectively improve the clinical prognosis of patients. In the past 
years, some AI models with great potential were built, as referred in Table 2.

HCC has been estimated as the fourth highest cause of all cancer-related mortality 
worldwide[1], indicating a high malignancy and poor prognosis of HCC. Accurate 
prognostic prediction of tumor resection is needed to identify high-risk patients and 
enable more favorable clinical decisions. As Qiao et al[35] reported, the independent risk 
factors (including tumor size, number, AFP, microvascular invasion and tumor 
capsule) found by linear regression to be significantly related to survival were selected 
to assist in predicting the prognosis of early HCC after partial hepatectomy, both in a 
Cox model and using an ANN method. A feed-forward neural network was built as a 
perceptron with several layers, outputting a prognosis condition (survival or death) 
for certain time points. In addition to the training and cross-validation cohort in which 
patients from the Eastern Hepatobiliary Surgery Hospital were randomly selected, an 
external validation cohort was obtained from the First Affiliated Hospital of Fujian 
Medical University. AUCs demonstrated that the ANN (0.855) outperformed the Cox 
model (0.826), Tumor, Node, Metastasis 6th (0.639), Barcelona Clinic Liver Cancer 
(BCLC) (0.612) and HepatoPancreato-Biliary Association system (0.711), and consistent 
results were observed in the external validation cohort. It drew attention to the 
potential of the ANN model to provide clinical assistance and improve benefits of 
early-stage HCC patients.

AI models can also help identify predictive factors of surgery outcomes. In a 
multicenter retrospective study that included 976 BCLC 0-B HCC patients who 
underwent hepatectomy, Tsilimigras et al[36] generated homogeneous groups of 
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Table 2 Artificial intelligence models that can help in predicting therapy responses

AI Data adopted Advantages Control Ref.

ANN Cox-identified risk factors The ANN had the highest AUC (0.855) Cox model, TNM 6th, BCLC and 
HPBA system (0.826, 0.639, 0.612, 
0.711)

[35]

CART model Clinical and laboratorial 
parameters

The model successfully identified pre- 
and postoperative prognosis predictive 
factors

- [36]

Weka-based ANNs Cox-identified risk factors (15 
factors for DFS and 21 for 
OS)

The ANNs showed higher abilities of 
predicting DFS and OS

LR and decision tree model [37,38]

Radiomics-based DL 
CEUS model 

Contrast-enhanced 
ultrasound

The model showed an AUC of 0.93 in 
predicting therapy response to TACE

Radiomics-based time-intensity 
curve of CEUS model (0.80) and 
radiomics-based B-Mode images 
model (0.81)

[40]

Pretrained CNN 
"ResNet50"

Manually segmented CT 
images

The model showed AUCs for predicting 
CR, PR, SD and PD in training (0.97, 0.96, 
0.95, 0.96) and validation (0.98, 0.96, 0.95, 
0.94) cohorts

- [41]

Automatic predictive 
CNN model

Quantitative CT and BCLC 
stage

The model had a better prediction 
accuracy of 74.2%

ML model based on BCLC stage 
(62.9%)

[42]

ANN Clinical features The models showed higher AUCs in 
predicting 1- and 2-yr DFS (0.94, 0.88) 
after RFA

Model built with 8 features for 1-yr 
DFS (0.80), and model built with 6 
features for 2-yr DFS (0.76)

[45]

AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the curve; BCLC: Barcelona Clinic Liver Cancer; CART: Classification and 
Regression Tree; CEUS: Contrast-enhanced ultrasound; CNN: Convolutional neural network; CR: Complete response; CT: Computed tomography; DFS: 
Disease-free survival; DL: Deep learning; HPBA: HepatoPancreato-Biliary Association; LR: Logistic regression; ML: Machine learning; OS: Overall survival; 
PD: Progressive disease; PR: Partial response; RFA: Radiofrequency ablation; SD: Stable disease; TACE: Transarterial chemoembolization; TNM: Tumor, 
Node, Metastasis; Weka: Waikato Environment for Knowledge Analysis.

patients based on their 5-year overall survival (OS) and identified clinical factors, 
which can be used to predict OS after resection using the nonparametric Classification 
and Regression Tree (CART) model based on pre- (preoperative CART model) and 
postoperative (postoperative CART model) factors. CART is a risk prediction model 
with a performance to recursively partition the ‘covariate space’. As a result, the CART 
model successfully identified several prognosis predictive factors. Among BCLC-0/A 
patients, the CART model selected AFP and Charlson comorbidity score as the first 
and second most important preoperative factors and lymph vascular invasion as the 
best postoperative predictor of OS. Radiological tumor burden score and pathologic 
tumor burden score were selected as the best pre- and postoperative factors for 
predicting surgical outcomes for BCLC-B HCC patients.

Consecutive studies of Ho et al[37,38] have been reported in which AI models were 
predictively capable of classifying patients into different groups with distinctive 
disease-free survival (DFS) and OS after hepatic resection. Data from HCC patients 
who underwent liver resection were examined and merged for further construction of 
survival predictive models. The input variables were identified by the univariate Cox 
proportional hazard model to be closely related (log-rank test; P < 0.05) to DFS or OS. 
Eighty percent of the data were used for training, and the other 20% for validation, 
while no significantly different effect of input variables was observed between training 
and validation (P > 0.05). The proposed ANNs in both studies, which shared 
homologous structures based on the Waikato Environment for Knowledge Analysis 
software using a backpropagation algorithm, were framed with input, hidden and 
output layers. Each of the identified variables was inputted into one of the input 
neurons, and then a trial-and-error process was performed in the hidden layer to 
optimize its neuron numbers before generating DFS and OS status in the output layer, 
which contained only one neuron.

In the first reported study showing the capacity of the ANN to predict DFS based on 
15 statistically significantly associated variables, two comparative models were tested: 
An LR and a decision tree model. The receiver operating characteristics curves and 
AUCs for the 1-, 3- and 5-year DFS models constructed using ANN, LR and decision 
tree demonstrated an acceptable and exceeding performance of the ANN model as 
compared with the LR and decision tree models.
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In another study, attention was paid to OS after resection with 21 potential variables 
serving as inputs. An LR model was used for performance comparison. The accuracy, 
sensitivity, specificity and AUC of the ANN and LR models were calculated. As a 
result, the prediction performance of the ANN model was significantly stronger than 
that of the LR model. In both studies, the possible usage of the ANN as a clinical 
supplementary tool for decision-making was emphasized, suggesting it might be able 
to enhance the profit-risk ratio of HCC resection.

TACE has been widely accepted as the standard and effective treatment for HCC 
patients at the intermediate stage[39]. Recent studies have paid considerable attention to 
deep-learning and TACE, highlighting treatment response prediction and AI-assisted 
clinical decision-making.

Contrast-enhanced ultrasound (CEUS) and B-mode ultrasound images of 130 HCC 
patients who received first-time TACE treatment were obtained for retrospective 
analysis using AI, which was trained to predict patient response (objective-response 
and nonresponse) to TACE[40]. A total of three models were framed by applying CEUS 
images (deep-learning radiomics-based CEUS model), the time-intensity curve of 
CEUS (ML radiomics-based time-intensity curve of CEUS model) and B-mode images 
(ML radiomics-based B-Mode images model). AUCs were compared between the three 
models, and the hepatoma arterial-embolization prognostic score was used to predict 
the outcomes of patients with HCC undergoing TACE. In the training (n = 89; 68.5%) 
and validation (n = 41; 31.5%) cohorts, the three models markedly outperformed the 
hepatoma arterial-embolization prognostic score [AUC = 0.98 (0.92-0.99), 0.84 (0.74-
0.90), 0.82 (0.73-0.91) and 0.623 in the training and 0.93 (0.80-0.98), 0.80 (0.64-0.90), 0.81 
(0.67-0.95) and 0.617 in the validation cohorts for deep-learning radiomics-based CEUS 
model, ML radiomics-based time-intensity curve of CEUS model, ML radiomics-based 
B-Mode images model and hepatoma arterial-embolization prognostic score, 
respectively]. A high reproducibility of this predictive accuracy was displayed by 
robustness experiments performed in triplicate in both the training and validation 
cohorts. The predictive capability of human readers with a deep-learning feature map 
showed an advantage over that of ML radiomics-based time-intensity curve of CEUS 
model or ML radiomics-based B-Mode images model but not over that of deep-
learning radiomics-based CEUS model.

In two analogous studies, the ML network displayed a strong ability to predict 
TACE therapy outcomes using CT images. Peng et al[41] trained a pretrained deep 
CNN, ResNet50, with manually segmented CT images to predict treatment response to 
TACE. Tumor regions of interest segmented by experienced radiologists were divided 
into one training set (n = 562) and two validation sets (n = 89; 138). The weights of 
earlier layers (1-174) in this network were frozen to prevent overfitting and speed up 
the training process. The trained model showed AUCs of 0.97 (0.97-0.98), 0.96 (0.96-
0.97), 0.95 (0.94-0.96) and 0.96 (0.96-0.97) in the training cohort (n = 562), 0.98 (0.97-
0.99), 0.96 (0.95-0.98), 0.95 (0.93-0.98) and 0.94 (0.90-0.98) in the validation cohort 1 (n = 
89), and 0.97 (0.96-0.98) and 0.96 (0.94-0.98), 0.94 (0.92-0.97), 0.97 (0.95-0.98) in the 
validation cohort 2 (n = 138) for complete response, partial response, stable disease 
and progressive disease, respectively. Morshid et al[42] built a fully automated ML 
algorithm that can predict response to TACE using quantitative CT scan features and 
BCLC stage. A total of 105 HCC patients who had received TACE were defined by 
time to progression as TACE-susceptible (time to progression ≥ 14 wk) or TACE-
refractory (time to progression < 14 wk). A total of five imaging features that were 
different between background liver and tumor were extracted, including tumor 
volume, maximum two-dimensional axial diameter of the background liver, small area 
low gray-level emphasis within the background liver, maximal correlation coefficient 
within the background liver and long-run high gray-level emphasis within the tumor. 
Those features were added to the AI model to promote prediction accuracy. Compared 
with the model based on the BCLC stage alone (prediction accuracy = 62.9%, 95%CI: 
0.52-0.72), the model based on CT scan features and BCLC stage showed a better 
prediction accuracy of 74.2% (95%CI: 0.64-0.82).

Abajian et al[43] established an LR and an RF model to predict TACE treatment 
response using MRI scans. The quantitative European Association for the Study of the 
Liver response criteria were used to measure TACE response. A total of 36 patients 
were defined as treatment responders (8/36; 22.2%) and nonresponders (28/36; 77.8%) 
using a cut-off value of 65% changes in quantitative European Association for the 
Study of the Liver response criteria. During the training process of both models, five 
features, including cirrhosis, pre-TACE tumor signal intensity, pre-TACE number of 
tumors, performing method of TAC and existence of sorafenib treatment, were used in 
30 different combinations to identify the most accurate predictive model. A leave-one-
out cross-validation method was used for a predictive accuracy test. When trained on 
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all five features, the LR model displayed an accuracy of 72.0%, sensitivity of 50.0% and 
specificity of 78.6%, while an accuracy of 66.0%, sensitivity of 62.5% and specificity of 
67.9% were validated for the RF model. Notably, these two models shared a best 
performance (accuracy 78%, sensitivity 62.5% and specificity 82.1%) when trained 
using only two (pre-TACE tumor signal intensity > 27.0 and presence of cirrhosis) of 
those five features but still remained inferior to that of MR scan using a baseline 
apparent diffusion coefficients value threshold of 0.83 × 10-3 mm2/s, which 
demonstrated 91% sensitivity and 96% specificity to predict TACE response at 1 mo 
after treatment and an AUC of 0.965[44].

RFA is considered a viable option for HCC patients who are unsuitable for resection 
or on the waiting list for a liver transplant. A prognostic prediction ANN model was 
reported to be promising for clinical practice[45]. Patients were divided into a 1- (n = 
252) and a 2-year (179) DFS group. A total of eight and six variables from a total of 
fifteen potential variables (total bilirubin, aspartate aminotransferase, alanine 
transaminase, albumin, platelet, age, gender, tumor size, tumor number, AFP, HCC 
treatment history, TACE, recurrence events after TACE, BCLC stages and liver 
cirrhosis events) were found to be significantly associated with 1- and 2-year DFS and 
were used as inputs for building prediction models, which was based on a multiple-
layer perceptron structure and a backpropagation learning rule. This ANN model was 
designed with the ability of selecting structure depending on its predictive 
performance. Between two 1-year DFS models, the one built with 15 features (the 
accuracy, sensitivity, specificity, and AUC were 0.92, 0.87, 0.94 and 0.94, respectively) 
was better than the one with 8 significant features (the accuracy, sensitivity, specificity 
and AUC were 0.78, 0.37, 0.96 and 0.80, respectively). Consistently, a 2-year DFS model 
with 15 features (the accuracy, sensitivity, specificity and AUC were 0.86, 0.79, 0.91 
and 0.88, respectively) showed a considerable advantage over that with 6 significant 
features (the accuracy, sensitivity, specificity and AUC were 0.68, 0.47, 0.84 and 0.76, 
respectively) and traditional methods including acoustic radiation force impulse 
elastography (AUC = 0.821; 95%CI: 0.747-0.895) and transient elastography(AUC 0.793; 
95%CI: 0.712-0.874)[46,47]. Although some of the 15 features were evaluated by χ2 test to 
be nonsignificantly related with 1- or 2-year DFS, the better outcome of models with all 
15 features might have prompted their implicit roles in RFA response prediction.

PROGNOSIS ESTIMATION USING AI
In order to correctly identify the development characteristics and improve the 
outcomes of existing therapies, accurate prognostic information is indispensable. 
Individualized precise treatment based on risk and prognostic data would 
substantially enhance curing efficiency in HCC[48]. Table 3 displayed some of the 
effective models which can provide prognosis estimation.

Two deep-learning algorithms, CHOWDER and SCHMOWDER, which adopted 
whole-slide digitized histological slides of HCC patients that had undergone surgery 
were set up to predict OS after resection[49]. CHOWDER could automatically recognize 
survival-related patterns on the tiles derived from the slides and assess the risk score 
for each whole-slide digitized histological slide in three steps: Preprocessing, tile-
scoring and prediction. SCHMOWDER has an identical preprocessing step as 
CHOWDER and a two-branch tile-scoring and predicting pipeline. The upper branch, 
which generated a representation of highly-probably tumoral tiles with an attention 
mechanism used, was trained by annotations from pathologists; the lower branch, 
which generated a representation of only a few tiles, was weakly supervised. 
Representations from the two branches were merged to calculate a survival risk score. 
The discriminatory capacities of the two models assessed by cross-validation were 
demonstrated as better than baseline factors (including microvascular invasion, serum 
AFP, largest nodule diameter and satellite nodules) and composite score by combining 
survival-related clinical, biological and pathological features.

In a prospective study including 442 patients with Child A or B cirrhosis, an HCC 
development prediction model based on ML algorithms, known as RF, was compared 
using conventional regression analysis[50]. Previously determined clinically relevant 
parameters (age, body mass index and presence of diabetes) and those identified by 
univariate analysis (AFP level, bilirubin, male gender, aspartate aminotransferase, 
alanine transaminase, Child-Pugh score and viral etiology) were selected to build a 
predictive regression model and an ML classifier. Multiple decision trees were 
constructed and used as “votes” to create the final classification prediction model. 
Cross-validated accuracy estimation and external validation in the hepatitis C antiviral 
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Table 3 Prognosis prediction models built with artificial intelligence algorithms

AI category Data adopted Advantages Control Ref.

DL algorithms CHOWDER 
and SCHMOWDER

Whole-slide digitized histological 
slide

C-indexes for survival prediction of 
SCHMOWDER and CHOWDER reached 
0.78 and 0.75

Baseline factors and composite 
score

[49]

ML classifier Previously determined relevant 
parameters and those identified 
by univariate analysis

The ML algorithm performed a c-statistic 
of 0.64 for HCC development prediction

Regression model (0.61) and the 
model built on the HALT-C 
cohort (0.60)

[50]

DL survival prediction 
model

RNA, miRNA and methylation 
data from TCGA

The DL model showed better potential in 
classifying HCC patients into two 
subgroups with different survival

PCA and the model built with 
manually inputted features

[51]

OS prediction model based 
on SVM-RFE algorithm

134 methylation sites identified 
using Cox regression and SVM-
RFE algorithm

This algorithm showed a higher accuracy 
of classifying HCC patients

Traditionally set classifying 
methods based on DNA 
methylation

[54-56]

ANN Mortality-related variables The ANN showed higher AUCs (0.84 and 
0.89) in predicting in-hospital and long-
term mortality

LR model (0.76 and 0.77) [57,58]

AI: Artificial intelligence; ANN: Artificial neural network; AUC: Area under the curve; DL: Deep learning; HALT-C: Hepatitis C antiviral long-term 
treatment against cirrhosis; HCC: Hepatocellular carcinoma; LR: Logistic regression; ML: Machine learning; OS: Overall survival; PCA: Principal 
component-based analysis; RFE: Recursive feature elimination; SVM: Support vector machine; TCGA: The Cancer Genome Atlas.

long-term treatment against cirrhosis trial cohort, which included 1050 patients, was 
conducted. The ML algorithm performed the best classifying characteristics with a c-
statistic of 0.64 (95%CI: 0.60-0.69) compared with the regression model (0.61; 95%CI: 
0.56-0.67) and the model built on the hepatitis C antiviral long-term treatment against 
cirrhosis cohort (0.60; 95%CI: 0.50-0.70), raising the possibility of prospectively 
predictive HCC development by ML.

Two HCC subgroups were found to have a notably discrepant prognosis by 
survival analysis and were focused on to build a deep-learning survival prediction 
model[51]. RNA, miRNA and methylation data from 360 HCC patients were collected 
from The Cancer Genome Atlas (TCGA) and were split to train an SVM model. Five 
additional confirmation datasets were obtained to estimate the predictive accuracy. 
TCGA HCC omics data were regarded as the input of the proposed autoencoder, in 
which three hidden layers with different numbers of nodes were implemented using 
the Python Keras library. The autoencoder was trained for ten epochs with a 50% 
dropout in the gradient descent algorithm. A total of 37 features of the TCGA omics 
data significantly (log-rank test, P < 0.05) associated with survival were identified by 
the autoencoder. With those features, a classification model using the SVM algorithm 
was built and validated in the test group and five additional groups of HCC patients. 
C-index, Brier score and log-rank test were carried out to evaluate the performance of 
the AI model, and two alternative methods, including PCA and a model based on 37 
manually identified features from the omics data. The proposed model showed a 
clearly better potential than that of PCA and the model with manually-inputted 
features, and intended prediction robustness was validated in additional datasets.

Anomalous DNA methylation was found to be highly related to HCC[52,53] and able 
to predict survival in HCC patients that had undergone surgery[54]. DNA methylation 
data from 377 HCC samples and 50 adjacent normal tissue samples were obtained and 
analyzed using the ChAMP tool in R software. A total of 2785 sites from 40799 sites 
that had been methylated differently between HCC tissue and adjacent normal tissue 
were assessed via Cox regression and found to be significantly related to OS (P < 0.05). 
The SVM-recursive feature elimination algorithm behaved as a classifier to identify 
valuable sites that could be used to build a predictive model. Finally, 134 methylation 
sites were used to build the predictive model. A total of 163 patients were divided into 
a “high-risk” (died within 1 year after surgery, n = 58), “intermediate-risk” (survived 
1-5 years after surgery, n = 64) and “low-risk” (survived > 5 years after surgery, n = 41) 
groups and were separated into a training (n = 130) and a test (n = 33) set. A total of 26 
(78.8%) patients were successfully classified into the test set. Further validation of 19 
paired HCC and normal tissue samples from the GSE77269 dataset in the Gene 
Expression Omnibus database demonstrated no incorrect classification of normal 
tissues and a similar ratio of HCC samples classified as “high-risk.” Although this 
algorithm showed a higher accuracy of classifying HCC patients than some 
traditionally-set classifying methods based on DNA methylation[55,56], validation in a 
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larger sample size was needed.
Liao et al[31] built an IF-based prognosis prediction model (IF model) that can divide 

HCC patients who underwent resection into two groups, the high- and low-score 
groups, with a different OS according to the cut-off value of the training set. A total of 
46 informative IFs, identified by Cox proportional hazard regression and an RF 
minimal depth algorithm, were found to be significantly (P < 0.05) associated with OS 
and were used to train the IF model. As a result, the IF model successfully 
distinguished patients with higher scores from those with lower scores in all three sets 
(log-rank test; P < 0.0001 in the training set, P = 0.013 in both the test and external 
validation sets), exhibiting a well-performed prognosis prediction ability. 
Furthermore, time-dependent receiver operating characteristics curves were used to 
compare the prognosis performance between the IF model and the Tumor, Node, 
Metastasis staging system, with no significant difference observed (adjusted P = 0.848-
1.000) at each time point (1-9 years after treatment), indicating that the IF model may 
have a comparable predictive accuracy with that of the Tumor, Node, Metastasis 
staging system.

Two similarly framed ANN models, expected to respectively predict in-hospital and 
5-year mortality in HCC, were trained with data from a large population of 22926 
patients who had been diagnosed with HCC and had undergone resection[57,58]. The 
structure of ANNs consists of an input layer, a hidden layer and an output layer. To 
identify related variables, continuous and categorical variables were respectively 
tested by one-way analysis of variance and Fisher’s exact test, and significant 
predictors (P < 0.05) were verified by univariate analysis. The following steps were 
repeated 1000 times: (1) Data were randomly divided into a training set (n = 18341; 
80%) and a test set (n = 4585; 20%); (2) the LR and ANN models were established 
based on the training dataset; and (3) Paired t-tests were used to compare indices 
between the two models. Statistically in-hospital mortality-related variables, including 
age, gender, comorbidity (estimated by Charlson comorbidity index), hospital volume, 
surgeon volume and length of stay) were extracted by the ANN, and an outcome 
(death/survival) was generated. Compared to the LR model, the ANN showed a 
substantial advantage with a higher accuracy rate (97.28 vs 88.29, P < 0.001), a lower 
Hosmer-Lemeshow statistic (41.18 vs 54.53, P < 0.001) and a higher AUC (0.84 vs 76, P 
< 0.001). The other ANN model was built and tested similarly with six identical 
variables to predict 5-year mortality, and ANN was found to significantly outperform 
the LR model (accuracy rate 96.57% vs 87.96%; Hosmer-Lemeshow statistic 0.34 vs 0.45; 
AUC 88.51% vs 77.23%). Those two models combined with the deep-learning 
technique showed unique prognosis prediction performance, revealing their possible 
applicability in the prediction of in-hospital and long-term mortality.

OMICS RESEARCH PERFORMED WITH AI
Genomic data have exhibited efficient and unique advantages in both research and 
clinical experience. A recent study managed to correlate tumor samples and their 
original tissue types using an ML prediction model[59]. RNA-seq data of 14 tumors and 
at least 10 corresponding adjacent normal tissue samples for each tumor were 
downloaded from TCGA, Therapeutically Applicable Research to Generate Effective 
Treatments and the Genotype-Tissue Expression. An autoencoder neural network 
based on Pytorch with a rectifying activation function, dropout and normalization 
between layers was built. The mean squared error between the input and output was 
introduced as the loss function. After 10000 iterations for converging loss, the 
autoencoder demonstrated an outstanding ability to identify tissue sites for cancers 
with increasing accuracy in parallel with the mounting number of varying genes, 
noticeably surpassing the predominant PCA method, which identified only 8/14 
cancers. In the distinction of HCC samples, the autoencoder with all features utilized 
showed a highly specific capacity of capturing biological information. This study 
provided a solid reference for further research in HCC and might be able to promote 
sample usage in a precise way.

A novel approach of seeking HCC-related genes by ML was established[60]. Gene 
expression profiles of 43 tumor and 52 normal tissue samples were downloaded from 
NCBI Gene Expression Omnibus. A maximum relevance-minimum redundancy 
(mRMR) method, referred to as mRMRe, was used to rank the features. The mRMR is 
a proven ML approach for phenotype classification; it can classify transcriptional 
features based on both the redundancy between features and their relevance to the 
target. An incremental feature selection method was combined with the mRMRe 
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algorithm, generating a possible feature subset for further analysis. A subset consisting 
of 117 features with a satisfying accuracy of 0.895 was finally selected as the criteria to 
distinguish HCC from non-HCC samples, in which several previously identified HCC-
related genes (such as MT1X, BMI1 and CAP2) were found, justifying the rationality of 
this model. Furthermore, some genes, such as TACSTD2, that were not considered to 
be HCC-related before (one of which was identified by protein-protein interaction) 
might be crucial during the pathogenesis of HCC, namely ubiquitin C was identified 
by this model.

CONCLUSION
AI showed a substantial enhancement throughout the pre- and postclinical process of 
HCC in terms of both investigation and treatment. Due to the low diagnostic rate of 
early-stage patients, its high recurrence rate and unsatisfactory treatment effectiveness, 
HCC is one of the deadliest types of cancer worldwide. The emerging and fast-
developing techniques of AI offer the possibility of improving the survival of HCC 
patients. Brought by deep-learning methods, a higher accuracy of diagnosis and 
treatment response prediction combined with individual prognosis assessment could 
potentially improve the time and quality of survival for HCC patients to a 
considerable extent.

AI has also been used in a wider range of clinical practice. Hyer et al[61] released an 
ML approach to predict postsurgical prognosis. The novel method referred to as 
Complexity Score outperformed several currently used indices of prognosis 
estimation. Mueller-Breckenridge et al[62] identified two hepatitis B virus quasispecies 
by ultra-deep sequencing and developed a ML model to determine the viral variants 
and assist clinical decision-making with regards to anti-hepatitis B virus strategies. A 
newly-established ML model was reported as an alternative method in the prediction 
of liver fibrosis caused by chronic hepatitis C virus infection[63]. While none of those 
studies were directly related to HCC, their findings might significantly help preclinical 
prevention, early diagnosis and surgical planning.
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