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Diabetes disease mapping 

We included countries that reported DM questions and collected corresponding geographic 
coordinates for each primary sample unit (PSU) for spatial analyses. This selection criteria 
yielded the inclusion of nine countries (Albania, Benin, India, Kenya, Lesotho, Senegal, Timor- 
Leste, Tajikistan, and Zambia). Table S1 shows the detailed information for each country 
including survey year, number of males and females, ages for males and females, number of 
survey locations, and DM questions. The DHS included a DM self-reported status (e.g. “has a 
doctor or other health professional ever told you that you had diabetes?). The answer to these 
questions ranged from “yes”, “no”, and “do not know”. We excluded participants who answered 
the DM question different from “yes” or “no”. The final analytical samples for each country 
were: Albania (21,142 individuals in 715 PSUs), Benin (11,363 individuals in 555 PSUs), 
India(799,811 individuals in 28,518 PSUs), Kenya (27,539 individuals in 1,594 PSUs), Lesotho 
(8,473 individuals in 399 PSUs), Senegal (20,617 individuals in 391 PSUs), Timor-Leste (4,264 
individuals in 455 PSUs), Tajikistan (10,718 individuals in 366 PSUs), and Zambia (13,683 
individuals in 545 PSUs). 

DM prevalence at each PSU was calculated as the number of positive cases divided by the total 
number of participants with “yes” or “no” responses at each PSU. We employed a kernel 
smoothing method to generate a continuous kernel density surface to illustrate the local spatial 
variations of DM prevalence for each country (Figure 2). Note that the kernel density maps for 
Tajikistan and Zambia represent DM prevalence for females only. 

Supplementary Table 1  Summary of demographic and health survey data 
 Country Year 

 Sample Size Sample age # of Sample 
locations Diabetes 
question 

Female Male Female Male 

Albania 2017-18 15000 6142 15-59 15-59 715 Type of chronic illness: Diabetes (0--no; 1--yes) 

Benin 2017-18 15,928 7,595 15-49 15-64 555 Ever told by health professional that has high  blood sugar or diabetes 

India 2015-16 699,686 112,122 15-49 15-54 28526 Currently has diabetes 
Kenya 2014 31,079 12,819 15-49 15-54 1594 Blood sugar or diabetes? 

Lesotho 2014 6621 2931 15-49 15-54 381 diagnosed as diabetes 
Senegal 2010- 

2011 15688 4929 15-49 15-59 392 Suffering from: diabetes 
 Timor- 

Leste 2016 12607 4622 15-49 15-59 455 
 Ever diagnosed with high blood sugar or 
diabetes 
 by doctor or nurse 



Tajikistan 2017 10,718 0 15-49 - 366 Ever told that has high blood sugar or diabetes by  health worker 

Zambia 2018-19 13683 12132 15-49 15-59 545 Ever told by doctor or health worker that have  raised blood sugar or diabetes (only females) 

Note: Tajikistan did not include male respondents in the 2017 DHS. Zambia DHS had asked diabetes questions for 
females only. 

Spatial methods for the study of diabetes distribution 

The remarkable rise in prevalence of DM across the world has posed a severe threat to public 
health [1]. There are growing interests to employ several spatial analysis methods to investigate 
spatial variations of DM prevalence in the last two decades. 

In this section we present a series of studies using different spatial methods to study the spatial 
structure of DM. First, many studies have implemented spatial clustering techniques like Local 
Moran’s I, Getis-Ord Gi* statistics to identify geographical hotspots of DM prevalence in west 
Adelaide, Australia[2-4], in India [5, 6], in Nigeria [7], and in the city of Oslo, Norway [8]. Some 
studies have employed spatial statistic scan techniques to detect the spatial clusters of DM 
prevalence in India [9], and in the city of Winnipeg, Canada [10]. These studies have found that the 
spatial heterogeneity of DM prevalence was present across various local areas or regions. 
Second, some other studies have employed geographically weighted regression to examine 
spatial heterogeneity in the associations between DM prevalence and social and environmental 
risk factors in the U.S. [11-13], and in Netherlands [14]. In addition, [15]implimented a spatial 
regression model to examine the relationships between prevalence of diagonosed hypertension 
and DM and social determinants of health including poverty, minority status, food access, 
walkability, foreclosure risk, and crime. [16] used ordinary least square and spatial autoregressive 
models to explore the spatial variations of DM prevalence for women aged 35-49 years across 
640 districts in India. Third, some studies have implemented multilevel models with random 
slope to investigate the geographic variations of DM prevalence in Netherlands [17], in China [18, 

19], and in France [20, 21]. Fourth, a growing number of studies aggregated DM data to small-area 
level (i.e. census tracts, statistical areas) and investigated the associations between DM 
prevalence and environmental and sociodemographic risk factors [22-28]. 

Several studies have implemented multilevel analyses with Bayesian model approaches to 
analyze spatio-temporal distributions of the prevalence of DM [29-32]. Likewise, some studies 
used regression-based β-convergence approach accounting for spatial autocorrelation to examine 
the spatio-temporal changes in county-level diagnosed DM prevalence/incidence among U.S. 
adults during 2004-2009 [33] and during 2004-2012 [34]. [35] conducted sparse Poisson convolution 
and sparse Poisson MCAR models to investigate the spatial variations of DM incidences in 
young in US. 
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