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Abstract
Artificial intelligence (AI) has been increasingly utilized in medical applications, 
especially in the field of gastroenterology. AI can assist gastroenterologists in 
imaging-based testing and prediction of clinical diagnosis, for examples, detecting 
polyps during colonoscopy, identifying small bowel lesions using capsule 
endoscopy images, and predicting liver diseases based on clinical parameters. 
With its high mortality rate, pancreatic cancer can highly benefit from AI since the 
early detection of small lesion is difficult with conventional imaging techniques 
and current biomarkers. Endoscopic ultrasound (EUS) is a main diagnostic tool 
with high sensitivity for pancreatic adenocarcinoma and pancreatic cystic lesion. 
The standard tumor markers have not been effective for diagnosis. There have 
been recent research studies in AI application in EUS and novel biomarkers to 
early detect and differentiate malignant pancreatic lesions. The findings are 
impressive compared to the available traditional methods. Herein, we aim to 
explore the utility of AI in EUS and novel serum and cyst fluid biomarkers for 
pancreatic cancer detection.

Key Words: Artificial intelligence; Machine learning; Deep learning; Endoscopic 
ultrasound; microRNA; Pancreatic cancer; Pancreatic cyst
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Core Tip: Artificial intelligence (AI) aided endoscopic ultrasound (EUS) and 
microRNA analyses are sensitive and effective for pancreatic cancer detection with 
sensitivity of more than 95%. The size of pancreatic lesion does not affect the 
diagnostic performance by artificial intelligence. This will help overcome the delayed 
diagnosis and high mortality of pancreatic cancer. Recent studies showed that the speed 
of AI system in EUS can be performed in real time fashion. This will be adjunctive to 
the conventional EUS examination for future utility.
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INTRODUCTION
Pancreatic cancer has been notorious for late detection and high mortality rate[1,2]. The 
main contributing factor is the difficulty of diagnosis from imaging studies[3]. 
Differentiation between benign disease like chronic pancreatitis and malignancy is 
challenging[4]. Malignant pancreatic diseases [i.e., pancreatic ductal carcinoma, 
intraductal papillary mucinous neoplasms (IPMN), and mucinous cystic neoplasm] 
can present differently in radiologic imaging[3]. Endoscopic ultrasound (EUS) has been 
recognized as an effective method for detecting pancreatic cancer with a reasonable 
sensitivity but low specificity[5]. Compared to computed tomography (CT) and 
magnetic resonance imaging (MRI), EUS had a superior performance in small 
pancreatic tumors[6,7].

The use of computer aided diagnosis for cancer detection has been introduced since 
1960[8]. In the past 10 years, the use of artificial intelligence (AI) has been exponentially 
increased in every field, including medicine[9-11]. Machine learning and deep learning 
are two major techniques in AI used for analyzing a large dataset and creating a 
predictive model[12-14]. The advance of AI in gastroenterology field has played an 
important role in pancreatic cancer regarding detection and survival prediction[15-17].

Given the emerging role of AI in this field, we conducted the systematic review on 
AI and pancreatic cancer with keywords of “artificial intelligence” and “pancreatic 
cancer” from PubMed and Institute of Electrical and Electronics Engineers databases. 
We aim to elaborate the advancement of AI application in pancreatic cancer detection 
by imaging studies focusing on endoscopic ultrasound and novel serum and cyst fluid 
marker analysis.

AI CONCEPT AND TERMINOLOGY
AI is the use of mathematical models and computer algorithms to mimic human 
intelligence. It has been increasingly used to predict risk and diagnose pancreatic 
cancer with imaging and personal health features[15,18-20]. Most medical AI is considered 
narrow AI, which focuses on single or limited tasks[19]. There are different AI 
techniques for creating predictive models, including machine learning and deep 
learning.

Machine learning is a subfield of AI that uses mathematical techniques to create a 
predictive model by recognizing patterns in the dataset without being explicitly 
programmed[18,19]. There are many machine learning algorithms available such as 
regression, decision trees, k-nearest neighbors, and neural network[21]. Machine 
learning shows great promise in medical research as it can detect complex patterns in a 
large dataset that human doctors would likely miss[22,23].

Deep learning, a subfield of machine learning, is basically a neural network with 
multiple hidden layers (usually a large number) to automatically detect higher-level 
features of input data. A neural network is also known as artificial neural network. As 
shown in Figure 1, neural network is a system of interconnected neurons with three 
type of layers: (1) Input layer; (2) Hidden layer; and (3) Output layer. Each layer 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Neural network with input layer, hidden layers, and output layer. Each circle represents a neuron within the network. Within each neuron, 
weights and bias are applied to the input values to produce an output value. w: Weight; b: Bias.

amplifies certain aspects of the input that are important for discrimination by applying 
a weight to each input[24,25]. Besides requiring a large and well-annotated dataset, the 
major drawback of deep learning is a long training time, which could take hours or 
days. One method that can significantly improve the training time of deep learning is 
the use specialized hardware such as graphic processing unit or tensor processing 
unit[26].

A convolutional neural network (CNN) is a class of deep learning that apply a filter 
to capture the characteristic of the data. In image analysis, CNN use different filters to 
capture various aspects of the image[27,28]. The most significant advantage of CNN in 
the medical field is its ability to detect image features automatically and objectively, 
for instance, the detection of pancreatic cancer based on EUS images[19,29].

Three major types of machine learning problems are supervised learning, 
unsupervised learning, and reinforcement learning. Most machine learning problems 
in medicine are supervised learning, in which the response variable must be already 
known or labeled. To create a predictive model for solving supervised learning 
problem, the first step is the collection and annotation (label) of input data. The data is 
then divided into training and testing sets. The training data is used for training 
machine learning models, including applying different learning algorithms or 
architectures, optimizing model parameters, and selecting a final predictive model. 
Once the final predictive model is selected, the model will be evaluated using the 
testing data to assess the model performance on the data that has not been used before. 
These are common steps used to create a predictive model for both machine learning 
and deep learning[21,30]. In fact, the choice of using machine learning or deep learning 
usually depends on the type of inputs. Typically, CNN-based deep learning is the 
preferred choice for image classification. Additionally, deep learning model had a 
higher diagnostic ability than the subjective measurement of tumor feature values 
(tumor width, shape, and color) by doctors because of its objectivity[31-33].

APPLICATION OF AI IN IMAGING STUDIES FOR PANCREATIC CANCER 
DETECTION
Modern imaging modalities, including CT scan, MRI, ultrasound, and endoscopy, 
contain far more visual information than humans can distinguish with the naked 
eye[18]. Since 2010, significant progress has been achieved in applying AI to the 
gastroenterology imaging[15]. The pancreas is one of the most challenging organs in CT 
segmentation. Each patient produces more than 300 images that a radiologist must 
discern, creating intense reading efforts that sometimes succumb to unavoidable 
misdiagnosis[34]. Many machine learning and deep learning models have been created 
to aid physicians in making diagnosis based on medical imaging, including the 
detection of pancreatic neoplasms. There are two major types of AI systems used in the 
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detection of cancer: Computer-assisted detection (CADe) and computer-assisted 
diagnosis (CADx) and they serve different purposes. CADe systems are used for 
locating lesions in medical images. CADx systems characterize lesions and can 
distinguish between benign and malignant[35].

COMPUTED TOMOGRAPHY
CADx AI systems have been created with the analysis of segmented CT images of the 
pancreas. These systems work by creating an experimental group of image data and a 
control group of image data which are imported into a program. The data is fed 
through two matrices and a filter, statistics, and other data are applied. Then the 
pancreatic cancer and the normal control images are distinguished by data processing 
and statistical analysis[36].

An extension of CADx systems is the use of radiomics in CT images. Radiomics is 
an AI process that not only answers simple clinical questions (e.g., benign or 
malignant), but can also be used to extract quantitative imaging features from 
radiology images to produce more detailed information about the areas of interest (
e.g., determining risk of malignancy in pre-malignant lesions)[18]. A study by Wei et al[37] 
used a machine learning based model to determine serous cystic neoplasms from non-
serous cystic neoplasms based on 409 quantitative radiomic features from preoperative 
CT images. The model outperformed clinicians with an area under the receiver 
operating characteristic curve (AUC) of 0.84.

Segmentation of the pancreas in CT imaging is a difficult but essential task for a 
successful diagnosis of pancreatic cancer. The main challenges lie in its close proximity 
to other organs, shape variance and low contrast blurring[27,38-40]. Notably, the ideal type 
of CT imaging in patients with suspected pancreatic cancer is a contrast-enhanced, 
multidetector CT, which has sensitivity of 70% to 100% whereas traditional CT has an 
accuracy of 83.3%, sensitivity of 81.4%, and specificity of 43% for pancreatic 
adenocarcinoma detection[41].

Liu et al[42] used a faster region-based CNN (faster R-CNN) model to form a CADx to 
solve the challenging pancreas segmentation problem in CT images. Their faster R-
CNN model assisted had an AUC of 0.96 and mean average precision of 0.7664, 
indicating a high discriminating ability and precision. Consequently, the time required 
to establish a diagnosis using their model was 3 s compared to 8 min by an imaging 
specialist. Another study used multi-scale segmentation-for-classification to detect 
pancreatic ductal adenocarcinoma (PDAC). This method functioned by performing 
tumor segmentation at the same time as tumor classification. This information was 
helpful for radiologists when determining tumor location. Their method reported a 
sensitivity of 94.1% and a specificity of 98.5%, implying that their model for tumor 
segmentation was strong in screening for PDAC[43]. Interestingly, Chu et al[44] used 
random forest algorithm to classify PDAC based on CT images. The overall accuracy, 
AUC, sensitivity, and specificity were 99.2%, 0.999, 100%, and 98.5%, respectively.

To classify pancreatic cancer, a custom method using a combination of support 
vector machine and random forest technology was applied to PET/CT images[45]. Their 
proposed model achieved accuracy of 96.47%, sensitivity of 95.23%, and specificity of 
97.51%. They demonstrated that their model outperformed other models based on an 
external dataset.

MAGNETIC RESONANCE IMAGING
It is challenging to obtain multi-modal MRI images and then effectively fuse the 
information from these images due to the heterogeneity of the pancreas and the ill-
defined tumor boundary[46-48]. PDAC diagnostic value by traditional MRI has an 
accuracy of 89.1%, sensitivity of 89.5.%, and specificity of 63.4%[41].

Barriers to machine learning algorithm development for MRI include limited 
availability of MRI data, reduced image quality, and unstandardized nature of MRI[49]. 
In addition, overfitting can be an issue due to small datasets in MRI and CNN 
studies[48]. However, CADx systems for the diagnosis of pancreatic cancer have been 
developed with MRI images. One study used a CNN was used for feature 
representation for IPMN diagnosis with MRI[47]. This approach led to a 30% 
improvement in specificity of IPMN diagnosis compared to single modality-based 
approaches (T1 or T2 imaging). The multi-modal fusion approach for IPMN detection 
had an accuracy of 82.80%, sensitivity of 83.55%, and specificity of 81.67%. It is only 
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needed to identify a single slice where pancreatic tissues could be obviously observed. 
Zhang et al[34] used support vector machine in combination with MRI detection to 
classify pediatric pancreatic cancer; their proposed model achieved a higher accuracy 
when compared to the normal detection algorithm. Corral et al[50] created a CNN which 
diagnosed intraductal papillary mucinous neoplasm (IPMN) on MRI images in 1.82 s 
with a sensitivity of 75% and specificity of 78%. Another study by Gao et al[51] created a 
deep learning model that graded pancreatic neuroendocrine tumors using MRI 
images, reaching an accuracy of 81.1% and AUC of 0.89. In a 2020 retrospective study, 
the research group assessed baseline CT images from 207 patients with proven PDAC 
and developed a machine learning model that used radiomics to predict molecular 
subtypes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC 
of 0.84, 0.92, and 0.93, respectively[49]. Table 1 demonstrates the studies on CT and MRI 
of pancreatic cancer.

ULTRASONOGRAPHY
AI is used in transabdominal ultrasonography and endoscopic ultrasonography. In 
transabdominal ultrasonography, AI is used primarily for detecting liver fibrosis stage 
and chronic liver disease by using the histogram analysis and RGB-to-stiffness inverse 
mapping technique[19]. The role of transabdominal ultrasonography for pancreatic 
cancer detection is very minimal because the pancreas visualization is obscured by 
bowel gas. Due to this, there are no available studies in the evaluation of pancreatic 
cancer with transabdominal ultrasound.

ENDOSCOPIC ULTRASOUND
Among MRI, CT, and EUS, only EUS enables observation of the pancreas with high 
spatial resolution. EUS has higher tumor detection rates than contrast enhanced CT by 
allowing detection of the echo structure in lesions as small as 1 cm[52]. The sensitivity of 
EUS is superior to CT scan, 94% and 74%, respectively[5]. However, the accuracy of 
EUS is currently highly operator dependent.

There are previous studies on the application of AI in EUS for pancreatic cancer 
detection (Table 2). The overall accuracy of AI based approach were 80%-97% with 
sensitivity of 83%-100%. The findings are comparable to a sensitivity of 94% by 
endoscopist driven EUS according to the meta-analysis[5]. The first study of AI based 
EUS analyzed a single EUS image per patient obtained from the total of 21 patients[53]. 
Machine and human demonstrated a similar diagnostic performance. However, this 
study was done before the introduction of modern deep learning framework, which 
has demonstrated much better performance in general than earlier neural network 
architecture. Based on the observation that there is an age-related change of pancreas 
shape, Ozkan et al[54] used three different neural network models to classify pancreatic 
cancer in three age groups: Below 40, 40 to 60, and above 60. As a result, a higher 
performance was achieved by using a different model for each age group.

There were different techniques being used for image analyses and creating 
classification models in pancreatic cancer studies, including deep pocket inspection[55], 
support vector machine[56], region of interest, principal component analysis[57], neural 
network, and deep learning. We noticed that these requires were evolved with the 
major progress of AI development; machine learning techniques were used at the 
beginning and gradually evolved to CNN-based models (deep learning).

Interfering factors associated with misdetection of pancreatic cancer include chronic 
pancreatitis with more false negative results[4]. The compromised ability of pancreatic 
cancer detection in patients with chronic pancreatitis decreased to 54%-75%. Tonozuka 
et al[33] found that non-PDAC is the significant factor of misdetection which means the 
system tends to work towards preventing the overlooking of tumors than 
overdiagnosis of tumors. On the other hand, tumor size is not associated with 
misdetection. Thus, AI guided diagnosis can help with early detection of small tumor 
and prevent the progression of pancreatic cancer. Another consideration is that the 
control group with a few cases of mass forming pancreatitis makes the results not 
generalizable to the group of focal pancreatitis (pseudotumorous pancreatitis) as more 
included in Norton et al[53]. The main limitations of prior studies on AI-guided EUS 
diagnosis are small sample size. Data augmentation has been used to increase the 
number of images in later study[33]. Slow processing time and low-quality image are 
other constraints. They hinder the development of this approach to be real time 
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Table 1 Summary of studies assessing computed tomography and magnetic resonance using artificial intelligence-based approach for 
pancreatic cancer

Model performance on testing data
Ref. Overall 

dataset Testing data Model
Accuracy (%) AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

CT

Zhu et al[43], 2019 
(United States)

439 cases 23 cases CNN NA NA 94.1 98.5 NA NA

Liu et al[42], 2019 
(China)

338 patients 100 patients CNN NA 0.9632 NA NA NA NA

Chu et al[44], 2019 
(China) 

380 patients 125 patients ML 99.2% 0.999 100 98.5 NA NA

Li et al[75], 2018 
(China) 

206 patients No separate 
testing data (10-
fold CV)

CNN 72.8%1 NA NA NA NA NA

Wei et al[37], 2018 
(China) 

260 patients 60 patients SVM NA 0.837 66.7 81.8 NA NA

MR

Kaissis et al[49], 
2020 (Germany) 

207 patients 26 patients ML NA 0.93 84 92 NA NA

Corral et al[50], 
2019 (United 
States) 

139 cases No separate 
testing data (10-
fold CV)

DL NA 0.781 921 52%1 NA NA

Gao et al[51], 2019 
(China) 

96 patients No separate 
testing data (5-
fold CV

DL 85.131 0.91171 NA NA NA NA

1The performance was based on n-fold cross-validation on training data.
AUC: Area under the curve; CNN: Convolutional neural network; CT: Computed tomography; CV: Cross-validation; DL: Deep learning; IPMN: 
Intraductal papillary mucinous neoplasm; MR: Magnetic resonance; NA: Not available; NN: Neural network; NPV: Negative predictive value; PCA: 
Principal component analysis; PPV: Positive predictive value; SVM: Support vector machine.

analysis. Interestingly, real time EUS video using CNN for pancreas segmentation and 
station recognition has been studied[58]. The real-time system works as a monitoring 
safety net and remind endoscopist to make up the unobserved part. It can also increase 
trainee performance in learning how to detect pancreatic cancer using EUS, which can 
lead to the reduction of training time and cost.

AI also plays important role in two new EUS techniques, including contrast 
enhancing EUS (CE-EUS) and EUS elastography. CE-EUS is a technique that uses gas-
containing contrast agents intravenously injected for better visualization and 
differential diagnosis of focal pancreatic lesions. A study found machine learning 
assisted CE- EUS provided higher sensitivity of 94% compared to 87.5% of qualitative 
CE-EUS without machine learning aid[59]. EUS elastography is a technique that 
measure the tissue stiffness, which help differentiate a mass from normal or 
inflammatory area. The real-time performance of neural network provided 
comparable efficacy to standard EUS elastography. The predictive performance of EUS 
elastography is similar to the b-mode EUS with AUCs of 0.94-0.965[60,61].

Regarding a real-time application, Marya et al[62] demonstrated the high accuracy of 
PDAC detection from other pancreatic diseases with AUC of 0.98. The author claimed 
that the speed of image processing is eligible for real-time system but it was not 
performed. Future application is warranted which can guide biopsy in patients with 
diffuse inflammation as chronic pancreatitis to avoid unnecessary biopsies.

AI has not only been studies in PDAC, but also in pancreatic cystic lesions. One 
study on the differentiation of malignant vs benign IPMN by EUS revealed the 
superior accuracy in identifying malignancy; 94% by AI vs 56% by the physician 
diagnosis performing EUS. However, the AI’s prediction on EUS images was not 
performed during the EUS procedure in a real time. The real-time integration will help 
aid clinicians to make a clinical judgement[63]. EUS guided needle confocal laser 
endomicroscopy is a novel technique for pancreatic cystic lesions. A study was 
conducted in 15027 videos from 35 subjects with IPMN. The CNN algorithm for high 
grade dysplasia or adenocarcinoma diagnosis had higher sensitivity (83.3% vs 55.6%) 
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Table 2 Summary of endoscopic ultrasound using artificial intelligence-based approach studies pancreatic cancer and malignant 
pancreatic cyst detection

Model performance on testing data
Ref. Overall 

dataset
Testing 
data Model Accuracy 

(%) AUC Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

Marya et al[62], 
2020 (United 
States)

583 patients 
(1174461 
images)

123 patients CNN NA 0.976 95 91 87 97

Tonozuka et al[33], 
2020 (Japan)

139 patients 
(920 images)

47 patients 
(470 images)

CNN NA 0.94 92.4 84.1 86.8 90.7

Ozkan et al[54], 
2016 (Turkey)

332 images 72 images NN 87.5 NA 83.3 93.33 NA NA

Saftoiu et al[59], 
2015 (Multicenter 
in Europe)

167 cases 15% of cases NN NA NA 94.64 94.44 97.24 89.47

Zhu et al[56], 2013 
(China)

388 images 50% of all 
data (200 
trials)

SVM 93.86 NA 92.52 93.03 91.75 94.39

Zhang et al[55], 
2010 (China)

216 patients 50% of all 
data (50 
trials)

SVM 97.98 NA 94.32 99.45 98.65 97.77

Das et al[57], 2008 
(United States)

319 images 50% of all 
data

NN NA 0.93 93 92 87 96

Norton et al[53], 
2001 (United 
States)

21 patients 4 patients ML 80 NA 100 50 NA NA

Elastography

Saftoiu et al[61], 
2012 (Multicenter 
in Europe)

258 cases No separate 
testing data 
(10-fold CV)

NN 84.272 0.942 87.592 82.942 96.252 57.222

Saftoiu et al[60], 
2008 (Denmark 
and Romania)

68 cases No separate 
testing data 
(10-fold CV)

NN NA 0.9572 NA NA NA NA

IPMN

Machicado 
et al[64], 2021 
(United States)1

35 cases of 
EUS-nCLE 
(15027 
frames)

No separate 
testing data 
(5-fold CV)

(1) CNN 
(segmentation); and 
(2) CNN (holistic)

(1) 82.92; and 
(2) 85.72

NA (1) 83.32; and 
(2) 83.32

(1) 82.42; and 
(2) 88.22

(1) 83.32; 
and (2) 
88.22

(1) 82.42; 
and (2) 
83.32

Kuwahara et al[63], 
2019 (Japan)

50 cases No separate 
testing data 
(10-fold CV)

CNN 942 NA 95.72 92.62 91.72 96.22

1Presented two designs of CNN algorithms: segmentation based model and holistic based model.
2The performance was based on n-fold cross-validation on training data.
AUC: Area under the receiver operating characteristic curve; CE-EUS: Contrast enhanced endoscopic ultrasound; CNN: Convolutional neural network; 
CV: Cross-validation; EUS-nCLE: Endoscopic ultrasound-guided needle based confocal laser endomicroscopy; IPMN: Intraductal papillary mucinous 
neoplasm; NA: Not available; NN: Neural network; NPV: Negative predictive value; PCA: Principal component analysis; PPV: Positive predictive value; 
SVM: Support vector machine.

and accuracy (82.9%-85.7% vs 68.6%-74.3%) than the Fukuoka and American 
Gastroenterology Association diagnostic criteria[64].

APPLICATION OF AI IN BIOMARKER ANALYSIS FOR PANCREATIC 
CANCER DETECTION
Conventional markers
The most used biomarker in monitoring pancreatic cancer is currently carbohydrate 
antigen (CA) 19-9[65]. It is usually used in monitoring progression and treatment of 
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pancreatic cancer due to the low specificity and sensitivity. The combined sensitivity 
and specificity were 78.2% and 82.8% respectively. The relatively low specificity and 
sensitivity, and low positive predictive value in asymptomatic patients, would indicate 
that CA19-9, would be a poor biomarker if applied as a screening test, causing 
unnecessary and wasteful workups for patients[66]. Another biomarker that has been 
explored is carcinoembryonic antigen (CEA), which exhibits an even poorer sensitivity 
and specificity for classifying pancreatic cancer than the CA19-9[65].

Some methods using more targeted screening have been suggested such as using 
multiple biomarkers together or screening only high-risk populations, but those have 
yet to be universally defined. A screening model was suggested to separate high risk 
populations into those with inherited pancreatic cancer and those who are at high risk 
for non-inherited. Even between those two categories non-inherited high-risk could 
only narrowed to individuals with new onset diabetes[66]. Using this as an example 
would still provide for a very large screening population with low sensitivity and 
specificity if only using CA19-9[67]. Other biomarkers have been identified that are 
present in early pancreatic adenocarcinoma but none of them alone have produced 
high enough quality data to prove even non-inferiority vs no screening, let alone 
CA19-9[66,68].

A study utilized neural network for multiple tumor marker analysis (CA19-9, CEA, 
and CA125) for pancreatic cancer diagnosis in 913 serum specimens. AUCs of neural 
network derived model was superior to logistic regression model with AUCs of 0.905 
and 0.812, respectively. The diagnostic performance of single marker is lower than the 
AI model with AUCs of CA19-9, CA125, and CEA of 0.845, 0.795, and 0.800, 
respectively[69].

Kurita et al[70] used AI to differentiate between malignant and cystic lesions of the 
pancreas using a dataset consisting of biomarkers, sex, characteristics of cystic lesion, 
and cytology. It is worth noting that the authors clearly stated that the deep learning 
was used, but it is technically a neural network with two hidden layers; each layer 
contains nine nodes. In terms of discriminating performance of classifiers, their AI 
approach with an AUC of 0.966 well outperformed CEA (AUC = 0.719) and cytology 
(AUC = 0.739). Although this study is limited by its low sample size and retrospective 
nature, it showed that a predictive model based on a combination of biomarkers and 
other factors could achieve a higher performance in classifying the malignancy status 
of pancreatic cyst fluid in comparison to the use of single biomarker.

Novel biomarkers
In the past, conventional markers like CEA, CA72-4, CA125, and CA19-9, have been 
used to identify, differentiate, and monitor pancreatic cyst fluid. CA19-9 and CA125 
can be used to assess for if a cyst has mucinous characteristics, while CEA can help to 
differentiate a malignant cyst from benign cyst[65,70]. Advances in genomic sequencing 
and identification have introduced the ability to isolate microRNA (miRNA) sequences 
in pancreatic cyst fluid and serum as potential biomarkers for pancreatic 
adenocarcinoma.

It was first suggested in 2010, that miRNA could be used as a marker for pancreatic 
adenocarcinoma. miRNA-21 and miRNA-155 in pancreatic juice were present in 
statistically significantly higher levels in pancreatic adenocarcinoma as compared to 
benign pancreatic cysts[71]. miRNA are exosome sequences that, in the setting of 
pancreatic adenocarcinoma, encode for proteins that are oncogenic or have tumor 
suppressor function. Several specific miRNAs have been identified to have a higher 
expression in pancreatic ductal adenocarcinoma, including miRNA-21 and miRNA-
155[68]. These miRNAs are detected in the pancreatic juice. miRNAs are mostly 
expressed in pancreatic cyst fluid, but Yoshizawa et al[72] have gone on to examine 
miRNA in the urine. Looking the ratio of miR-3940-5p/miR-8069 in the urine of 
patients with pancreatic ductal adenocarcinoma, they found that an elevated ratio with 
an elevated CA19-9 better predicts pancreatic ductal adenocarcinoma than CA19-9 
alone. These studies all examine the viability of miRNA in various types of fluid to 
detect disease states of the pancreas, none though utilize AI to determine which 
miRNA may produce the highest yield results. A limitation is that they represent small 
sample sizes with limited application at a population level.

Several studies have identified several miRNAs that potentially represent 
significant value in determining malignancy of pancreatic cystic lesion or identifying 
pancreatic adenocarcinoma at an early stage by AI, but each study has decided which 
miRNAs to utilize based on identifying and isolating very few sequences. Alizadeh 
et al[73], combined several AI and data mining techniques to best determine the miRNA 
sequences that have the greatest diagnostic and prognostic capabilities. Particle Swarm 
Optimization (PSO) and neural network, two forms of AI deep learning, identified a 



Laoveeravat et al. AI and pancreatic cancer

AIG https://www.wjgnet.com 64 April 28, 2021 Volume 2 Issue 2

set of five miRNAs: miR-663, miR-1469, miR-92a-2-5p, miR-125b-1-3p, and miR-532-
5p. These were identified from 671 serum samples of patients with pancreatic ductal 
adenocarcinoma and healthy controls. This model had the greatest AUC score in 
differentiating pancreatic adenocarcinoma from controls with a sensitivity of 0.93, 
specificity of 0.92, and accuracy of 0.93.

Cao et al[74] employed machine learning to identify two panels of plasma miRNA to 
distinguish between chronic pancreatitis and pancreatic neoplasm from 361 plasma 
samples in China. Panel 1 consisted of miR-486-5p, miR-126-3p, and miR-106b-3p, and 
had an AUC of 0.891. Panel 2 consisted of miR-486-5p, miR-126-3p, miR-106b-3p, miR-
938, miR26b-3p, and miR-1285, and had an AUC of 0.889. Both panels had a higher 
AUC than CA 19-9, which was 0.775.

The most robust path to create a new screening test for pancreatic adenocarcinoma 
must contain a combination of biomarkers and patient data to maximize both the 
sensitivity and sensitivity of the test[68,70,71,74]. AI creates the potential to assess patient 
characteristics, miRNA, and classical biomarkers, which allows for a comprehensive 
screening analysis of a patient. With the use of neural network and PSO, AI thinks, 
acts, and analyzes data at much faster speed and in more depth pattern recognition 
that forms the perfect environment for the development of high yield screening tests 
that have previously evaded us in diagnosing and screening for pancreatic cancer. 
Pancreatic juice for multiple exosomes of miRNA that are known to be associated with 
increased risk for pancreatic cancer, like oncogenes and tumor suppressor mutations, 
provides the opportunity to examine multiple pancreatic adenocarcinoma biomarkers 
with one test.

FUTURE PROSPECT
Pancreatic cancer is notorious for late detection. The studies on this area have been 
conducted mainly to identify the best approach for early detection by imaging studies 
and biomarkers. The advancement of EUS and the application of AI technology 
showed a promising performance. The modes of EUS: B-mode and elastography do 
not provide different accuracy and predictive value for pancreatic cancer. However, no 
data is available for EUS with contrast enhancement. B-mode which is generally used 
among centers can be the first step of AI implication. Ultimately, the data of imaging 
studies, biomarkers, and clinical parameters will be combined to build the 
sophisticated algorithm and implemented in the electronic medical records where 
clinicians use it as the predictive tool. There are a few limitations of AI application for 
EUS. First, the collection of EUS images as the big data is difficult. The collaboration of 
gastroenterologists, radiologists, and hospital administration will help facilitate the 
retrieval of images into the system. Multicenter participation is required to create the 
large dataset of EUS images of which it will optimize the efficiency of AI. The platform 
of dataset in one institution can be the good example that other centers can adopt and 
join the group. Second, the root of clinical decision based on AI results is possibly 
affected by the black box issue (inability to identify the ground of decision). Although 
there are ways that enable AI to be more interpretable, it is still an active area of 
research in computer science. Third, the diagnosis is most often made by examination 
of static images after EUS procedure. Further research on real-time implication of 
pancreatic malignant lesion diagnosis by AI method is warranted to aid clinician at the 
examination time to avoid unnecessary biopsy. Regarding biomarkers, although still a 
mainstay of current practice, the use of singular biomarkers like CA19-9, CEA, and 
CA-125, may soon become a thing of the past for pancreatic cancer detection. Recent 
studies showed that moving toward AI aided multiple fluid and serum analysis for 
biomarkers, like miRNA, potentially provide more sensitive and specific detection. AI 
not only provides a pathway for the computational, multilayered analysis of multiple 
patient variables and biomarkers, but also can provide indications for which of those 
EUS and biomarkers will be highest yield. Combining the knowledge in the field of 
and the capability of AI introduces a new world of exploration into both screening and 
diagnosis of pancreatic cancer. AI capabilities allow research to be more finely tuned 
and the implementation of the most effective method for research into developing 
screening and diagnostics for pancreatic adenocarcinoma and malignant pancreatic 
cysts.
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CONCLUSION
AI applications for pancreatic cancer has are emerging. New studies come out and 
showed the promising results of AI in radiological imaging and biomarkers for 
pancreatic cancer detection. There are still some limitations which need to be 
addressed in the future studies before incorporating this technology in the clinical 
practice. The accuracy of AI aided EUS for pancreatic cancer diagnosis is high. 
However, it has been derived from the small training dataset. The generalizability 
needs to be considered before using it. Larger studies with population of various 
pancreatic diseases and third-party validation will demonstrate a greater confidence 
for adopting AI. For novel biomarkers, our review demonstrated that AI guided 
analysis of combination of candidate miRNAs have high predictive performance 
compared to standard tumor markers. The availability of miRNA testing is not 
widespread in every medical facility. To adopt this implication, further studies on the 
diagnostic performance are warranted to strongly support the evidence of utility.
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