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Abstract
Among inherited cardiac conditions, a special place is kept by cardiomyopathies 
(CMPs) and channelopathies (CNPs), which pose a substantial healthcare burden 
due to the complexity of the therapeutic management and cause early mortality. 
Like other inherited cardiac conditions, genetic CMPs and CNPs exhibit 
incomplete penetrance and variable expressivity even within carriers of the same 
pathogenic deoxyribonucleic acid variant, challenging our understanding of the 
underlying pathogenic mechanisms. Until recently, the lack of accurate 
physiological preclinical models hindered the investigation of fundamental 
cellular and molecular mechanisms. The advent of induced pluripotent stem cell 
(iPSC) technology, along with advances in gene editing, offered unprecedented 
opportunities to explore hereditary CMPs and CNPs. Hallmark features of iPSCs 
include the ability to differentiate into unlimited numbers of cells from any of the 
three germ layers, genetic identity with the subject from whom they were derived, 
and ease of gene editing, all of which were used to generate “disease-in-a-dish” 
models of monogenic cardiac conditions. Functionally, iPSC-derived 
cardiomyocytes that faithfully recapitulate the patient-specific phenotype, 
allowed the study of disease mechanisms in an individual-/allele-specific 
manner, as well as the customization of therapeutic regimen. This review 
provides a synopsis of the most important iPSC-based models of CMPs and CNPs 
and the potential use for modeling disease mechanisms, personalized therapy and 
deoxyribonucleic acid variant functional annotation.

Key Words: Induced pluripotent stem cells; Cardiomyopathy; Channelopathy; Genes; 
Mutation; Deoxyribonucleic acid variants
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Core Tip: Induced pluripotent stem cell (iPSC) technology holds a great potential for 
medical research. Patient-specific iPSC-derived cardiomyocytes offer a unique 
framework for various applications, such as cardiotoxicity screening, drug discovery, 
disease modeling, and cell therapy. In the particular case of inherited cardiomyopathies 
and channelopathies, iPSC-based models have prompted study of disease mechanisms 
in an individual-/allele-specific manner, as well as the customization of therapeutic 
regimens. Herein, we present and critically discuss the current knowledge and key 
experimental approaches that support patient-specific iPSCs as robust “disease-in-a-
dish” models for genetic cardiomyopathies and channelopathies after 15 years of 
research.

Citation: Micheu MM, Rosca AM. Patient-specific induced pluripotent stem cells as “disease-
in-a-dish” models for inherited cardiomyopathies and channelopathies – 15 years of research. 
World J Stem Cells 2021; 13(4): 281-303
URL: https://www.wjgnet.com/1948-0210/full/v13/i4/281.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i4.281

INTRODUCTION
Stem cell technology is one of the most dynamic areas in modern research, holding a 
great potential to alleviate or even cure various diseases. Particularly, induced 
pluripotent stem cells (iPSCs) are of a great interest given that they share the benefits 
of embryonic stem cells but lack their downsides. First, similar to embryonic stem 
cells, iPSCs are able to differentiate into tissues derived from all three germ layers, 
both in vitro and in vivo. Secondly, iPSCs-derived cells will be immunologically 
identical to the host, making the use of immunosuppression unnecessary. Thirdly, 
there are no bioethical issues with the use of iPSCs. These unique features endorse 
them an excellent candidate for a wide array of applications such as cardiotoxicity 
screening, drug discovery, disease modeling, and cell therapy.

Ever since their first mention in 2006[1], we have witnessed a mounting body of data 
related to this rapidly growing field. Progress has been made in reprogramming and 
differentiation methods. Strategies for improving the maturity of iPSC-derived 
cardiomyocytes (iPSC-CMs) have been tested, and new applications to manage cardiac 
diseases have been tested. A recent Scientific Statement from the American Heart 
Association acknowledges disease modeling as possibly the most productive use of 
iPSCs[2]. Several key characteristics endorse iPSCs as an ideal candidate for generating 
“disease-in-a-dish” models, particularly with regard to monogenic conditions. First of 
all, each iPSC line has a donor-specific genetic profile. Secondly, when collected, iPSCs 
are devoid of many of the epigenetic modifications caused by environmental and 
lifestyle factors, thus enabling the study of the genetic contribution to the disease. This 
aspect is of a particular importance in the case of Mendelian cardiac maladies, which 
are characterized by variable clinical expression and incomplete penetrance as a 
consequence of complex interactions between genetic backgrounds and environmental 
disease modifiers[3]. Thirdly, iPSCs are quite malleable to genetic modification; 
accordingly, by using appropriate genome editing tools such as TALENs and CRISPR-
Cas9, the deoxyribonucleic acid (DNA) sequence can be altered either by introducing 
causal DNA mutations into wild-type iPSC lines, or by repairing the causative factor to 
achieve phenotypic rescue in differentiated cells[2,4].

Inherited cardiac conditions (ICCs) include a variety of genetic disorders that 
primarily affect the heart. Among ICCs, a special place is kept by cardiomyopathies 
(CMPs) and arrhythmic diseases (i.e. channelopathies), which pose a substantial 
healthcare burden due to the complexity of therapeutic management and occurrence 
early mortality. Importantly, sudden cardiac death is frequently the first expression of 
the disease. Understanding the underlying genetic cause is the centerpiece of a timely 
diagnosis and targeted treatment[5].

CMPs are characterized by both structural and functional abnormalities of the 
ventricular myocardium that are not explained by flow-limiting coronary artery 
disease or abnormal loading conditions, each entity having particular characteristics at 
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macroscopic and molecular level[6]. Based on morphology, hereditary CMPs comprise 
the following types: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy 
(DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (ACM), 
and left ventricular noncompaction (LVNC).

Inherited channelopathies (CNPs) are primary electrical disorders caused by 
mutations in genes encoding cardiac ion channels or associated proteins. As a result, 
malfunction of specific ion channels or of intracellular calcium handling occur, leading 
to electrical instability and predisposition to malignant arrhythmias in the absence of 
structural heart disease[7,8]. The main cardiac channelopathies associated with increased 
risk of sudden cardiac death are long QT syndrome (LQTS), short QT syndrome 
(SQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic ventricular 
tachycardia (CPVT). As comprehensive reviews of the genetics and clinical 
presentation of various ICCs have been written by our group[3,9] and other groups[10-12], 
we briefly point out the core genes associated with the CMPs and CNPs discussed in 
the present paper (see Tables 1 and 2)[12-19]. It is to be noted that there is considerable 
genetic overlap among different CMPs and CNPs (Figure 1A and B, respectively).

MODELING DISEASE-SPECIFIC MECHANISMS
Due to the potential to differentiate into functional cardiomyocytes (CMs) that 
recapitulate patient-specific phenotypes, human iPSCs provide an excellent in vitro 
platform to decipher the underlying disease-specific mechanisms and efficiently study 
inherited CMPs and CNPs in an individualized manner.

Inherited cardiomyopathies
HCM and DCM are the most frequently encountered genetic CMPs in daily clinical 
practice, therefore, unsurprisingly, they have been the most studied iPSC-CM-based 
models. In a recent report, Eschenhagen et al[19] comparatively analyzed 38 original 
papers that reported the characteristics of iPSC-CMs obtained from patients with 
HCM/DCM or generated from iPSC lines in which a HCM or DCM mutation had 
been genetically introduced[19]. In summary, compared with their respective controls, 
the main features exhibited by HCM iPSC-CMs were the following: larger cell size, 
increased nuclear localization of nuclear factor of activated T cells (NFAT, a 
transcription factor) and increased MYH7 (or MYH7/MYH6 ratio) expression[20-24]. The 
most constant aberration identified in DCM lines was reduced peak force 
development[25], the molecular mechanisms of which are discussed, and explain the 
main clinical presentation of the disease. As for similarities between the two 
considered diseases, three anomalies were the most documented: sarcomere disarray, 
increased NPPA/NPPB gene expression, and arrhythmic behavior[20,24,26,27].

Although not constantly associated with alterations in contractile force or kinetics, 
abnormal calcium handling appears to be a key pathological mechanism observed in 
iPSC-CM models of HCM[20,21,24,28]. Valuable insights related to the molecular 
mechanisms of HCM pathogenesis have been provided by Seeger et al[29] in a model of 
patient-derived iPSC-CMs harboring a premature stop codon in the MYBPC3 gene. 
When compared with the isogenic mutation-corrected iPSC lines, in addition to 
aberrant calcium signaling, patient-derived iPSC-CMs displayed molecular 
dysregulations without haploinsufficiency of the MYBPC3 protein. This observation 
could challenge the existing dogma of haploinsufficiency as the underlying 
mechanisms for HCM caused by MYBPC3 premature termination codon mutations. 
The specific molecular signature included dysregulation of genes involved in calcium 
handling (ATP2A2, ATP2B2, and CASQ1), cardiac hypertrophy (GP130, JAK2, RRAS, 
MEK1, TWEAKR, and NPPB), stress response (HSPB1, HSPB6, HSPB7, IGF1, and IGF2)
, and structural organization of sarcomeres and mechanosensors (CSRP3 and TCAP).

Disturbed calcium signaling has been shown to be a central pathological mechanism 
of diastolic dysfunction in familial HCM lines with variations in the MYH7, MYBPC3, 
and TNNT2 genes[30]. Using comprehensive functional imaging analysis (i.e. calcium 
imaging and traction force microscopy), Wu et al[30] revealed that diastolic Ca2+ 
overload and increased myofilament Ca2+ sensitivity contribute to diastolic 
dysfunction and demonstrated for the first time that patient-specific iPSC-CMs can 
recapitulate diastolic dysfunction characteristics at the single-cell level. Furthermore, 
calcium homeostasis was restored by Ca2+ and late Na+ blockers (verapamil, dilitiazem, 
ranolazine, and electlazine), which was reflected in diastolic function improvement in 
HCM iPSC-CMs.



Micheu MM et al. IPSCs for inherited cardiomyopathies and channelopathies

WJSC https://www.wjgnet.com 284 April 26, 2021 Volume 13 Issue 4

Table 1 Main genes associated with inherited cardiomyopathies

Condition Genotype Ref.

HCM1 MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL2, MYL3 [13]

DCM TTN, LMNA, MYH7, TNNT2, BAG3, RBM20, TNNC1, TNNI3, TPM1, 
SCN5A, PLN

[14,15]

LVNC Overlap with HCM and DCM [14,15]

ACM DES, DSC2, DSG2, DSP, JUP, LMNA, PKP2, PLN, RYR2, SCN5A, TMEM43, 
TTN

[14,15]

RCM TTR, TNNI3, DES. Overlap with HCM and DCM [14,15]

1Only genes having definitive evidence for hypertrophic cardiomyopathy have been depicted. ACM: Arrhythmogenic cardiomyopathy; DCM: Dilated 
cardiomyopathy; HCM: Hypertrophic cardiomyopathy; LVNC: Left ventricular noncompaction; RCM: Restrictive cardiomyopathy.

Table 2 Main genes associated with inherited channelopathies

Condition Genotype Ref. 

LQTS1 KCNQ1 [16]

LQTS2 KCNH2 [16]

LQTS3 SCN5A [16]

LQTS4 ANK2 [17]

LQTS5 KCNE1 [17]

LQTS6 KCNE2 [17]

LQTS7 KCNJ2 [17]

LQTS8 CACNA1C [17]

LQTS9 CAV3 [17]

LQTS10 SCN4B [17]

LQTS11 AKAP9 [17]

LQTS12 SNTA1 [17]

LQTS13 KCNJ5 [17]

LQTS14 CALM1 [17]

LQTS15 CALM2 [17]

JLN1 KCNQ1 [17]

JLN2 KCNE1 [17]

CPVT1 RYR2 [16]

CPVT2 CASQ2 [16]

SQTS KCNH2, KCNQ1, KCNJ2 [16]

BrS SCN5A [18]

BrS: Brugada syndrome; CPVT: Catecholaminergic polymorphic ventricular tachycardia; LQTS: Long QT syndrome; SQTS: Short QT syndrome.

More recently, it has been shown that molecular signaling differs within HCM iPSC-
CMs with diverse gene mutations. Isogenic models of HCM revealed differential 
phenotypes and mechanism-driven possible therapeutic targets in MYH7 and ACTC1 
cell lines, respectively[31]. In spite of sharing key disease hallmarks, such as intracellular 
calcium overload and calcium transient arrhythmias, which were common in both 
models, modifications in contractility were entirely divergent, namely decreased 
contractility of MYH7 cells and gain of hypercontractility of ACTC1 cells. Notably, the 
expression of Ca2+-binding proteins and hypertrophy-associated transcription factor 
activation also showed opposing behavior. Accordingly, compared with their 
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Figure 1 Diagram of the overlap of the main genes associated with inherited cardiac conditions. A: Genes associated with inherited 
cardiomyopathies. Each cardiomyopathy is indicated by a different color. Orange: hypertrophic cardiomyopathy; Green: dilated cardiomyopathy; Blue: left ventricular 
noncompaction; Purple: arrhythmogenic cardiomyopathy; Red: restrictive cardiomyopathy; B: Genes associated with inherited channelopathies. Blue: long QT 
syndrome; Purple: short QT syndrome; Orange: Brugada syndrome; Green: catecholaminergic polymorphic ventricular tachycardia. ACM: Arrhythmogenic 
cardiomyopathy; BrS: Brugada syndrome; CPVT: Catecholaminergic polymorphic ventricular tachycardia; DCM: Dilated cardiomyopathy; HCM: Hypertrophic 
cardiomyopathy; LQTS: Long QT syndrome; LVNC: Left ventricular noncompaction; RCM: Restrictive cardiomyopathy; SQTS: Short QT syndrome.

respective controls, MYH7-R453C mutants were characterized by upregulation of 
CASQ2, CALM1 and CAMK2D along with MEF and NFAT nuclear translocation 
prompted by IRF8 downregulation. Reversed expression patterns of those genes were 
found in ACTC1-E99K iPSC-CMs. The study offered clinically-relevant data, given that 
the arrhythmogenic phenotype was rescued in both models following treatment with a 
mixture of dantrolene and ranolazine (a ryanodine receptor antagonist that inhibits 
sarcoplasmic Ca2+ release into the cytosol and a late sodium current blocker promoting 
intracellular Ca2+ efflux). In addition, the enhanced contractility displayed in ACTC1 
iPSC-CMs was rescued by mavacamten (a selective allosteric inhibitor of cardiac 
myosin ATPase). Of note, an earlier study reported differences in the phenotypic 
features of iPSC-CMs obtained from a family with ACTC1-E99K mutation. These 
differences varied depending on the source subject, highlighting the value of isogenic 
iPSC-CMs in genotype-phenotype correlations. Thus, while arrhythmogenesis was 
manifested in all ACTC1-E99K iPSC-CM lines, it was more common in cells obtained 
from the father, and less apparent in those derived from the two sons. This suggests 
that, in addition to the causative mutation, other factors (either genetic or epigenetic) 
might contribute to the disease phenotype[32].

The contractility consequences seem to be dependent on the specific DNA change 
rather than the affected gene. In contrast to the hypo-contractile phenotype described 
in MYH7-R453C mutants[31], MYH7-R403Q, MYH7-V606, and MYH7-R719 iPSC-CMs 
exhibited hyperdynamic contraction resulting from an increased proportion of myosin 
molecules in a disordered relaxed state conformation[33]. Imbalance of myosin 
configurations (i.e. super and disordered relaxed states) led to the destabilization of 
interacting-heads motif interactions that were followed, in addition to increased 
contractility, by impaired relaxation, hypertrophic remodeling, excessive energy 
consumption, and metabolic stress. Mavacamten treatment restored the physiological 
super relaxed state/disordered relaxed state ratio and relieved downstream functional 
abnormalities, suggesting that chronic dysregulation of myosin conformations is a 
central mechanism of HCM.

Other reports have used iPSCs to decode genetic DCM physiopathology. The most 
frequently mutated gene in DCM is TTN, with truncating variants explaining up to 
30% of familial cases[34,35]. Other genes involved in DCM etiology are shown in Table 1. 
The most commonly encountered genes responsible for DCM are LMNA, DES, MYH7, 
MYH6, SCN5A, MYBPC3, and TNNT2, although at a lower prevalence than TTN[36]. 
Patient-derived iPSC-CMs have characteristics consistent with DCM, including 
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sarcomere disorganization, reduced contractile function, and altered calcium 
handling[25,37-39]. Hinson et al[38] investigated the disease phenotypes of iPSCs engineered 
from DCM subjects with either truncating or missense mutations in TTN, and showing 
sarcomere insufficiency, impaired responses to mechanical and βadrenergic stress, and 
attenuated growth factor and cell signaling activation.

In a series of studies that focused on TNNT2-R173W missense mutation, iPSCCMs 
lines generated from affected family members exhibited a compromised ability to 
regulate calcium flux, reduced contraction force, and heterogeneous myofilament 
organization that were exacerbated by βadrenergic stimulation[25]. In-depth analysis 
uncovered the epigenetic activation of phosphodiesterase genes PDE2A and PDE3A as 
the underlying mechanism responsible for the defective βadrenergic signaling and 
contractile dysfunction[40]. The latest data indicates that TNNT2-R173W hampers 
molecular interactions between troponin and tropomyosin and restricts the binding of 
PKA to local sarcomere microdomains, resulting in diminished troponin phospho-
rylation and misalignment of sarcomeric proteins[41]. An R173W variant also altered the 
interaction between sarcomere microdomain and cytoskeleton filaments via MYH7 and 
AMPK, with consequent disturbance of sarcomere protein alignment and impaired 
contractility. In terms of phenotype rescue, AMPK activation by small molecules, such 
as A-769662, improved sarcomere-cytoskeleton attachment and partially recovered 
sarcomere protein misalignment and subsequent impaired contractility in mutated 
iPSC-CMs[41].

The phenotypes and the causal disease mechanisms linked to LMNA variants have 
also been intensively studied. In iPSC-CMs with either a nonsense or missense 
mutation in LMNA, Siu et al[39] noticed enhanced nuclear senescence and augmented 
electrical stress-induced apoptosis that was significantly attenuated by 
pharmacological inhibition of the ERK1/2 pathway with the MEK1/2 inhibitors U0126 
and selumetinib. Other investigators analyzed iPSC-CMs from three patients with 
distinctive LMNA mutations (R225X, Q354, and T518fs)[42]. Although all three types of 
diseased cells recapitulated the pathophysiological hallmarks of LMNA-related DCM, 
the positive effect of ataluren treatment on the expression of full-length Lamin A/C, 
nuclear blebbing, apoptosis, and contractility was detected only in the LMNA-R225X 
mutant, suggesting that the effect might be codon selective[42]. Other traits expressed 
by LMNA-mutated iPSC-CMs were bradyarrhythmia, beat rate variability, abnormal 
calcium handling, stress hypersensitivity, disorganized sarcomeres, and increased cell 
size[43,44]. The incriminating mechanisms were aberrant activation of PDGF-signaling, 
which was rescued by pharmacological and molecular inhibition of PDGF receptor 
B[43], or epigenetic inhibition of SCN5A that was rescued by SCN5A overexpression[45]. 
Mutations in other DCM-related genes such as DES[37], MYH7[46], DMD[47,48], PLN[26], or 
even compound mutations have been modeled[49].

Characterization of iPSC-CMs from family members with LVNC who carried a 
nonsense variant in cardiac transcription factor TBX20, compared with iPSCCMs from 
unaffected relatives, revealed abnormal activation of transforming growth factor-β 
signaling leading to decreased cell proliferation capability. Moreover, inhibition of the 
transforming growth factor-β signaling pathway and correction of TBX20 alteration by 
CRISPR-Cas9 technology, successfully rectified the pathological phenotype[50].

Impairments in contractility, calcium handling, and metabolic activity have been 
nominated as key features in another model of iPSC-CMs generated from patients 
with delayed-onset LVNC caused by a missense mutation in the GATA4 gene[51].

In an iPSC model with a TPM1-R178H mutation, it was shown that mislocalization 
of tropomyosin 1 was a central pathological change, triggering disturbance of the 
sarcomere structure and impaired calcium handling. Comprehensive analysis found 
involvement of complex molecular pathways centered on downregulation of the 
expression of numerous genes controlling heart development and positive regulation 
of cellular processes, including transcription factors (GATA4, GATA6) and sarcomeric 
proteins (MYBPC3, MYH6, TTN, TNNI3, TNNT2), thus linking sarcomeric dysfunction 
to LVNC[52].

ACM is another inherited CMP studied in iPSC models. In a series of reports 
published in 2013, CMs engineered from subjects having mutations in the PKP2 gene 
efficiently recapitulated key disease features, including reduced cell surface 
localization of desmosomal proteins with altered desmosomal structure and a more 
adipogenic phenotype[53]. These phenotypical changes were accompanied by 
upregulation of the pro-adipogenic transcription factor peroxisome proliferator-
activated receptor (PPAR)-γ and enhanced activation of respective signaling 
pathways[54,55]. Furthermore, lipid droplets accumulation was prevented by admini-
stration of a specific inhibitor of glycogen synthase kinase 3β (6-bromoindirubin-3'-
oxime)[55]. Subsequent work revealed novel mechanistic insights in ACM pathogenesis 
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or confirmed those already cited. Wen et al[56] reported that coactivation of normal 
PPAR-α and abnormal PPAR-γ pathways in ACM iPSC-CMs triggered markedly 
increased lipogenesis, apoptosis, Na+ channel downregulation and defective 
intracellular calcium handling[56]. In another iPSC-based model it was found that 
RhoA/ROCK signaling at the intercalated disc was essential for cardiomyocyte 
homeostasis[57]. Using patient-derived iPSC-CMs with impaired cell-cell adhesion due 
to a PKP2 frameshift mutation, or disturbed RhoA signaling caused by a nonsense 
MYH10 mutation, Dorn et al[57] elegantly demonstrated that cardiomyocyte identity 
was lost following disruption of the RhoA/MRTF/SRF-signaling circuit. RhoA 
recruitment to cell-cell junctions was abridged in diseased cells, prompting increased 
levels of cytosolic G-actin and successive cytoplasmic sequestration of transcription 
factors such as MRTF that are involved in myocyte identity, preventing their entry into 
the nucleus. Finally, when exposed to an adipogenic environment, the mutated cells 
were poised to switch to a brown/beige adipocyte lineage, providing a possible 
molecular explanation of the clinical phenotype observed in ACM. Interestingly, a 
recent study reported lipid accumulation, increased pleomorphism, irregular Z-bands, 
and increased L-type calcium currents in iPSC-CMs carrying a novel frameshift 
mutation (L5218fs) in the OBSCN gene[58]. The phenotypic alterations were 
accompanied by activation of adipocytokines and PPAR signaling pathways, 
diminished expression of the mutant protein and its anchor protein Ank1.5, in 
addition to downregulation of other desmosomal coding genes (PKP2, JUP, DSP)[58].

IPSC-CMs generated from an ACM patient with a DSG2 mutation exhibited 
complex ion channel dysfunctions and abnormal cellular electrophysiology as well as 
increased sensitivity to adrenergic stimulation, indicating involvement of ion channel 
dysfunctions in arrhythmogenesis, independent of structural abnormalities[59]. 
Subsequent work conducted by the same group established for the first time that 
enhanced NDPK-B expression, via activating SK4 channels, contributed to 
arrhythmogenesis in DSG2-related ACM, suggesting that NDPK-B could be a specific 
therapeutic target in selected patients[60].

Ng et al[61] reported for the first time that some desmoplakin missense variants, such 
as DSP-R451G, are functionally equivalent to truncating alleles by promoting 
pathological vulnerability to calpain proteolysis and subsequent desmoplakin 
insufficiency.

There are few data related to restrictive cardiomyopathy modeling by iPSC. CMs 
harboring homozygous DES-Y122H mutation were reported to display abnormal 
desmin cytoplasmic aggregates responsible for the pathological phenotype[62].

Inherited channelopathies
A second category of genetic cardiac conditions extensively modeled using iPSC 
technology is represented by CNPs, for which electrophysiology studies exposed 
alterations of action potential, field potential, or Ca2+ transients in engineered CMs. 
LQTS, in particular the first three types (LQTS1, LQTS2 and LQTS3), benefit from the 
most well-characterized iPSC-CMs models. Types LQTS that differ according to the 
underlying channel or gene mutation are shown in Table 1.

The first model of an arrhythmic syndrome using patient-specific iPSC-CMs was 
reported in 2010 by Moretti et al[63], who generated iPSCs from two affected members 
of a family with LQTS1 caused by a missense mutation (R190Q) in the KCNQ1 gene. 
Mutant iPSC-CMs effectively reproduced the relevant features of the disease, namely 
prolongation of the action potential duration into atrial-like and ventricular-like cells, 
and increased occurrence of arrhythmic events when exposed to β-adrenergic agonists. 
Voltage clamp analysis revealed a substantial 70% to 80% reduction in the slowly 
activating delayed rectifier potassium currents (IKs) of LQTS1-iPSC-derived 
ventricular CMs due to a decreased number of functional KCNQ1 channels in the 
sarcolemma compared with the healthy counterpart. Beta-blocker treatment of LQTS1 
CMs had a protective effect against catecholamine-induced arrhythmia. Similar 
findings have been reported in subsequent models of iPSC-CMs from LQTS1 with 
KCNQ1 missense or frameshift mutations[64,65]. Additionally, Wang et al[66] identified 
abnormalities in Ca2+ handling linked to three distinct KCNQ1 variants (R190Q, G269S, 
and G345E). CMs derived from all three edited iPSC lines displayed a characteristic 
LQTS phenotype and significant prolongation of the action potential duration 
compared with isogenic controls, which were corrected by treatment with L-type 
calcium channel antagonists. Similar results have been reported recently following an 
increase in the number of iPSC-CMs models of autosomal dominant, recessive, and 
compound heterozygous LQTS1[67-73], including analysis of models derived from 
specific populations[67,72]. A plethora of LQTS2 iPSC-CMs models developed from 
patients harboring missense mutations in KCNH2 have reproducibly shown prolonged 
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action potential, increased arrhythmogenicity, and reduced rapidly activating delayed 
rectifier potassium current (IKr), compared with healthy control lines. The first 
analyzes of iPSC-based LQTS2 models were published in 2011 by two independent 
groups[74,75]. Itzhaki et al[74] generated iPSC lines from a patient with a KCNH2-A614V 
variant. As expected, the derived-CMs exhibited substantial prolongation of the action 
potential, diminished IKr, early after depolarizations (EADs), and triggered 
arrhythmias. Specific pharmacological inhibition of IKr worsened the cellular 
phenotype, while administration of other pharmacological agents such as Ca2+ channel 
blockers, or KATP-channel openers alleviated the pathological features[74]. The in vitro 
model developed by the second group effectively replicated the variation in clinical 
phenotypes of two family members carrying the same KCNH2-A561V mutation. 
Although the action potential duration was increased in the iPSC-CMs derived from 
both the clinically symptomatic patient and the clinically asymptomatic mother, an 
increased sensitivity (appearance of EADs) to stress (i.e. β-adrenoreceptor stimulation) 
was detected only in the symptomatic patient-derived cells[75]. By comparing the 
electrophysiological properties of spontaneously beating CMs produced from LQTS2 
cases and controls, it was suggested that cell-to-cell contacts in the syncytium result in 
compensatory mechanisms with a tendency to protect the repolarization system from 
major aberrations of physiological parameters. Although a considerable signal 
difference was detected between LQTS2 and control iPSC-CMs on single-cell patch-
clamp recordings (a 66% increase in action potential in LQTS2 cells), the differences 
were more modest (10%-20%) when using a microelectrode array technique on cell 
aggregates, similar to the surface electrocardiogram in respective patients[76]. In later 
studies, the diseased phenotype was rescued either by genetic correction of the 
KCNH2 mutation[77], or by allele-specific ribonucleic acid (RNA) interference, which 
selectively destroyed the mutant mRNA while leaving the wild-type mRNA 
undamaged[78]. Various pharmacological agents were also shown to correct the 
electrophysiological anomalies[79-81], although for some molecules the effect was 
mutation-specific[82]. An interesting observation was noted by Spencer et al[83], who 
established that in iPSC-CMs with a KCNH2-A422T mutation, the action potentials and 
intracellular calcium transients were prolonged in parallel. Furthermore, exposure to a 
Ca2+ antagonist such as nifedipine, abbreviated the action potentials despite the IKr 
deficit.

Although abnormal calcium handling is common in both LQTS1 and LQTS2, there 
are major differences in this regard. Joutsijoki et al[84] used an innovative approach to 
differentiate the Ca2+ transient statistics between these two LQTS-mutated iPSC-CMs. 
By combining machine learning and iPSC technology, the authors analyzed 90 LQTS1 
transient signals from two cell lines and 138 LQTS2 signals from four cell lines, 
resulting in classification accuracies of up to 100%. The findings support the 
hypothesis that Ca2+ transients are disease-specific or even mutation-specific.

Patient-specific iPSC-CMs models harboring gain-of-function mutations in the 
SCN5A gene efficaciously summarized LQTS3 pathognomonic electrophysiological 
traits, such as abnormal sodium currents and prolonged APD[85-88]. A study by Malan at 
al[89] complemented prior findings by also showing a high incidence of EADs, a 
recognized trigger mechanism for arrhythmia, in disease cells. Treatment with 
mexiletine, specific sodium channel inhibitors, reduced action and field potential 
durations in LQT3 iPSC-CMs and alleviated EADs in a dose-dependent manner. Other 
types of LQTS, including LQTS7[90], LQTS8[91], LQTS14, and LQTS15[92-94] have been 
successfully investigated with iPSC technology.

CPVT comprises two main subtypes, CPTV1 (caused by mutations in the RYR2 
gene) and CPTV2 (determined by mutations in the CASQ2 gene). Both genes are key 
regulators of CM calcium homeostasis, and dysfunction of either gene prompts 
abnormal intracellular Ca2+ handling and signaling, and increased arrhythmogenicity 
under adrenergic stimulation. To date, numerous CPVT models have been developed 
using the iPSC platform, successfully recapitulating the arrhythmogenic phenotype 
seen in patients[95-104]. In a study published in 2011, Fatima et al[95] analyzed the 
functional properties of iPSC-CMs from healthy donors and a patient with CPVT1 
carrying a novel heterozygous autosomal dominant mutation (RYR2-F2483I). 
Compared with healthy CMs, the mutated cells displayed arrhythmias and delayed 
afterdepolarizations (DADs), higher amplitudes and longer duration of spontaneous 
Ca2+ release events in the basal state, as revealed by patch-clamp recordings and 
calcium imaging studies. Additionally, in CPVT-iPSC-CMs the Ca2+-induced Ca2+-
release events continued after repolarization and were eliminated by increasing 
cytosolic cAMP levels with forskolin. In another CPVT1 model of iPSC-CMs harboring 
the RYR2-M4109R mutation, intracellular electrophysiological recordings evidenced 
increased development of DADs in CPVT-iPSCs-CMs compared with healthy CMs, 
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which were further exacerbated by β-adrenergic stimulation; and, as opposed to 
previous findings, by forskolin. In contrast, thapsigargin (a specific inhibitor of the 
sarcoplasmic reticulum calcium ATPase pump) eradicated all afterdepolarizations in 
those cells, indicating that internal Ca2+ stores play a central role in the pathogenesis of 
DADs. Indeed, laser-confocal Ca2+ imaging revealed extensive whole-cell Ca2+ 
anomalies (such as frequent local and large-storage Ca2+-release events, broad and 
double-humped transients, and triggered activity) that were aggravated under 
catecholaminergic stress and alleviated by beta-blockers. Also, RYR2-M4109R 
mutations significantly reduced the threshold for store-overload-induced Ca2+ 

release[96]. Dantrolene[97], flecainide[105], and S107 (an RYR stabilizer[104]) were other 
pharmacological agents shown to ameliorate the disease phenotypes.

More recently, the combined iPSC and CRISPR/Cas9 gene editing technics were 
used to validate preliminary data and, more importantly, to gain further insight into 
dysfunction produced by variations in RYR2 gene. Wei et al[106], introduced a point 
mutation into wild-type RYR2 iPSCs by CRISPR/Cas9 gene editing. Similar to CMs 
generated from CPVT1 patient harboring F2483I-RyR2 mutation[101], edited iPSC-CMs 
carrying the same CPVT1-associated variant showed abnormal intracellular Ca2+ 
handling, including longer and wandering Ca2+ sparks, elevated diastolic Ca2+ leaks, 
reduced sarcoplasmic reticulum (SR) Ca2+ content, and increased susceptibility to 
arrhythmias caused by isoproterenol[106], suggesting that F2483I-RyR2 mutation 
produces leaky RyR2 channels. The same approach was used by Zhang et al[107] to 
assess aberrant Ca2+ signaling and pharmacological sensitivity to three distinct CPVT1-
associated mutations. While all three diseased iPSC-CM lines exhibited some 
abnormalities in calcium handling (i.e. irregular, long-lasting, spatially wandering Ca2+ 
sparks and aberrant Ca2+ releases), enhanced SR Ca2+ leaks and diminished SR Ca2+ 
contents were seen only in cells with Q4201R and F2483I, but not R420Q. Moreover, 
fractional Ca2+ release and calcium-induced calcium release gain were higher in 
Q4201R than in R420Q and F2483I iPSC-CMs, emphasizing that Ca2+ signaling 
abnormalities may vary depending on the mutation site. Several potential therapeutic 
interventions, including flecainide, dantrolene, and JTV519 (a Ca2+-dependent blocker 
of SERCA) were tested, indicating that drug sensitivities may also be mutation 
dependent. Using a wide-ranging methodology integrating optogenetics, tissue 
engineering, lab-on-a-chip technology, gene editing, and iPSC technology, Park et al[108] 
identified calmodulin-dependent protein kinase II activation as a key molecular 
pathway underlying exercise-triggered arrhythmia in CPVT patients, suggesting that 
its inhibition might be an effective therapeutic strategy in selected cases.

Recent data indicate that RYR2 screening should not be indicated only in subjects 
with stress- or exercise-induced symptoms. Using patient-specific iPSC-CMs, it has 
been shown that RYR2-H29D variants elicit alteration of calcium homeostasis and 
molecular modifications such as aberrant SR Ca2+ leak under physiological pacing, 
pro-arrhythmic electrical phenotypes, impaired and asynchronous contractile 
properties, and aberrant RyR2 post-translational modifications that occur only at 
rest[109]. Furthermore, the authors hypothesized that the uncommon location of RYR2-
H29D mutations outside the four hot-spot regions linked to CPVT1, might be 
responsible for the distinct phenotypic expression. iPSC-based platforms have also 
been used to explore functional abnormalities in CMs generated from CPVT2 
patients[99,102,110,111]. Under beta-adrenergic stimulation, patient-derived iPSC-CMs 
carrying the CASQ2-D307H variant demonstrated disease-specific arrhythmogenic 
characteristics due to Ca2+-transient anomalies, afterdepolarization, reduced threshold 
for store overload-induced Ca2+-release, and upsurge of diastolic intracellular calcium 
concentration[99,102,110].

SQTS is a rare inheritable, autosomal dominant cardiac condition characterized by 
abnormally short QT intervals and an increased risk of atrial and ventricular 
tachyarrhythmias. The causal ion channel genes are shown in Table 2, variation in 
KCNH2 being the most frequently observed in genotyped cases[7,112]. The first SQTS 
model utilizing the iPSC platform was reported in 2018 by El-Battrawy et al[113]. The 
authors generated iPSC-CMs from a patient with a KCNH2-N588K mutation and two 
healthy control subjects. Mutated cardiac myocytes exhibited enhanced IKr density 
and shortened APD compared with control cells, along with abnormal calcium 
transients and arhythmic propensity. Carbachol, an acetylcholine receptor agonist, 
increased the occurrence of arrhythmic events in diseased iPSC-CMs, while quinidine, 
and not sotalol or metoprolol, prolonged the APD and alleviated carbachol-prompted 
arrhythmias. In subsequent studies, patient-specific and gene-corrected iPSC-CMs 
were used to elucidate the SQTS phenotype either at single-cell[114] or tissue level[115]. 
When compared with healthy control and gene-corrected CMs, KCNH2-T618I iPSC-
CMs were shown to display shortened APDs and increased beat-beat interval 
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variability. Although no significant differences in total KCNH2 expression in control, 
gene-corrected, and SQTS iPSC-CMs were seen, membrane expression of KCNH2 was 
approximately 8-fold higher in mutated iPSC-CMs than in isogenic cells, suggesting 
that the aforesaid variant results in enhanced membrane expression of KCNH2, which 
may contribute to the increased IKr density. Moreover, the phenotype was 
successfully rescued by BmKKx2, a short-peptide scorpion toxin acting as a selective 
IKr blocker[114]. Shinnawi et al[115] examined conduction and arrhythmogenesis in 
confluent 2-dimensional iPSC-derived cardiac cell monolayers generated from a 
symptomatic SQTS patient also with KCNH2-N588K mutation. SQTS-iPSC-CM 
monolayers were characterized by abnormal repolarization properties and induced 
sustained re-entrant arrhythmias, while retaining a normal conduction appearance.

BrS is another cardiac channelopathy that has been modeled using iPSC technology. 
Various genes encoding either sodium, potassium, or calcium channels have been 
linked to BrS[116]. Among them, the SCN5A gene was found to be most commonly 
mutated (Table 2). That gene encodes the alpha subunit of the main cardiac sodium 
channel (Nav1.5); loss of function variants result in reduced availability of functional 
Nav1.5 channels either through decreased plasma membrane channel expression or 
through altered channel gating properties[117]. iPSC-CMs generated from BrS patients 
were shown to reflect the pro-arrhythmic phenotype associated with the disease and 
caused by blunted inward sodium currents, increased triggered activity, and calcium 
transient abnormalities. Davis et al[118] were the first to describe the molecular 
mechanisms that underlie BrS by using patient-specific iPSC-CMs harboring SCN5A
_1795insD mutation, which effectively recapped the INa peak reduction and persistent 
INa associated with overlapped LQTS3/BrS[118]. Another group investigated sodium 
currents, action potentials and calcium dynamics in iPSC-CMs derived from patients 
with type 1 BrS carrying two different SCN5A variants and in healthy control 
subjects[119]. Mutated cardiac cells showed reductions in inward sodium current 
density, reduced maximal upstroke velocity of the action potential (AP), increased 
burden of triggered activity, abnormal calcium transients, and beating interval 
variation compared with control iPSC-CMs from healthy controls. Further analysis 
revealed markedly reduced expression of KCNJ2, which encodes Kir2.1 inwardly 
rectifying potassium channel, an observation not previously described in BrS. 
Correction of the causative variant by CRISPR/Cas9-mediated genome editing 
prompted efficient resolution of triggered activity and abnormal Ca2+ transients.

Additional data were provided by the work of Ma et al[120], who reported that a 
repolarization deficit was involved in BrS. By comparing electrophysiological 
properties of iPSC-CMs generated from a patient carrying a compound SCN5A 
mutation (A226V and R1629X) and a healthy sibling control, they observed an over 
75% loss of sodium current in diseased cells. The decline in INa was reflected by 
altered action potential morphology with reduced maximum upstroke velocity and 
action potential amplitude at normal 1.0 Hz pacing frequency. At slow a slow pacing 
0.1 Hz pacing frequency, an increased phase-1 repolarization action potential pattern 
characterized by a marked reduction of action potential duration and increased resting 
membrane potential occurred in a fraction of BrS CMs. Furthermore, disparities in the 
levels of transient outward K+ currents (Ito) among the iPSC-CMs from either 
compound carriers or healthy controls were noticed, with 19% to 23% of the studied 
cells displaying high Ito densities. Importantly, in patient-derived iPSC-CMs, 
treatment with 4-Aminopyridine, an Ito blocker, completely reversed the increased 
phase-1 repolarization and restored the APD, indicating a coordinated role of INa and 
Ito in the arrhythmogenic mechanism of BrS. In-depth analysis of iPSC-CMs derived 
from two BrS subjects with an SCN5A-S1812X variant revealed reduced INa, amplified 
Ito, and increased ICaL window current probability along with conduction slowing, 
demonstrating coexistence of repolarization and depolarization impairment in 
diseased cells[121].

At present, it is widely acknowledged that patient-specific genetic background is a 
key determinant of the phenotypical manifestation of BrS, as was reported by a team 
of researchers from Spain and United Kingdom[122]. As expected, iPSC-CMs from a 
patient with a SCN5A variation recapitulated the loss of function of Nav1.5 associated 
with the syndrome. Also, a shift in both activation and inactivation voltage-
dependence curves and faster recovery from inactivation were reported. Remarkably, 
conventional heterologous expression systems (i.e. immortalized HEK293 cells co-
expressing wild-type and mutant channels) failed to exhibit pro-arrhythmic changes in 
channel function, showing only a reduction in sodium current density, highlighting 
once again the need to assess the pathophysiological mechanisms of sodium channel 
mutations in a cardiac- and patient-specific model.
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IPSC technology has also been used to model BrS caused by mutations in genes 
other than SCN5A. Cerrone et al[123] were the first to describe the association of BrS and 
genetic variation in PKP2. They analyzed iPSC-CMs derived from five index cases 
carrying missense mutations in PKP2 and perceived reduced sodium channel 
expression and current. The phenotype was rescued by transfection of wild-type PKP2, 
demonstrating that not only loss of PKP2, but also single amino acid mutations, can 
interfere with INa.

In the vast majority of clinically-diagnosed BrS cases (85%), the genetic cause is not 
known despite extensive use of NGS[124]. Few research groups have used iPSC 
technology to uncover disease mechanisms at the cellular level in phenotype-positive 
genotype-negative patients[125,126]. Notably, no clear cellular electrophysiological 
differences between the iPSC-CMs obtained from BrS patients without identified 
pathogenic mutations and control-derived cells were seen. That finding indicated that 
alternative pathophysiological mechanisms may be involved in those specific cases, 
such as right ventricular fibrosis or diminished cardiomyocyte coupling through gap 
junctions. Last but not least, BrS may be a multifactorial disorder, caused by an 
interaction of common genetic variations and environmental factors[125].

MODELING PATIENT-SPECIFIC THERAPEUTIC REGIMENS
The right dose of the right drug for the right patient at the right time is not only the 
mantra of personalized or precision medicine, but a common challenge faced daily by 
clinicians all over the world[2,127]. With the advent of iPSC technology to guide 
therapeutic decisions in a patient-specific manner, tailoring treatment to a patient’s 
genetic background is yet to become a reality.

Prondzynski et al[128] employed patient-specific iPSC-CMs to define disease-related 
mechanisms and also to guide treatment in an HCM-affected family carrying a novel 
ACTN2 missense mutation[128]. Apart from previously described hallmarks of HCM, 
such as myofibrillar disarray, cell hypertrophy, increased myofilament Ca2+ sensitivity, 
hypercontractility, and prolonged relaxation, iPSC-CMs demonstrated enhanced L-
type calcium channel current and prolonged action potential duration compared with 
isogenic controls. Following the beneficial results of improved contractile and 
electrophysiological in vitro phenotype with diltiazem, an L-type Ca2+ channel blocker, 
the findings were translated into clinical settings where standard-dose diltiazem 
reverted the LQT phenotype in the son and sister of the index patient.

Although still in early stages, patient-derived iPSCs have been shown to facilitate 
optimal treatment in arrhythmic disorders. In a stepwise study, Terrenoire et al[88] 
established a patient-specific therapeutic regimen in a LQTS child with complex 
genetics and only partially-controlled arrhythmia with high-dose mexiletine[88]. The 
index patient had a de novo mutation in the sodium channel SCN5A and a common 
polymorphism in the potassium channel KCNH2. First, electrophysiological analysis of 
the iPSC-CMs revealed that the SCN5A mutation was responsible for the patient’s 
symptoms. Furthermore, the authors found that mexiletine inhibited the IKr 
potassium channels in iPSC-CMs from both the father and the proband, irrespective of 
KCNH2 polymorphism, which explained the limited ability of mexiletine to completely 
correct the repolarization defect. Hence, alternative strategies to control INaL have 
been tested on patient-derived iPSC-CMs, such as changes in pacing rate or the 
addition of a second Na+ channel blocker. The experimental data recommended 
mexiletine alone and an increased pacemaker rate as the best therapeutic option, 
which was further confirmed by the patient’s clinical evolution. In another LQTS3 
model, mexiletine rescued the abnormal electrophysiology in iPSC-CMs from a patient 
harboring a SCN5A mutation (p.V1763M)[87].

Specific drug screening using patient-derived iPSC models has also been performed 
in CPVT, where β-blockers are the drugs of choice, but often fail to avoid malignant 
arrhythmias. In symptomatic CPVT patients under standard β-blocker treatment, it 
was shown that individual-specific iPSC-CMs had a subadequate antiarrhythmic 
response to β-blockers, while both patient and iPSC-CMs responded more effectively 
to flecainide[105,110]. Clearly, the antiarrhythmic efficacy of different drugs is dependent 
on the underlying genetic variation. By patch-clamp analysis alone or by simultaneous 
patch-clamp and video imaging, Pölönen et al[129,130] assessed the antiarrhythmic effects 
of carvedilol and flecainide in CPVT patient-specific iPSC-CMs carrying diverse RYR2 
variants. They found mutation-specific differences in arrhythmias and drug responses, 
suggesting that proper treatment may vary even among subjects with mutations in the 
same genes[129,130]. Evidence from earlier studies indicated that dantrolene was able to 
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restore normal Ca2+ spark properties and rescue the arrhythmogenic phenotype in a 
patient-specific iPSC model[97]. Subsequent study revealed that not only that the 
location of the RYR2 mutation was critical for a favorable effect of dantrolene, but also 
suggested that the drug effect was dependent on the specific DNA alteration. 
Specifically, the antiarrhythmic effect was detected only in cases carrying mutations in 
the NH2-terminal or central regions of RYR2 protein. No effect was seen in subjects 
carrying mutations in the transmembrane region. Moreover, the effect of dantrolene 
was only minimal in iPSC-CMs with a Q4201R variant despite being located in the 
central region of RYR2 protein, even if at its end[131]. Indeed, the dantrolene binding site 
is located in the NH2-terminal region of RYR2 between amino acid 601 and 620. After 
specific binding, the drug restores normal channel gating and prevents uncontrolled 
Ca2+ release by stabilizing interdomain interactions between the NH2-terminal and 
central regions of RYR2, as previously reported[132,133].

MODELING VARIANTS OF UNCERTAIN SIGNIFICANCE
Sequencing of wide-ranging gene panels by high-throughput techniques on a daily 
basis has increased the rate of positive genetic testing, and it has also increased the 
detection of variants of uncertain significance (VUS). Recently, our group reported the 
yield of DNA testing in a cohort of HCM probands[134,135]. Nearly half (45%) of the rare 
variants identified in our study were novel, and thus classified as of VUS. All but two 
were found only once in our cohort. Similar results were obtained in other studies, 
which reported a prevalence of 35%-40% of new mutations, half of which were unique 
for a family[136]. The conclusive classification of VUS is encumbered by challenges, 
particularly in cases of “private” mutations, as it involves computational and 
population-based studies, not rarely misleading[137,138]. Combined use of recent 
technologies such as iPSC and gene editing have enabled functional annotation in 
specific cases.

Lv et al[139] used a dual-integrase cassette exchange platform to rapidly and 
efficiently generate iPSCs with the TNNT2-E251D variant harbored by a woman with 
severe HCM and otherwise negative genetic testing. Although the mutation was 
generally predicted to be pathogenic by in silico analysis, the allele frequency of 0.03% 
in the Exome Aggregation Consortium database was inconsistent with the disease 
incidence (i.e. too high), and the ClinVar archive included conflicting interpretations of 
clinical significance, but mostly VUS. TNNT2-E251D iPSC-CMs had normal responses 
to isoproterenol, suggesting that the variant might not be pathogenic. To exclude the 
possibility that the failure in attaining a pathological phenotype was due to lack of a 
permissive genetic background in the studied cells, the authors introduced an E251D 
point mutation into an edited iPSC line known to be vulnerable to cardiomyopathy 
with CRISPR-Cas9. Comprehensive investigation of the E251D iPSC-CMs showed 
normal responses to isoproterenol and no significant increase in cell size or expression 
of genes previously reported to be upregulated in HCM iPSC-CMs (e.g., TNNT2, 
MYL2, MYL4, and MYH7). This approach allowed specific recommendations to be 
made to relatives, namely not to undergo cascade genetic screening for the E251D 
variant.

In another study, iPSC-CMs were produced from an asymptomatic subject with a 
HCM associated mutation in MYL3, and reported by the ClinVar database to be likely 
pathogenic[23]. Extensive assays, including measurement of gene expression, sarcomere 
structure, cell size, contractility, action potentials, and calcium handling, were 
performed on isogenic iPSC-CMs that were either corrected or carrying homozygous 
alleles found that the VUS was benign.

With the goal of functional prediction of pathogenicity, Pettinato et al[140] developed 
a scalable human cardiomyocyte platform to interrogate TNNT2 variants previously 
identified in the human population. Using iPSC-CMs in cardiac microtissue and 
single-cell assays, they examined 51 TNNT2 variants, including 30 pathogenic/likely 
pathogenic variants associated with HCM/DCM, and 21 VUS. Experimental evidence 
including transcriptomic changes and cardiac microtissue contraction, supported the 
reclassification of two pathogenic/likely pathogenic variants and two VUSs. These 
findings are of a great interest given that most TNNT2 variants identified in the human 
population are classified as of VUS. therefore definite reclassification would enable 
specific clinical decision making for individuals harboring these variants.

In a similar manner, iPSC models were used to decipher the pathogenicity of 
variants detected in patients with inherited CNPs. By combining patient-specific iPSCs 
and genome editing, Garg et al[141] demonstrated the pathogenicity of a novel VUS in 
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the KCNH2 gene. Compared with healthy control cells, VUS iPSC-CMs displayed 
electrophysiological abnormalities consistent with LQTS2 phenotype (prolongation of 
action potential duration and reduced IKr density), which were rescued by VUS 
correction by CRISPR/Cas9. Furthermore, the introduction of the homozygous 
KCNH2-T983I variant in a healthy control line recapitulated the hallmark LQTS 
phenotype, confirming that the mutation was sufficient to prompt the disease.

Generation of iPSC lines from every single individual with a VUS in a CMP-/CNP-
related gene, followed by allele correction, and functional assessment is laborious and 
virtually impossible. Hence alternative approaches exploiting already existing and 
functionally characterized human iPSC lines has been considered. For example, 
commercially available human iPSC-CMs were used to screen a KCNJ2 VUS detected 
in a LQTS7 proband by whole exome sequencing[142]. VUS overexpression was 
associated with a substantial prolongation of APD with evidence of arrhythmic 
activity, emulating the clinical phenotype, and thus supporting causality of the 
variant.

Chavali et al[143] established a patient-independent human iPSC model as a new tool 
for rapid determination of genetic variant pathogenicity in LQTS. The authors used 
CRISPR/Cas9 to introduce a CACNA1C VUS from an unrelated healthy volunteer into 
a previously established iPSC line. Functional changes detected in gene-edited iPSC-
CMs allowed reclassification of CACNA1C-N639T variant to ‘’likely pathogenic”.

Considering all the available evidence, it can be easily seen that a screening 
platform based on edited human iPSC lines might be more informative than currently 
used procedures for variant classification, such as computational and population-
based methods.

CONCLUSION
Due to various genetic and environmental modulatory factors, Mendelian CMPs and 
CNPs are characterized by variable expressivity and incomplete penetrance, which 
often delays the clinical management of such patients. One issue to be addressed by 
upcoming studies is whether iPSCs can be used to identify genetic modifiers and to 
unveil the protective or aggravating underlying regulatory mechanisms. As a proof of 
concept, Chai et al[144] used complementary physiological and genomic analyses to 
identify genetic modifiers explaining the variable expressivity observed in a large 
LQTS2 family.

Although the feasibility of this new technology for disease modeling and drug 
testing has been demonstrated, there are currently some limitations that should be 
addressed in order to further recommend the use of iPSC-CMs in clinical practice. 
Thus, the main setbacks in using this approach on a large scale are the reproducibility 
of results among multiple laboratories and the immature phenotype displayed by 
these cells.

The first is due to the use of various methods for inducing pluripotency, 
chromosomal instability throughout the reprogramming process and in vitro 
manipulation, the purity in myocyte composition, and batch disparities in 
differentiated CMs[145]. Therefore, implementation of standardized protocols for 
patient-specific lines is important. Second, most iPSC-CMs have an immature 
structural and functional phenotype, with fetal gene expression, disorganized 
sarcomeres, primarily relying on glycolysis, and having contractile features different 
from those of adult CMs, such as spontaneous beating[146]. Those properties could 
negatively impact the interpretation of the cellular responses to various drugs and the 
prediction of the clinical value of the respective compounds. Consequently, it is 
imperative to develop methods to generate CMs with a more mature phenotype in 
order to improve the predictive value of in vitro studies. Recently, important progress 
in the maturation of iPSC-CMs has been made by using small molecules[147], 
environmental manipulation[148] and three-dimensional culture[149]. IPSC-based research 
is still at an early stage. Nevertheless, one can undoubtedly see its boundless potential 
for advancing personalized clinical management of individuals with inherited CMPs 
and CNPs.
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