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Abstract
Accurate and rapid diagnosis is essential for correct treatment in rectal cancer. 
Determining the optimal treatment plan for a patient with rectal cancer is a 
complex process, and the oncological results and toxicity are not the same in 
every patient with the same treatment at the same stage. In recent years, the 
increasing interest in artificial intelligence in all fields of science has also led to the 
development of innovative tools in oncology. Artificial intelligence studies have 
increased in many steps from diagnosis to follow-up in rectal cancer. It is thought 
that artificial intelligence will provide convenience in many ways from 
personalized treatment to reducing the workload of the physician. Prediction 
algorithms can be standardized by sharing data between centers, diversifying 
data, and creating big data.

Key Words: Rectal cancer; Artificial intelligence; Deep learning; Machine learning
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Core Tip: There is a growing interest in the application of artificial intelligence in 
healthcare to improve disease diagnosis, management, and the development of 
effective treatments. Considering the large number of patients diagnosed with rectum 
cancer and a significant amount of data, artificial intelligence is an important tool to 
improve diagnosis and treatment, follow-up in rectal cancer, develop personalized 
medicine, improve the quality of life of patients, and reduce unnecessary health 
expenses.
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INTRODUCTION
Artificial intelligence (AI) is the computer science that tries to imitate human-like 
intelligence in machines by using computer software and algorithms to perform 
certain tasks without direct human stimuli[1,2]. Machine learning (ML) is a subset of AI 
that uses data-driven algorithms that learn to imitate human behavior based on the 
previous example or experience[3]. Deep learning (DL) is an ML technique that uses 
deep neural networks to create a model. Increasing computing power and reducing 
financial barriers led to the emergence of the DL field[4].

AI has entered our lives as support in every field. In medicine, it helps clinical 
processes and management of medical data and information. AI applications assist 
physicians in diagnosis, research, treatment, and prognosis evaluation of the disease[5]. 
Cancer is the most common cause of death in developed countries, and it is estimated 
that the number of cases will increase even more in aging populations[6,7]. Therefore, 
cancer research will continue to be the top priority for saving lives in the next decade.

In oncology, there are typical clinical questions such as ‘Which patients have the 
highest risk of toxicity?’ and ‘What is the probability of local control and survival in 
this patient?’. Although clinical studies exist as the gold standard for answers to these 
questions, clinical studies are costly, slow, and limited to reachable patients. By using 
the available data, future clinical studies can be better planned, and new findings can 
be obtained. Evidence-based medicine is based on randomized controlled trials 
designed with a large patient population. However, the number of clinical and 
biological parameters that need to be investigated to obtain precise results is 
increasing day by day[8].

New and separate approaches are required for all patient subpopulations. Clinicians 
should use all diagnostic tools (radiological imaging, metabolic imaging, blood and 
genetic testing, etc.) to decide on the appropriate combination of therapy 
(radiotherapy, chemotherapy, targeted therapy, and immunotherapy). In oncology , 
AI, a new methodology that provides information using the large data available, has 
begun to be used to support clinical decisions[9]. It is important to combine a large and 
heterogeneous amount of data and create accurate models. Today, AI in oncology has 
entered our lives in early detection, diagnosis, treatment, and patient follow-up.

Although AI can take place in every step from patient consultation to patient 
follow-up in rectal cancer and can contribute to the clinician and the society, there are 
still many challenges and problems to be solved. Big data sets should be created for AI 
first, and these data sets should be improved. The development of prediction tools 
with a wide variety of variables and models limits the comparability of existing 
studies and the use of standards. Prediction algorithms can be standardized by sharing 
data between centers, diversifying data, and creating big data. In addition, the models 
can be made clinically applicable by updating the models by entering new data into 
the models. Today, the accuracy and quality of the data is also of great importance, as 
no AI algorithm can fix the problems in training data.

Colorectal cancer is the fourth most common type of cancer worldwide, with 
approximately 800000 new cases diagnosed each year and accounting for 
approximately 10% of all cancers[10]. Determining the optimal treatment plan for a 
patient with rectal cancer is a complex process. In addition to decisions regarding the 
purpose of rectal cancer surgery, the possible functional consequences of treatment, 
including the possibility of preserving normal bowel function and genitourinary 
function, should be considered. Achieving treatment goals and minimal impact on the 
quality of life can be challenging at the same time, especially for patients with distal 
rectal cancer. Careful patient selection in terms of specific treatment options and the 
use of sequential multimodality therapy combining chemoradiotherapy (CRT), 
chemotherapy (ChT), and surgical treatment are recommended for most patients[11].

In this review, the role of AI in the diagnosis, treatment, and follow-up of rectal 
cancer is discussed.

https://www.wjgnet.com/2644-3236/full/v2/i2/10.htm
https://dx.doi.org/10.35712/aig.v2.i2.10
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AI IN DIAGNOSIS OF RECTAL CANCER
AI in the detection of lymph node metastasis
Rectal cancers constitute the majority of gastrointestinal tumors. Among the metastatic 
spreading routes of rectal cancer, lymph node (LN) metastasis is the most important 
due to its high risk of local recurrence, which leads to poor prognosis[12]. LN metastasis 
is an important factor in treatment selection and in predicting prognosis. Preoperative 
evaluation of metastatic LNs is critical in determining the optimal treatment strategies 
of rectal cancer cases. Magnetic resonance (MR) imaging is widely used in clinical 
practice for the diagnosis of metastatic LNs in rectal cancer. MR is considered superior 
to computed tomography (CT) for better separation of soft tissue. Radiologists often 
evaluate their shape, boundaries, and signal intensities to identify metastatic LN[13]. 
However, correct evaluation in a short time is a great challenge, especially when 
considering clinics with a high number of cases. Also, when the same MR image is 
evaluated by different radiologists, very different results can be obtained, which 
weakens the sensitivity of LN staging[14-17]. As a result, it is often difficult to accurately 
determine the presence of LN metastasis. In recent years, the development of DL 
technology has greatly improved image recognition capability, making it possible to 
identify specific target areas within an image and allow images to be classified 
according to specified target features[18].

According to some studies, although the AI system is more successful than senior 
physicians in the diagnosis of solid tumors, such as lung, breast, prostate, and thyroid 
cancer, few studies have yet been reported on the determination of metastatic LN[19-25]. 
In the literature, there are studies in which LN metastases have been detected with AI 
in some cancers such as lung, oral cavity, breast, stomach, and thyroid cancer[26-30].

In the study conducted by Ding et al[18] enrolling 414 cases diagnosed with rectal 
cancer by collecting data from six centers, MR images of the cases were evaluated. 
Faster region-based convolutional neural network (Faster R-CNN), a new AI 
algorithm, was evaluated in the study. Patients who underwent surgery with a 
diagnosis of rectal cancer, whose patient data could be accessed, who did not receive 
preoperative RT or ChT, and who had MR images at the stage of diagnosis, were 
included in the study. Radiologist-based diagnosis and pathologist-based diagnosis 
were compared with the Faster R-CNN system. The number of metastatic LNs 
diagnosed between two of the three groups was evaluated using the pair-wise 
correlation analysis. A statistically significant correlation was found in the comparison 
of both groups [radiologist - Faster R-CNN (P < 0.001), pathologist - radiologist (P = 
0.011), and pathologist - Faster R-CNN (P < 0.001). In Faster R-CNN, radiologist, and 
pathologist LN staging, consistency control was performed between groups, and the 
highest consistency was found among the Faster R-CNN - radiologist diagnosis (P = 
0.018). Among the Faster R-CNN - pathologist diagnosis, the P value was 0.039. 
Among the radiologist - pathologist diagnosis, the P value was 0.043[18].

In another study by Ding et al[13], Faster R-CNN was evaluated for metastatic LN 
prediction, and it aimed to create mathematical nomograms for preoperative 
metastatic LN prediction. In the prediction of metastatic LN with Faster R-CNN, the 
MR images of 545 rectal cancer cases who did not receive preoperative RT or ChT were 
divided into training and validation groups at the rate of 2:1. While creating the 
nomogram, 183 cases were used as an outcome variable for the presence of LN 
metastasis, and 153 cases were used as validation for the level of LN metastasis (N1 or 
N2). Variables were age, gender, preoperatively differentiate grade, metastatic LN 
obtained by MR, metastatic LN obtained by postoperative pathology, carcinoembr-
yonic antigen (CEA), carbohydrate antigen 19-9. Important variables in predicting 
metastatic LN positivity with Faster R-CNN in univariate analysis were tumor 
differentiation grade and CEA level (P < 0.05) and age and tumor differentiation 
gradient in multivariate analysis (P < 0.001). Variables determined as important 
variables in multivariate analysis in MR-based and Faster R-CNN-based metastatic LN 
prediction were used in nomogram formation; in the MR-based nomogram and the 
Faster R-CNN-based nomogram, area under curve (AUC) and 95% confidence interval 
(CI) were found to be 0.856 (0.808-0.905) and 0.862 (0.816-0.909), respectively. 
According to this study, the Faster R-CNN nomogram appears to be suitable and 
reliable for predicting the presence of metastatic lymph nodes preoperatively[13].

Lu et al[31] evaluated 28080 MR images of 351 rectal cancer cases with Faster R-CNN 
in their study. Radiologist diagnosis and Faster R-CNN diagnosis were compared 
using receiver operating characteristic curves (ROC), and the Faster R-CNN ROC was 
found to be 0.912. It was accepted as a more effective and more objective method. 
According to the study, the diagnosis was made in 20 s per case with Faster R-CNN, 
while radiologists made the diagnosis in 600 s per case[31].
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The diagnosis of metastatic LN in rectal cancer is very important for treatment 
decisions and prognosis. The diagnosis of metastatic LN by MR is largely based on the 
subjective interpretation of the radiologist. Therefore, it lacks objectivity and 
reproducibility, although it has a variable diagnostic accuracy. Therefore, using AI 
systems in the diagnosis phase can contribute to the ability of radiologists to diagnose 
metastatic LN correctly and in a shorter time and to make a more accurate treatment 
decision with more accurate tumor, node, metastasis (TNM) staging.

AI in the detection of t stage and tumor differentiation
Choosing the most appropriate treatment is important in rectal cancer. A correct 
preoperative stage is important for the surgical and neoadjuvant CRT decision. 
Generally, pathological type, tumor differentiation, infiltration depth, and presence of 
lymph node metastasis determine the prognosis of the tumor. Therefore, 
understanding the pathological features of the tumor is very important for the clinical 
treatment decision[32]. Radiomic analysis is a tool developed to assess tumor 
heterogeneity. Radiomics is a noninvasive method that includes high-quality image 
acquisition, high-throughput quantitative feature extraction, high-dimensional feature 
extraction, and diagnostic, prognostic, or predictive model generation. Radiomic 
models using medical images and clinical data have potential in making clinical 
decision[33]. The MRI-based radiomic model has been used to differentiate cancer from 
benign tissue and reflect the histological features of rectal cancer[34].

In the study conducted by Ma et al[35] with 152 rectal cancer cases, it aimed to predict 
the pathological characteristics of the tumor from the MR-based radiomic model. 
Tumor delineation was performed using 3T MR and high resolution T2-weighted 
images, and 1029 radiomic features were extracted. Multilayer perceptron, logistic 
regression (LR), support vector machine (SVM), decision tree (DT), random forest, and 
K-nearest neighbor (KNN) have been trained and used five-fold cross-validation to 
create prediction models. The best performance of the radiomics model for the degree 
of differentiation, T stage, and N stage was obtained by SVM (AUC, 0.862; 95%CI: 
0.750–0.967; sensitivity, 83.3%; specificity, 85.0%), multilayer perceptron (AUC, 0.809; 
95%CI: 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%), and random forest (AUC, 
0.746; 95%CI: 0.622-0.872; sensitivity, 79.3%; specificity, 72.2%). This study 
demonstrated that the high-resolution T2-weighted images–based radiomics model 
could serve as pretreatment biomarkers in predicting pathological features of rectal 
cancer[35].

AI in detection of distant metastasis
Although advances in treatment strategies and multidisciplinary treatment modalities 
have reduced local recurrences, distant metastasis continues to be the main cause of 
treatment failure in patients with rectal cancer[6]. The most common metastasis site is 
the liver, and liver metastasis develops in 26.5% of cases within 5 years from 
diagnosis[36]. At the stage of diagnosis, there is no liver metastasis in staging, but 
metachronous liver metastasis (MLM) that develops after initial staging and treatment 
is thought to be caused by occult metastases and micrometastases[37,38].

The main treatment strategy for early detected MLM is surgical resection, providing 
better prognosis and survival as well as a chance for cure compared to other 
treatments. However, a significant portion of patients with MLM may have lost their 
surgical chances by the time it is detected[39]. Although studies are reporting that some 
variables increase the risk of MLM, there is still no definite marker that can be used to 
predict the cases that will develop MLM[40]. Radiomics, which have come to the 
forefront recently, are obtained by using automated high-throughput extraction of 
many quantitative properties, offering the chance to capture intratumoral 
heterogeneity in a noninvasive manner[41].

Liang et al[42] predicted MLM by using MR radiomics with ML in a total of 108 rectal 
cancer cases with 54 MLM and 54 nonmetastatic patients. Radiomics were obtained 
from venous phase and T2-weighted MR images, and 2058 radiomic properties were 
evaluated by two separate ML techniques (SVM; LR). After determining the optimal 
radiomic properties, four groups of models were created: A model containing five 
radiomic features from T2 weighted MR images (ModelT2), a model containing eight 
radiomic features from venous phase images (ModelVP), a model containing the sum of 
these radiomics, i.e. 13 radiomics (Modelcombined), and a model containing 22 optimal 
radiomics (Modeloptimal). Modeloptimal was determined as the best prediction model with 
the LR algorithm, and its accuracy, sensitivity, specificity, and AUC were 0.80, 0.83, 
0.76, and 0.87, respectively[42].
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Peritoneal carcinomatosis (PC) has a poor prognosis and is considered a terminal 
stage. PC is present at diagnosis in 5%-10% of the cases diagnosed with colorectal 
cancer and in 25%-44% of recurrent disease. While a median survival of 33 mo can be 
achieved with cytoreductive surgery and hyperthermic intraperitoneal ChT, it is < 10 
mo if incomplete cytoreductive surgery and diffuse PC are present[43]. Survival rates 
can also be high with minimally invasive surgery if PC can be detected early. To 
predict synchronous PC cases, Yuan et al[44] evaluated 19814 tomography images 
obtained from 54 PC and 76 non-PC cases in training, and 7837 images obtained from 
40 cases as the test group. Using the ResNet-three dimensional (3D) algorithm + SVM 
algorithm, an accuracy rate of 94.1% was obtained, AUC: 0.92 (0.91-0.94), sensitivity 
93.7%, specificity 94.4%, positive predictive value 93.7%, and the negative predictive 
value was found to be 94.4%. The performance of the algorithm was determined to be 
better than routine contrast-enhanced CT (AUC: 0.791 vs AUC: 0.92)[44].

Distant metastasis detection can be made more accurately in the earlier period by 
supporting the physician with the prediction models having high accuracy and this 
can reduce the cost of treatment while increasing survival rates.

AI IN RECTAL CANCER TREATMENT AND RESPONSE TO TREATMENT
Contouring in radiotherapy
Contouring is an important step that is routinely performed in RT to determine the 
treatment target and organs at risk (OAR). In a typical clinical workflow, the radiation 
oncologist needs to contour this target volume and OAR on the simulation images. 
Contouring is generally performed on CT and less commonly on MR images in clinics 
where MR guided RT is applied. This contouring process can take hours per patient[45]. 
AI can be used both to minimize the differences between physicians and to shorten the 
duration of this step in RT planning.

Target volume contouring: MR plays an important role in the diagnosis and treatment 
of rectal cancer[46]. It guides the physician in identifying the primary tumor, especially 
in RT planning. Also, MR-based planning increases local control and complete 
response rates, with the potential to facilitate individualized treatment plans for dose 
escalation[47,48]. Also, defining and contouring gross tumor volume (GTV) is time-
consuming, and differences in target volume contouring among physicians may cause 
variability in treatment and different oncological results[49]. Although the application of 
Atlas-based automatic segmentation algorithms can reduce the identification time, 
these methods have low performance in rectal cancer[50]. The main advantage of DL 
methods is that they automatically create the most suitable model from the training 
data sets. In recent years, DL methods have also started to be used in RT steps. Tumor 
contouring with CNNs has been extensively studied in lung and head and neck 
cancers and a reduction in contouring time per patient of up to 10 min was observed 
compared to the contouring time of the physician[51-53].

In rectum cancer, contouring of GTV and clinical target volume (CTV) were 
performed using MR and CT images. Wang et al[54] created a DL-based autosegment-
ation algorithm for GTV delineation using MR (3 Tesla, T2-weighted) images of 93 
locally advanced rectal cancer cases. The model was trained in two phases that are 
tumor recognition and tumor segmentation. Data is divided into 90% training and 10% 
validation groups for 10-fold cross-validation. Hausdorff distance (HD), average 
surface distance (ASD), Dice index (DSC), and Jaccard index (JSC) were used to 
compare and evaluate automatic and manual contouring. For the validation data set, 
DSC, JSC, HD and ASD (mean ± SD) were 0.74 ± 0.14, 0.60 ± 0.16, 20.44 ± 13.35, and 
3.25 ± 1.69 mm, respectively. In the manual contouring of two radiation oncologists, 
DSC, JSC, HD and ASD (mean ± SD) were 0.71 ± 0.13, 0.57 ± 0.15, 14.91 ± 7.62, and 2.67 
± 1.46 mm, respectively. There was no statistically significant difference between the 
DL-based autosegmentation and manual contouring in terms of DSC (P = 0.42), JSC (P 
= 0.35), HD (P = 0.079), and ASD (P = 0.16) values. Before postprocess (erosion and 
dilation), that is, correction of contours and removing small isolated points, a 
statistically significant difference (P = 0.0027) was found only in HD. According to this 
study, results close to manual contouring can be obtained with DL-based algorithms 
using T2-weighted MR images[54].

In another study by Trebeschi et al[55], tumor contouring was performed using 
multiparametric MR images. The study included 140 locally advanced rectal cancer 
cases, and each case was contoured by two experienced radiologists. In this study, the 
CNN algorithm was used to function as a voxel classifier. CNN was trained using the 
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voxel values of the region with and without tumor in MR. In the independent 
validation data set, the DSC value was determined as 0.68 and 0.70 according to CNN 
and both radiologists. The AUC value for both radiologists was found to be 0.99. This 
study showed that DL can perform the correct localization and segmentation of rectal 
cancer in MRI in most patients[55].

Song et al[56] evaluated CTV contouring with CNN in 199 rectal cancer cases. For 
training, validation, and testing, 98 cases, 38 cases, and 63 cases were used, 
respectively. While volumetric DCS showed the volumetric overlap between 
automatic segmentation and manual contouring, surface DCS showed the overlap 
between automatic segmentation and manual contouring surfaces. Two CNN 
techniques were used in the present study that were DeepLabv3 + and ResUNet, and 
the volumetric DSC and surface DCS of CTV were 0.88 vs 0.87 (P = 0.0005) and 0.79 vs 
0.78 (P = 0.008), respectively. According to this study, high quality and shorter CTV 
contouring can be performed with CNNs[56]. Target volume contouring studies with AI 
in rectum cancer are summarized in Table 1.

Contouring of OAR: In radiotherapy, it is necessary to make the contouring of OAR 
correctly to protect them and to evaluate the toxicity correctly. To fully benefit from 
the advantages of technological developments in RT planning and devices, OAR must 
be defined correctly. This step can become a rate limiting step in clinics with a high 
number of patients. Also, there may be differences among the practitioners, and due to 
significant anatomical changes (edema, tumor response, weight loss, etc.) during the 
treatment, it may be necessary to make a new plan with new contouring during the 
treatment. AI, particularly CNN, is a potential tool to reduce the physician’s workload 
and set a standard in contouring. In recent years, DL methods have been widely used 
in medical applications, and CNN has been used in contouring OAR in head-neck, 
lung, and prostate cancer[57-59]. There are also studies on this subject in rectal cancer.

OAR contouring was also evaluated in the study performed by Song et al[56] for CTV 
contouring. As OAR, small intestine, bladder, and femoral heads were contoured. 
With ResUNet, both volumetric and surface DSC values in femoral head contouring 
and surface DSC values in bladder contouring were found to be statistically more 
significant, and contouring performance was better. Higher volumetric and surface 
DSC were obtained with DeepLabv3 + for the small intestine[56].

Men et al[60] conducted a segmentation study using deep dilated CNN based DL 
technique in both CTV and OAR (bladder, femoral heads, small intestine, and colon). 
CT images of 278 rectal cancer cases were included in the study. Images of 218 
randomly selected cases were used for training, and images of the remaining 60 cases 
were used for validation. In this study, DSC was also evaluated and for CTV, bladder, 
left femoral head, right femoral head, small intestine, and colon as 87.7%, 93.4%, 
92.1%, 92.3%, 65.3%, and 61.8%. CTV and OAR contouring time per case was found to 
be 45 s on average[60].

In another study conducted by Men et al[61], the effect of the patient’s position on 
segmentation accuracy was investigated with CNN. The study included 50 supine and 
50 prone cases with planning CT, and three different models were trained: Patients in 
the same position, patients in different positions, and patients in both positions. 
Performance evaluation regarding segmentation was performed using DSC and HD 
for CTV, bladder, and femurs. While the model trained in different positions 
compared to the model trained in the same position was statistically significantly 
better for CTV and bladder (P < 0.05), it was found to be P > 0.05 in femur 
segmentation. DSC values were 0.84 vs 0.74, 0.88 vs 0.85, and 0.91 vs 0.91 for CTV, 
bladder, and femurs, respectively. The accuracy rates for the model trained in both 
positions were similar (P > 0.05). The DSC was 0.84, 0.88, and 0.91 for CTV, bladder, 
and femur, respectively. According to this study, while the patient position is 
important for CTV and bladder in segmentation with the CNN model, it was not 
found to be an important factor for the femur[61]. Studies are summarized in Table 1.

In RT, while providing effective treatment for the tumor, protection of OAR is very 
important in terms of acute and late side effects. For this, it is an important step to 
define the tumor volume and OAR correctly and accurately. However, this step 
requires intensive labor and time and can be rate-limiting. Creating models with DL 
and using them in clinical practice will ensure standardization among physicians in 
contouring and accelerate this step.

Radiotherapy planning
Treatment planning is an important step in the RT workflow. Treatment planning has 
become more sophisticated over the past few decades with the help of computer 
science, allowing for the minimization of normal tissue damage while providing 
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Table 1 Target volume and organs at risk contouring with artificial intelligence

Ref.
Number 
of 
patients

Imaging method Contouring
Artificial 
intelligence 
method

Results

Wang 
et al[54], 
2018

93 MR (3 Tesla, T2 -
weighted)

GTV, CTV CNN Between deep learning-based autosegmentation and manual 
contouring DSC (P = 0.42), JSC (P = 0.35), HD (P = 0.079), and ASD (P 
= 0.16); Before postprocess process only in HD (P = 0.0027).

Trebeschi 
et al[55], 
2017

140 Multiparametric 
MRI (1.5 Tesla, T2- 
weighted)

GTV CNN According to CNN and both radiologists in independent validation 
data set DSC: 0.68 and 0.70; For both radiologists AUC: 0.99.

Song 
et al[56], 
2020

199 CT (3 mm section 
thickness)

CTV and 
OAR

CNNs 
(DeepLabv3+ 
and ResUNet)

CTV segmentation better with DeepLabv3+ than ResUNet (volumetric 
DSC, 0.88 vs 0.87, P = 0.0005; surface DSC, 0.79 vs 0.78, P = 0.008); 
DeepLabv3+ model segmentation was better in the small intestine, 
with the ResUNet model, bladder and femoral heads segmentation 
results were better. In both models, the OAR manual correction time 
was 4 min.

Men 
et al[60], 
2017

278 CT (5 mm section 
thickness)

CTV and 
OAR

CNN (DDCNN) DSC values; CTV: 87.7%, bladder: 93.4%, left femoral head: 92.1%, 
right femoral head: 92.3%, small intestine: 65.3%, colon 61.8%.

Men 
et al[61], 
2018

100 CT (3 mm section 
thickness)

CTV and 
OAR

CNN CTV and bladder contouring were better in the model trained in the 
same position than the model trained in a different position (P < 0.05). 
No statistically significant difference between femoral heads (P > 0.05). 
No statistical difference between accuracy rates in CTV, bladder, and 
femoral heads segmentation in the model trained in both positions (P > 
0.05).

AUC: Area under the curve; ASD: Average surface distance; CNN: Convolutional neural network; CT: Computed tomography; CTV: Clinical target 
volume; DDCNN: Deep dilated convolutional neural network; DSC: Dice similarity coefficient; GTV: Gross tumor volume; HD: Hausdorff distance; JSC: 
Jaccard index; MRI: Magnetic resonance imaging; OAR: Organs at risk.

adequate tumor dose. As a result, treatment planning has become more labor-intensive 
and takes hours and sometimes even days for planners. In RT planning, many 
algorithms have been developed to support planners, and these algorithms focus on 
automating the planning process and/or optimizing dosimetric changes. These 
algorithms have contributed to the improvement of treatment planning efficiency and 
quality[62]. Planning workflow starts with determining dosimetric requirements 
regarding target volume and OARs and makes decisions about basic planning 
parameters, including beam energy, number, and angles, etc., based on the needs of 
each case. While creating a minimally acceptable plan can be quick, improving a plan 
is much more difficult. Also, the plan may need to be improved according to the mid-
plan result evaluation of the physicians, which causes increased effort and time. 
Automatic treatment planning systems, from simple automation to AI, are gradually 
taking their place in planning systems.

The knowledge-based planning system helps to use the previous planning 
information in the database with ML methods in obtaining the best dose distribution 
for target volume and OAR. Knowledge-based treatment planning algorithms use 
geometric and dosimetric information to estimate doses for new patients using the 
information found in training data. The dose volume histogram prediction model was 
created by using a knowledge-based treatment planning system, using 80 plans in 
training, and evaluating 70 plans in the test with simultaneous integrated boost and 
VMAT techniques. Using this model, the multileaf collimator sequences of 70 clinically 
validated plans were re-optimized. While doing this, parameters such as field 
geometry and photon energy were not changed. Dosimetric results were evaluated by 
comparing dose volume histogram data as homogeneity index, conformal index, hot 
spots (volumes taking more than 107% of the prescribed dose), mean dose, femoral 
heads, and bladder mean (Dmeanmesane, Dmeanfemoralhead) and 50% of the dose 
(D50%bladder, D50%femoral head). Similar conformal index was obtained when comparing the 
original plan (1.00 ± 0.05 for planning target volume (PTV)boost and 1.03 ± 0.02 for PTV) 
and the knowledge-based plan (0.99 ± 0.04 for PTVboost and 1.03 ± 0.02 for PTV). Better 
homogeneity index values were obtained in the knowledge-based plan (0.05 ± 0.01 for 
PTVboost and 0.26 ± 0.01 for PTV) compared to the original plan (0.06 ± 0.01 for 
PTVboost and 0.26 ± 0.01 for PTV) (P < 0.05). It has been shown that V107% values in 
the original plan were higher than the knowledge-based plan. The knowledge-based 
plan achieved a statistically significant decrease in D50%femoral head, Dmeanfemoralhead, D50% 
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bladder, and Dmeanmesane values. According to this study, the knowledge-based planning 
system provided a statistically significant advantage in some dosimetric data 
compared to the original plans[63].

Zhou et al[64] aimed to develop a DL model for intensity-modulated RT, which 
provides an estimation of 3D voxel-wise dose distribution. Of the 122 post-op 
intensity-modulated RT treated cases, the plans of 100 cases were used for training-
validation, and the plans of 22 cases were used for testing. To estimate 3D dose 
distributions, a 3D-DL model named U-Res-Net_B was created[60]. No statistically 
significant difference was found between the original plans and the DL model named 
U-Res-Net_B in terms of dosimetric parameters (homogeneity index, conformal index, 
V50, and V45 for PTV and OARs). The DSC value of the model was higher than 0.9 for 
most isodose volumes, and the ratio of 3D gamma passing ranged from 0.81 to 0.90 for 
PTV and OAR. This study has developed a DL model by considering beam 
configuration input; this model has shown that it has potential in terms of automated 
planning for easier clinical evaluation of more comprehensive cases[64].

Evaluation of chemoradiotherapy response
In locally advanced rectal cancer, neoadjuvant CRT improves local control, disease-
free survival, and sphincter preservation rates[65]. However, tumor regression patterns 
after neoadjuvant CRT vary widely, from the pathological complete response (pCR) to 
disease progression. Although cases with pCR have the best survival and tumor 
control, neoadjuvant CRT can provide pCR in only 10%-30% of cases in locally 
advanced rectal cancer[66]. Some studies have shown that cases with pCR have low 
recurrence rates, and therefore less invasive alternative surgical treatments, such as 
sphincter-sparing local excision or a watch-and-wait approach, may be more 
appropriate[67-70]. Therefore, it is very important to determine the cases that are likely to 
have a complete clinical response before surgery.

MR, which enables the evaluation of the therapeutic response noninvasively, is 
promising in the early prediction of pCR. MR images taken at different times of the 
CRT, including before, during, and after treatment, can be analyzed separately or in 
combination to provide anatomical and functional information. With the advancement 
of MR imaging technology, several different sequences can be included in the MR 
protocol within a reasonable imaging time (< 30 min), and this multiparametric MR 
can provide comprehensive information to facilitate quantitative radiomic analysis for 
prediction of tumor response[71]. Radiomics extracts hundreds of quantitative image 
features and then uses advanced statistical analysis to classify different groups. Nie 
et al[72] predicted patients with pCR after CRT was completed with 80%-90% prediction 
accuracy of pretreatment multiparametric MRI-based radiomic analysis.

Shi et al[71] predicted the treatment response with DL from the radiomics they 
obtained from the MR images taken before treatment and in the middle of treatment 
(3-4 wk after the start of treatment) in CRT cases with a diagnosis of locally advanced 
rectal cancer. Of the 51 cases included in the study, 45 cases pre-treatment, 41 cases 
mid-treatment, and 35 cases both pre-treatment and mid-treatment MR images were 
available, and the MR protocol was specified as T2, diffusion-weighted imaging with 
b-values of 0 and 800 s/mm2 and dynamic contrast-enhanced. In the surgical specimen 
performed after CRT, the response of the case depending on the tumor regression 
grade was determined. Total tumor volume and mean apparent diffusion coefficient 
(ADC) were measured on MRI. Using Haralick’s Gray Level Co-occurrence Matrix 
was used to distinguish cases with and without pCR, cases with and without good 
response by applying radiomics using texture, and histogram parameters and CNN. 
Tumor volume decreased in mid-treatment MRI compared to before, and ADC 
increased. In predicting the cases with and without pCR with their radiomic features, 
AUC values were found to be 0.80, 0.82, and 0.86 when the pre-treatment MR, mid-
treatment MR, and both MR, respectively, were evaluated together. In cases that 
respond well and those that do not, these rates were 0.91, 0.92, and 0.93, respectively. 
When MRIs before and during treatment were evaluated together, AUC was found to 
be 0.83 in DL prediction of cases with and without pCR[71].

A study conducted by Fu et al[73] aimed to obtain and compare handcrafted and DL-
based radiomic features from pre-treatment diffusion-weighted imaging-MR images. 
Forty-three cases that underwent CRT with the diagnosis of locally advanced rectal 
cancer were included in the study. MRI was taken before treatment in all patients, and 
total mesorectal excision was applied 6-12 wk after the CRT. GTV from MR images 
was contoured by an experienced radiation oncologist. Postsurgical cases were 
grouped as responsive (n = 22) and unresponsive (n = 21). Handcrafted and DL-based 
radiomic features were extracted from diffusion-weighted imaging ADC map using 
traditional computer-aided diagnostic methods and pretrained CNN, respectively. The 
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ROC curve (AUC) of the model created with handcrafted radiomic features was 0.64, 
while that of the DL-based model was 0.73. Its statistical significance was found to be 
better (P < 0.05). According to this study, radiomic features obtained from MR images 
and the algorithm created using DL were shown to be better in predicting CRT 
response[73].

In another study by Shayesteh et al[74], 98 cases diagnosed with rectal cancer were 
included in the study, and MRI was performed 1 wk before the CRT. Radiomics such 
as density, shape, and texture features were extracted from MR images. For training 
and validation, 53 and 45 cases, respectively, were used. SVM, Bayesian network, 
neural network, and KNN algorithms were used one by one and together for 
predicting response to CRT. Prediction performance was evaluated by AUC. When the 
algorithms were evaluated separately, the best result was obtained with the Bayesian 
network algorithm, and the AUC and accuracy rate were 0.75 and 80.9%, respectively. 
When the algorithms (SVM, neural network, Bayesian network, KNN) were evaluated 
together, the AUC and accuracy rate were 0.97 and 92.8%, respectively. According to 
this study, the prediction process can be improved when algorithms are used 
together[74].

In another study conducted with 89 cases diagnosed with locally advanced rectal 
cancer, 66 cases were included in the training group and 23 cases were included in the 
test group, and resistance prediction to CRT was evaluated. Radiomics obtained from 
pre-treatment MR, ADC images, and clinical features of the cases were evaluated with 
the Random Forest Classifier (RFC) algorithm. Of 133 radiomic features and nine 
clinical features (entropymean, inverse variance energymean, small area emphasis, ADCmin, 
ADCmean, sd Ga02, small gradient emphasis, age, and size) were determined as ten 
important variables. With the RFC algorithm, cases resistant to CRT were estimated 
with an accuracy rate of 91.3% (88.9% sensitivity and 92.8% specificity, AUC: 0.83)[75]. 
According to this study in predicting the response to CRT, when the radiomic and 
clinical parameters are evaluated together, predictions with high accuracy rates can be 
obtained. If these resistant cases can be predicted, treatment strategies can be changed, 
and oncological outcomes can be improved.

In another study conducted with 55 cases diagnosed with locally advanced rectal 
cancer, radiomics obtained from MRI images taken before, during, and after CRT were 
evaluated by the RFC algorithm for treatment response prediction. Images of 28 cases 
from 55 cases were used in the training, and images of 27 cases were used to evaluate 
the performance of the algorithm. pCR was obtained in 16 cases from all cases, and 
good results were obtained with the RFC algorithm in predicting pCR with AI (AUC: 
0.86, 95%CI: 0.70-0.94). In the prediction of unresponsive cases, AUC was 0.83 (95%CI: 
0.71-0.92) with the RFC algorithm[76].

In the study conducted by Bibault et al[77] with 95 cases diagnosed with T2-4N0-1 
rectal cancer, radiomics (1683 radiomic features per case) obtained from CT images 
before CRT were evaluated together with clinical and treatment data, and the response 
prediction was made with AI. While radiomics were used with deep neural network 
and SVM, prediction models were created using only TNM staging in linear 
regression. pCR was obtained in a total of 23 cases. In prediction with deep neural 
network, SVM, and LR algorithms, the accuracy rates were 80.0%, 71.5%, and 69.5%, 
respectively[77]. In another study, artificial neural network, Naïve Bayes Classifier, 
KNN, SVM, and multiple LR models were evaluated in the response prediction of 270 
locally advanced rectal cancer patients who underwent CRT. The most important 
factors affecting pCR were post CRT CEA level, the time between CRT and surgery, 
ChT regimen, clinical nodal status, and nodal stage. The accuracy rates for artificial 
neural network, KNN, SVM, Naïve Bayes Classifier, and multiple LR were 88%, 80%, 
71%, 80%, and 77%, respectively[78]. Studies evaluating the CRT response with AI in 
rectal cancer are summarized in Table 2.

Shen et al[79] predicted response to CRT in 169 rectal cancer cases using positron 
emission tomography (PET)-CT radiomics. A total of 68 features were excluded from 
the metabolic active tumor site. Estimation was made with the RF algorithm, and the 
ROC algorithm was used to evaluate the performance. After CRT, pCR was obtained 
in 22 (13%) cases, and 42 radiomics features were included in the algorithm. 
Accordingly, the sensitivity, specificity, positive predictive value, negative predictive 
value, and accuracy were 81.8%, 97.3%, 81.8%, 97.3%, and 95.3%, respectively[79].

While the correct classification of cases in which pCR is provided helps to identify 
less invasive therapeutic strategies such as mucosectomy or wait-and-watch, early 
prediction of cases that do not respond to CRT will also allow these cases to be 
directed to more effective treatments.
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Table 2 Studies of chemoradiotherapy response prediction with artificial intelligence

Ref. Number of 
patients

Parameters 
evaluated

Imaging 
method Technique used Results

Shi et al[71], 
2019

51 (90% cases for 
training and the 
remaining 10% 
for testing)

Tumor volume, 
mean ADC, 
radiomic

MRI (Pre-CRT 
and mid-CRT) 
(T2-DWI, DCE)

CNN (1) pCR response prediction: (a) Pre-CRT with MR AUC: 
0.80; (b) Mid-CRT with MR AUC: 0.82; and (c) Pre- and 
mid-CRT MR together AUC: 0.86; and (2) Good response 
to CRT: predicting yes/no: (a) Pre-CRT with MR AUC: 
0.91; (b) Mid-CRT with MR AUC: 0.92; and (c) Pre-- and 
mid-CRT MR together AUC: 0.93.

Fu et al[73], 
2020

43 Radiomic MRI (Pre-CRT, 
DWI)

Handcrafted 
traditional computer-
aided diagnostic 
method vs deep 
learning

Deep learning model with handcrafted model CRT 
response prediction AUC values: 0.64 vs 0.73 (P < 0.05)

Shayesteh 
et al[74], 
2019

98 (53 training 
and 45 validation 
set)

Radiomic MRI (1 wk before 
CRT) (3 Tesla, 
T2W-weighted)

Machine learning 
(SVM, BN, NN, 
KNN)

AUC for the BN algorithm: 74%, accuracy: 79%; When 
four algorithms were used together, AUC: 97.8% and 
accuracy rate 92.8%.

Yang 
et al[75], 
2019

89 (66 training 
and 23 testing)

Radiomic and 
clinical features

MRI (Pre-CRT) (3 
Tesla, T2W, 3 
mm section 
thickness)

RFC Predicting the accuracy of tumor resistance with RFC 
91.3%, AUC: 0.83.

Ferrari 
et al[76], 
2019

55 (28 training, 27 
validation)

Radiomic MR (Pre, Mid, 
Post RT) (3 Tesla, 
T2W, 2 mm 
section thickness)

RFC (1) Prediction of cases with pCR by RFC; AUC: 0.86; and 
(2) Prediction of unresponsive cases with RFC; AUC 0.83.

Bibault 
et al[77], 
2018

95 Radiomic, 
clinical 
variables

CT DNN, SVM, LR CRT response prediction accuracy rates; DNN: 80%; SVM: 
71.5% LR: 69.5%.

Huang 
et al[78], 
2020

270 (236 training, 
34 validation)

Clinical 
variables

- ANN, KNN, SVM, 
NBC, MLR

pCR prediction accuracy rates and AUC values; ANN: 
88%, 0.84 KNN: 80%, 0.74 SVM: 71%, 0.76 NBC: 80%, 0.63 
MLR: 83%, 0.77.

ADC: Apparent diffusion coefficient; ANN: Artificial neural network; AUC: Area under the curve; BN: Bayesian network; CNN: Convolutional neural 
network; CRT: Chemoradiotherapy; CT: Computed tomography; DCE: Dynamic contrast-enhanced; DNN: Deep neural network; DWI: Diffusion-weighted 
imaging; KNN: K-nearest neighbors; LR: Linear regression; MLR: Multiple logistic regression; MRI: Magnetic resonance imaging; NBC: Naïve bayes 
classifier; NN: Neural network; pCR: Pathological complete response; RFC: Random forest classifier; SVM: Support vector machine.

Prediction of KRAS mutation in rectal cancer
Kirsten rat sarcoma (KRAS) mutations, which occur in approximately 30%–40% of 
colorectal cancer, have been indicated as a highly specific negative biomarker for the 
antibody-targeted therapies to the epidermal growth factor receptor[80]. Metastatic 
colorectal cancers with KRAS mutations are resistant to anti-epidermal growth factor 
receptor targeted therapy. Therefore, the KRAS mutation test has been recommended 
by the National Comprehensive Cancer Network guidelines to guide targeted therapy 
for cases diagnosed with metastatic colorectal cancer[81].

Determination of the KRAS mutation is usually made by pathological examination 
of the tumor tissue. However, intratumor heterogeneity or heterogeneity of KRAS 
mutation that can occur between different tumor regions limits histological 
approaches[82]. Moreover, the inability to determine mutation status due to poor DNA 
quality of biopsy samples, difficult to access tissue samples from metastatic colorectal 
cancers, repeated tumor sampling, and relatively high costs also limit the feasibility of 
molecular tests to monitor targeted therapy[83]. Therefore, a relatively simple and 
noninvasive method for KRAS mutations can be helpful for personalized treatment 
strategies.

In a study by Cui et al[84], 304 cases with rectal cancer diagnosis from center I 
(training dataset, n = 231; internal validation dataset, n = 91) and 86 cases from center 
II were included as an external validation dataset. It aimed to predict KRAS mutation 
from T2-weighted image-based radiomics. Subsequently, three classification methods, 
i.e. LR, decision tree, and SVM algorithm, were applied to develop the radiomics 
signature for KRAS prediction in the training dataset. The predictive performance was 
evaluated by ROC analysis. A total of seven radiomics properties were accepted as 
important variables for KRAS prediction, and the best predictor was determined as the 
SVM. The AUC was found to be 0.722 (95%CI: 0.654-0.790)[84].
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AI IN FOLLOW-UP IN RECTAL CANCER
Treatment toxicity
Effective toxicity estimation and evaluation schemes are required to limit RT-related 
side effects. High-tech devices and planning systems provide submillimetric precision. 
However, while giving the desired dose to the target volume, the OARs in its 
immediate neighborhood may be affected, leading to RT-induced toxicity. Acute 
toxicity occurs during treatment or within 3 mo of completion of treatment and 
usually, full recovery takes weeks to months. Late side effects such as fibrosis or RT-
induced oncogenesis are generally irreversible and considered progressive over time. 
When planning RT, its potential benefits should be weighed against the possibility of 
damaging healthy organs and tissues to maximize the curative response while 
minimizing the possibility of normal tissue complications. On the other hand, the 
target volume should not be compromised to preserve OARs. In addition to complex 
dosimetric data, AI provides the clinician with the ability to predict complications by 
integrating higher-level information such as detailed clinical and comorbidity data 
into a more comprehensive and quantitative model[85].

Dosimetric parameters include dose volume histogram parameters and threshold 
doses such as maximum point doses. Nondosimetric factors include other variables 
such as age, gender, and histopathology. Normal tissue complication probability and 
tumor control probability prediction models focused on using dosimetric parameters 
alone[86,87]. Also, the necessity of using nondosimetric parameters has been emphasized 
in the Quantitative Analysis of Normal Tissue Effects in the Clinic[88]. Data-driven 
approaches, on the other hand, aim to determine the model that best fits the input data 
(called properties or independent variables) and output data (called the response or 
dependent variable). Toxicity predictors can be examined roughly in three parts as 
dosimetric, clinical, and image-based.

In rectum cancer RT, toxicity can be predicted in advance with AI-based models, 
and appropriate dose-area restrictions, additional treatment planning (simultaneous 
CT, etc.), and prophylactic medical support treatments can be reviewed. There are AI 
studies that predicted rectal toxicity in prostate and cervical cancer radiotherapy, but 
there are no studies predicting toxicity with AI in rectal cancer radiotherapy[89-91]. 
Oyaga-Iriarte et al[92] conducted a study to predict irinotecan toxicity in metastatic 
colorectal cancer with ML models, and leukopenia was estimated with 76% accuracy, 
neutropenia 75%, and diarrhea 91%.

The development of prediction tools with a wide variety of variables and models 
limits the comparability and standard use of existing toxicity studies. Toxicity 
estimation algorithms can be standardized by sharing data between centers and 
creating big data. The application of such models is valuable in many different ways 
for both patients and clinicians.

Survival
In oncological treatments, forecasting is very important in the treatment decision-
making process because accurate survival prediction is critical in making 
palliative/curative treatment decisions. Also, the prediction of remaining life 
expectancy can be an incentive for patients to live a fuller or more fulfilling life. 
Survival statistics assist oncologists in making treatment decisions, but these are data 
from large and heterogeneous groups and are not well suited to predict what will 
happen to a specific patient. AI algorithms for the prediction of RT and ChT response 
have received considerable attention recently. In cases diagnosed with cancer, 
predicting survival is important in improving treatment and providing information to 
patients and clinicians. Considering the data set of rectal cancer patients with specific 
demographic, tumor, and treatment information, it is an important issue whether the 
patient’s survival or recurrence can be predicted by any parameter. Today, many 
hospitals store data in digital media. By evaluating these large data sets with AI 
techniques, it may be possible to predict treatment outcomes of patients, plan 
personalized medicine, improve corporate performance, and regulate health 
insurance.

In a study conducted by Zhao et al[93], survival prediction was made with an ML 
method in cases with metastatic rectal cancer, and 4098 cases were used in training 
and 3107 cases were used as test data. A survival prediction nomogram was created. 
While creating the prediction model, lasso (least absolute shrinkage and selection 
operator), an ML technique that can lead to superior performance compared to 
traditional multivariate regression, was used. The model was designed to predict 3-
year overall survival. The ML model formed the basis of the nomogram. Important 
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variables used in the nomogram were age, Charlson-Deyo score, tumor grade, pre-op 
CEA, liver metastasis, bone metastasis, brain metastasis, lung metastasis, peritoneal 
metastasis, presence of primary surgery, surgery for the metastatic area, the number of 
metastatic lymph nodes, and the presence of ChT. The c-index was used to evaluate 
the performance of the ML technique. Internally validated c-index values were 0.816 
(95%CI: 0.813-0.818), 0.789 (95%CI: 0.786-0.790), and 0.778 (95%CI: 0.775-0.780) for 1-, 
2-, and 3-year survival, respectively. External validated c-index was 0.811, 0.779, and 
0.778 for 1-, 2-, and 3-year survival, respectively[93]. There was great variation in overall 
survival times in cases diagnosed with metastatic rectal cancer. Accurate models with 
ML methods can assist patients and clinicians in setting expectations and clinical 
decisions in this challenging patient group.

Pham et al[94] used AI to discover DNp73 expression in terms of 5-year overall 
survival and prognosis in their study with 143 cases diagnosed with rectal cancer. Ten 
different CNN algorithms were used, and each immunochemical image was resized. 
For the algorithm, 90% of these images were used in training and 10% as test data, and 
the accuracy rates of ten algorithms varied between 90%-96%[94].

Li et al[95] conducted a study with 84 patients diagnosed with locally advanced rectal 
cancer and predicted survival with radiomics obtained from PET, CT, and PET-CT 
images with CNN. They compared the CNN method evaluated in the study with the 
Cox proportional-hazards model and random survival forests method. C-index was 
used in the performance evaluation of the methods. C-indexes of models created with 
radiomics obtained from PET, CT, and PET-CT images for Cox proportional-hazards, 
random survival forests, and CNN were 0.53-0.58-0.60 vs 0.58-0.61-0.58 and 0.62-0.60-
0.64 respectively, and the best performance was obtained when CNN and PET-CT 
were used together[95].

In the study conducted by Oliveira et al[96] to predict the 1-, 2-, 3-, 4-, and 5-year 
survival of cases with rectal and colon cancer, they evaluated 2221 cases in the test for 
colon cancer, 20061 cases in training, 551 cases in the test for rectal cancer, and 4962 
cases in training. Important variables for colon cancer were determined as age, CEA, 
CS site-specific factor 2, TNM stage, localization of the primary tumor, and regional 
lymph nodes. For rectal cancer, important variables were age, tumor extension, tumor 
size, TNM staging, surgery of the primary tumor, and gender. ML performance was 
evaluated by the accuracy rate and AUC. Accuracy rates and AUC for predicting 
survival for colon cancer for 1-, 2-, 3-, 4-, and 5-years were 95.6% (AUC: 0.980), 96.2% 
(0.984), 96.4% (0.988), 96.6% (0.988), and 96.4% (0.985), respectively, and their mean 
was 96.2% (0.984). Accuracy rates and AUC for predicting 1-, 2-, 3-, 4-, and 5-year 
survival for rectal cancer were 94.4% (AUC: 0.957), 94.4% (0.960), 94.0% (0.961), 93.8% 
(0.963), and 94.5% (0.971), respectively, with a mean of 94.1% (0.960)[96].

Accurate survival prediction in cancer patients remains a problem due to the 
increasing heterogeneity and complexity of cancer, treatment options, and different 
patient characteristics (age, Karnofsky Performance Status Scale, comorbid diseases, 
etc.). If reliable predictions can be achieved with AI, it can help with personalized care 
and medicine. Studies on AI-based survival prediction are increasing day by day in 
the literature, and there is still no standard algorithm.

CONCLUSION
In recent years, the increasing interest in AI in all fields of science has led to the 
development of innovative tools in oncology. The development of prediction tools 
with a wide variety of variables and models limits the comparison of existing studies 
and the use of standards.

In order to improve long-term prognosis, it is important to predict the overall 
survival of patients with a diagnosis of rectal cancer and progression of the disease 
receiving multimodal treatment. With the evaluation of clinical, radiological, genetic, 
dosimetric, and epidemiological factors using AI, it is possible to perform accurate 
predictions to achieve personalized treatment. Given high treatment costs, potential 
serious toxicity, harms of early progression, and low survival in cases of ineffective 
treatment, predictive systems with AI are promising. Multicenter studies with large 
data sets can provide algorithms with higher accuracy rates.

AI technology develops day by day in the realization of human behaviors in 
oncology and offers more efficient, faster, and lower cost solutions. Both AI and 
robotic potential are enormous in the follow-up and treatment of rectal cancer. AI and 
robotics are on the way to becoming a part of our health ecosystem.
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