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Abstract
Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell 
properties, which exhibit the characteristics of high tumorigenicity, self-renewal, 
and tumor initiation and are associated with the occurrence, metastasis, therapy 
resistance, and relapse of cancer. Compared with differentiated cells, CSCs have 
unique metabolic characteristics, and metabolic reprogramming contributes to the 
self-renewal and maintenance of stem cells. It has been reported that CSCs are 
highly dependent on lipid metabolism to maintain stemness and satisfy the 
requirements of biosynthesis and energy metabolism. In this review, we 
demonstrate that lipid anabolism alterations promote the survival of CSCs, 
including de novo lipogenesis, lipid desaturation, and cholesterol synthesis. In 
addition, we also emphasize the molecular mechanism underlying the 
relationship between lipid synthesis and stem cell survival, the signal trans-
duction pathways involved, and the application prospect of lipid synthesis 
reprogramming in CSC therapy. It is demonstrated that the dependence on lipid 
synthesis makes targeting of lipid synthesis metabolism a promising therapeutic 
strategy for eliminating CSCs. Targeting key molecules in lipid synthesis will play 
an important role in anti-CSC therapy.

Key Words: Lipid synthesis; Cancer stem cells; Anti-cancer therapy; Stem cell survival; 
Lipid anabolism
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Core Tip: Cancer stem cells (CSCs) are associated with the occurrence, metastasis, therapy resistance, and 
relapse of cancer. CSCs are highly dependent on lipid metabolism to maintain stemness and satisfy the 
requirements of biosynthesis and energy metabolism. Here, we review the molecular mechanism 
underlying the relationship between lipid synthesis and stem cell survival, the signal transduction 
pathways involved, and the application prospect of lipid synthesis reprogramming in CSC therapy. We 
demonstrate that lipid anabolism alterations promote the survival of CSCs.

Citation: Wang SY, Hu QC, Wu T, Xia J, Tao XA, Cheng B. Abnormal lipid synthesis as a therapeutic target for 
cancer stem cells. World J Stem Cells 2022; 14(2): 146-162
URL: https://www.wjgnet.com/1948-0210/full/v14/i2/146.htm
DOI: https://dx.doi.org/10.4252/wjsc.v14.i2.146

INTRODUCTION
Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell properties, which 
exhibit the characteristics of high tumorigenicity, self-renewal, and tumor initiation. They may be 
responsible for cancer occurrence, metastasis, therapy resistance, and relapse of cancer[1,2]. CSCs are 
able to differentiate into diverse cancer cell progenies to maintain the hierarchical organization of a 
tumor[3].

In solid tumors, the expression of the CSC markers, including CD133, CD44, and aldehyde dehydro-
genase (ALDH)1, is similar to that in normal human embryonic stem cells, thus transformed adult stem 
cells are one possible source of CSCs. Another possibility is differentiated cells under long-term stress 
conditions, which transform into CSCs through reprogramming due to genetic instability and epigenetic 
abnormalities[4-6] (Figure 1).

Various studies have shown that both CSC and non-CSC are plastic, and the interconversion between 
them may be a common phenomenon. Epithelial-to-mesenchymal transition (EMT) is the process by 
which epithelial cancer cells acquire a mesenchymal gene program that promotes migration and 
invasion. Many studies suggest that EMT promotes the transition from non-CSCs to CSC[7]. During 
EMT, cancer cells obtain stem cell-like properties to migrate and grow into distant tissues[8-10]. In a 
human model, the EMT major transcription factor Snail was elevated in cancer cells that displayed 
enhanced oncogenic capability and metastatic potential and was tightly associated with a CSC 
phenotype[11]. The plasticity of CSCs is also closely related to microenvironment. Angiogenesis, the 
hypoxic niche, and extracellular matrix are essential for maintaining the stemness of glioblastoma stem 
cells[12]. In addition, there is evidence that, in colon cancer, myofibroblasts enhance Wnt signaling 
through secreted factors, establishing a CSC niche and restoring the stemness of highly differentiated 
cancer cells[13]. In non-CSCs, the promoter of zinc-finger E-box-binding (ZEB)1, the key regulator of 
EMT, maintains the bivalent chromatin configuration, making non-CSCs respond readily to microenvir-
onmental signals. When the promoter converts to active chromatin configuration, ZEB1 transcription 
increases and non-CSCs convert to the CSC state.

Independent of the origin, CSCs are important cancer cell subsets. The existence of CSCs is clearly 
demonstrated in different types of cancer, including leukemia[14,15], tongue squamous cell carcinoma
[16], breast cancer[17], glioblastoma[18], lung cancer[19,20], and osteosarcoma[21]. They actuate tumori-
genesis and progression, and promote therapy resistance, metastasis, and recurrence of cancers. A 
growing number of studies have shown that metabolic reprogramming of cancer cells caused by 
changes in the microenvironment exerts a marked effect on the properties of stem cells.

METABOLIC REPROGRAMMING IN CSCS
The interaction between CSCs and the tumor microenvironment (TME) is related to tumorigenesis and 
disease progression[22]. Due to the rapid proliferation of tumor cells and insufficient angiogenesis, the 
TME has the characteristics of hypoxic, acidic, and nutrient-poor conditions; therefore, tumor cells must 
adjust energy metabolism to deal with this adverse microenvironment, and maintain the rapid growth 
and proliferation of tumor cells[23-25], a process called metabolic reprogramming. The metabolic 
phenotype of CSCs may depend on the microenvironment to a great extent.

Several studies have been conducted on a variety of cancer types, such as nasopharyngeal carcinoma
[26], leukemia[27], osteosarcoma[28], breast cancer[29], and ovarian cancer[30], which suggest that CSCs 
show a greater reliance on glycolysis for energy supply compared with other differentiated cancer cells 
in vitro and in vivo. Evidence suggests that paracrine hepatocyte growth factor/c-MET enhances the 
expression of hexokinase 2 and promotes glycolysis by activating Yes-associated protein (YAP)/ 
hypoxia-inducible factor-1α in pancreatic cancer, which may facilitate CSC-like properties[31].

https://www.wjgnet.com/1948-0210/full/v14/i2/146.htm
https://dx.doi.org/10.4252/wjsc.v14.i2.146
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Figure 1 Origin of cancer stem cells and regulatory pathways involved. There are two possible origins of cancer stem cells (CSCs), one is normal stem 
cells/progenitor cells, and the other is fully differentiated cells. CSCs are closely related to tumor microenvironmental factors. In the process of epithelial-
mesenchymal transformation, cancer cells acquire stem cell-like characteristics. The differentiation direction of CSC progeny is determined by niche signal, and the 
available niche space determines the number of progeny stem cells. When there is no space available in the niche, the stem cells divide into transient amplifying (TA) 
cells, which divide and differentiate rapidly. At the same time, niche cells reprogram TA cells and differentiated cells into CSCs by niche signals[7]. CSCs are 
important subsets of tumor cells, which are regulated by a variety of signal pathways, including Notch, Wnt/β-catenin, Hippo, and Hedgehog signaling, which are the 
main causes of cancer initiation, progression, metastasis, therapy resistance, and relapse. EMT: Epithelial-to-mesenchymal transition.

However, there is also growing evidence that mitochondrial oxidative metabolism is the preferred 
form of energy production in CSCs, including CD133+ colon cancer cells[32], CD44+ and CD117+ 
ovarian cancer cells[33], cholangiocarcinoma cells[34], brain tumor cells[35], and leukemia cells[36]. In 
addition, it is found that pancreatic CSCs (PaCSCs) are enriched in the oxidative phosphorylation 
(OXPHOS) promotion system using galactose instead of glucose as carbon source in vitro. And 
significant CSC features are present, such as the expression of multiple CSC biomarkers, the overex-
pression of stem-related pathways, the enhancement of self-renewal ability, and the significant 
improvement of tumorigenicity in vivo. Meanwhile, OXPHOS promoted the immune escape properties 
of PaCSCs[37].

A large number of the above studies have shown that CSC metabolism is highly heterogeneous. CSCs 
exhibit a metabolic phenotype dependent on glycolysis or OXPHOS, which mainly depends on the 
heterogeneity of tumor origin and surrounding microenvironmental conditions.

In addition to glucose metabolism, alterations in lipid metabolism also modulate tumor development 
and progression. Lipid metabolism is related to the stem cell properties in cancers. A growing body of 
evidence suggests that alterations in metabolic pathways associated with lipids, including fatty acids 
(FA) and cholesterol, are crucial for maintaining the stemness of CSCs. Lipid synthesis and catabolism 
are strictly regulated by CSCs to maintain self-renewal, proliferation, and chemotherapy resistance of 
the CSCs. Increased de novo lipid biosynthesis and lipid storage, as well as enhanced lipid oxidation, are 
unique features of many CSCs. It has been reported that fatty acid oxidation (FAO) can support self-
renewal and drug resistance of breast CSCs. The Leptin-LEPR-JAK-STAT3-dependent FAO pathway 
plays an important role in the self-renewal of breast cancer stem cell (BCSC) associated with 
chemotherapy resistance in breast cancer. Blocking FAO and/or Leptin re-sensitize them to 
chemotherapy and inhibit breast CSCs in vivo[38]. Furthermore, targeting FAO enhances the 
chemotherapy efficacy of cytarabine (AraC) in AraC-resistant acute myeloid leukemia enriched in 
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leukemic stem cells[39]. Mesenchymal stem cells promoted stemness and chemoresistance in gastric 
cancer cells through FAO in vitro and in vivo[40]. Lipid droplets (LDs), organelles that store neutral 
lipids, are accumulated in CSCs in numerous types of cancer[41,42]. LDs are more abundant in 
pancreatic and colorectal CSCs than in isogenic non-CSCs[43].

Lipid synthesis has been shown to play a significant role in maintaining the characteristics of CSCs 
during tumorigenesis. De novo lipid biosynthesis is one of the most targetable features of CSCs[44]. We 
will highlight the important role of lipid synthesis in CSCs, including the pathways involved and 
promising therapeutic targets (Figure 2).

ALTERATIONS AND KEY MODULATORS IN LIPID SYNTHESIS IN CSCS
Lipid synthesis includes de novo lipid biosynthesis, lipid desaturation, and cholesterol synthesis. 
Metabonomic analysis demonstrated that FA and cholesterol synthesis displays high activity in triple-
negative breast CSCs (TNBCSCs). Cholesterol synthesis is essential for the survival and migration of 
CSCs, and inhibition of cholesterol synthesis induces cytotoxic effects on CSCs. For instance, pyridine 
pamoate (PP) can induce a cell killing effect on CSCs and prevent tumor metastasis by inhibiting 
cholesterol anabolic flux. By supplementing cholesterol to restore the level of free and bound 
cholesterol, the cytotoxicity induced by PP is effectively limited[45]. Compared with non-CSCs, the rates 
of lipid unsaturation in the CSCs were further increased[46,47]. In addition, in various cancers such as 
ovarian cancer, glioblastoma multiforme, and colon cancer, more monounsaturated FAs (MUFAs) are 
demanded by CSCs, which indicates that MUFAs may be involved in mediating various signaling 
pathways in CSCs and associated with stemness, and lipid desaturation may be an ideal and specific 
therapeutic target for CSCs[48,49].

FA synthesis in CSCs
Experimental investigation indicated that de novo FA synthesis is more active in CSCs than in differen-
tiated cells, suggesting that it is essential for CSCs to maintain stemness. In CSCs, the key rate-limiting 
enzymes of de novo FA synthesis, including ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC), 
and fatty acid synthase (FASN), as well as sterol regulatory element-binding proteins (SREBPs), which 
regulate the expression level of lipid synthesis genes, are highly expressed.

ACLY
ACLY is principally located in the cytoplasm, which catalyzes the conversion of citrate to acetyl-CoA. 
Acetyl-CoA is not only an important substrate for the synthesis of FAs and cholesterol, but it is also 
necessary for protein acetylation reactions. Therefore, ACLY is a key enzyme of lipid synthesis that links 
catabolic pathways to biosynthesis. In many types of cancer, ACLY is upregulated or activated[50-52]. 
ACLY upregulation contributes to stemness maintenance and tumorigenesis[53,54]. ACLY overex-
pression increased the expression of Snail, which is known to promote EMT and stemness[55]. ACLY 
inhibition decreased the invasiveness of breast cancer cells, and targeting ACLY attenuated the prolif-
eration potential and cisplatin resistance in ovarian cancer[56,57].

ACC
ACC catalyzes the ATP-dependent carboxylation of acetyl CoA to generate malonyl-CoA, which is a 
rate-limiting step in de novo FA synthesis. In pancreatic cancer cells, inhibition of ACC inhibits Wnt and 
Hedgehog (HH) signal transduction by inhibiting palmitoylation of their ligands, and inhibits the 
growth of pancreatic tumors in vivo and in vitro. ACC inhibitors can restore tumor cells to histological 
epithelial phenotype in vitro[58]. Moreover, ACC is highly expressed in induced pluripotent stem cells 
(iPSCs). Pharmacological inhibition of ACC significantly reduced reprogramming efficiency in iPSCs
[59]. Research reveals that inhibiting the activation of ACC can effectively restore intracellular lipid 
levels, reduce EMT, and inhibit the features of CSCs[60].

FASN
FASN, the key enzyme of de novo lipogenesis, is highly expressed in human pluripotent stem cells 
(hPSCs) compared with that in hPSC-derived cardiomyocytes (hPSC-CMs)[61]. In addition, it is highly 
active in adult neural stem and progenitor cells, which require FASN-dependent lipogenesis for prolif-
eration[62]. Data suggest that de novo lipogenesis is higher and FASN expression is upregulated in 
glioma stem cells (GCSs). Pharmacological inhibition of FASN dramatically decreases the expression of 
GSC stemness markers, including Sox2, Nestin, CD133, and FABP7, and thus inhibits cell proliferation 
and invasiveness of GSCs[63]. Moreover, downregulation of FASN suppresses CSCs in breast cancer[64] 
and pancreatic cancer[65].

SREBP1
SREBPs are a class of transcription factors that regulate lipid homeostasis by controlling the expression 
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Figure 2 Alteration of lipid metabolic pathways in tumors and cancer stem cells. Cancer stem cells (CSCs) enhance lipid metabolic activities, such as 
fatty acid synthesis, fatty acid oxidation, and lipid storage, to promote self-renewal and proliferation. Key enzymes that control lipid metabolism (red letters) are 
considered to be ideal therapeutic targets for CSCs. CPT1: Carnitine palmitoyl-transferase 1; FAO: Fatty acid oxidation; TCA cycle: Tricarboxylic acid cycle; CD36: 
Cluster of differentiation 36; FA: Fatty acid; FASN: Fatty acid synthase; ACC: Acetyl-CoA carboxylase; ACLY: ATP citrate lyase; SREBP1: Sterol-regulatory element 
binding protein 1; SCD1: Stearoyl-CoA desaturase 1; MUFA: Monounsaturated fatty acid; HMGCR: 3-hydroxy-3-methylglutaryl coenzyme A reductase.

of a series of key enzymes required for cholesterol and FA synthesis. Three SREBP subtypes have 
distinctive roles in lipid synthesis: SREBP1a regulates FA and cholesterol synthesis, and cholesterol 
absorption, SREBP1c regulates FA synthesis, and SREBP2 specifically regulates cholesterol synthesis 
and uptake. SREBPs are downstream molecules of the PI3K/AKT/mTOR signaling pathway. 
Regulation of SREBPs through the PI3K/AKT/mTOR pathway can regulate glucose production and FA 
synthesis, and affect the proliferation and invasion of cancer cells[66,67]. Downregulation of SREBP 
inhibited the growth of non-small-cell lung cancer cells and liver cancer cells[67,68]. SREBP1 targets key 
enzymes of FA synthesis, such as ACLY, ACC, FASN, and stearyl coenzyme A desaturase 1 (SCD1), to 
regulate lipid metabolism[69], and is highly expressed in various cancers[69-71]. Compared to differen-
tiating melanosphere-derived cells, the expression of SREBP1 is enhanced in melanosphere-derived 
CSCs[42]. Gemcitabine is a standard treatment for advanced pancreatic cancer patients but can cause 
chemoresistance during treatment. The chemoresistant cells have features of CSCs. Gemcitabine is 
widely used in chemotherapy for advanced pancreatic cancer, but chemotherapy in turn promotes the 
stemness of CSCs. Resveratrol inhibits SREBP1, resulting in the inhibition of lipid synthesis and the 
stemness induced by gemcitabine, and enhances the sensitivity of gemcitabine[72].

Lipid desaturation in CSCs
MUFAs, such as palmitoleic acid and oleic acid, are key substrates in the formation of complex lipids 
such as phospholipids, triglycerides, and cholesterol esters, and maintain optimal fluidity of cellular 
membranes. Moreover, MUFAs have a protective function against the lipotoxicity caused by excess 
saturated FAs and other cellular stresses[73,74]. SCD catalyzes the committed step in the biosynthesis of 
MUFAs from saturated FAs[75,76]. There are two isoforms in humans, SCD1 and SCD5. The expression 
of SCD5 is high in the brain and pancreas, while SCD1 is the main subtype, and is highly expressed in 
adipose tissue, the brain, liver, heart, and lung[77]. SCD1 is overexpressed in a variety of tumors, 
including ovarian cancer[78], breast cancer[79], prostate cancer[80], and colon cancer[81]. The upregu-
lation of SCD1, which increases lipid desaturation and relieves endoplasmic reticulum stress, promotes 
ovarian cancer progression and metastasis[82]. Inhibition of SCD1 can inhibit the growth of leukemic 
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cells in the central nervous system[83]. A growing number of studies on SCD1 have indicated that it 
plays a key role in tumorigenesis and maintenance of stemness[84-86]. SCD1 promotes the activation of 
NF-κB by increasing the synthesis of polyunsaturated FA (PUFAs) to promote CSC characteristics. In 
turn, the NF-κB pathway regulates the expression of lipid desaturase by regulating transcription. This 
supports a positive feedback loop involving the NF-κB pathway and lipid desaturase in ovarian CSCs
[46]. Furthermore, SCD1 controls the fate of breast CSCs by regulating Wnt/β-catenin signaling[87].

Cholesterol synthesis in CSCs
Cholesterol is an important component of cell membranes and lipid rafts. Highly proliferating cancer 
cells require increased cholesterol synthesis to meet the need for rapid production of cell membranes. At 
the same time, metabolically active cancer cells need lipid rafts to form signal complexes for multiple 
complex signal transduction[88,89]. Cholesterol is produced by a variety of biosynthetic processes or 
obtained from the diet. Cholesterol synthesis occurs in most tissues and cells. The synthetic pathway 
involves the conversion of acetyl-CoA to cholesterol through a series of enzymatic reactions, including 
the biosynthesis of mevalonate (MVA) and squalene[90,91]. There are three crucial players in the 
cholesterol synthesis pathway, namely, SREBP2 and the two key rate-limiting enzymes, 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR) and squalene epoxidase (SQLE). Of these, SREBP2 is the 
master transcriptional regulator of cholesterol biosynthesis. HMGCR and SQLE reduce HMG-CoA to 
MVA and catalyze the oxidation of squalene to 2,3-epoxy-quinenone, respectively[92]. Increased 
cholesterol synthesis is considered to be a unique hallmark of many cancers[93]. Pharmacological 
inhibition of cholesterol biosynthesis dramatically suppressed crypt growth in vivo and ex vivo, which 
demonstrates that cholesterol itself acts as a mitogen for intestinal stem cells (ISCs). Cholesterol biosyn-
thesis can drive ISC proliferation and tumorigenesis[94]. Proteomic analysis of tumor tissues, patient-
derived xenograft, and mammospheres known to be enriched in CSCs revealed that the expression of 
proteins involved in the cholesterol synthesis pathway in CSCs increased. Simvastatin or siRNA 
blocking cholesterol biosynthesis reduced the formation of mammospheres. These results confirm that 
CSCs are highly dependent on metabolic processes associated with cholesterol biosynthesis, suggesting 
that the cholesterol biosynthesis pathway is a potential therapeutic target for the elimination of CSCs
[95].

SREBP2
SREBP2 specifically regulates cholesterol synthesis and uptake to maintain intracellular cholesterol 
homeostasis. Evidence indicates that apoA-I binding protein-mediated cholesterol efflux activates 
endothelial SREBP2 which in turn transactivates Notch and promotes hematopoietic stem and 
progenitor cell (HSPC) emergence. SREBP2 inhibition impairs hypercholesterolemia-induced HSPC 
expansion[96]. Biofunctional analyses demonstrated that SREBP2 promotes stem cell-like characteristics 
and metastasis of prostate cancer cells. The overexpression of SREBP2 increases the population of 
prostate CSCs and promotes the tumorigenicity of prostate cancer cells in vivo, while gene silencing of 
SREBP2 inhibits the growth, metastasis, and stemness of prostate cancer cells[97]. In colon cancer, 
inhibition of SREBP2 blocked the proliferation of cancer cells and reduced CSC properties. Knockdown 
of SREBP inhibits the growth of xenograft tumor in vivo[98].

MVA pathway 
The MVA pathway produces isoprenoids, such as cholesterol and vitamin D, which are essential for a 
variety of cellular functions from cholesterol synthesis to cell survival and growth[91]. Many studies 
have shown that numerous enzymes (HMGCR, FDPS, squalene synthase, and SQLE) required for 
cholesterol synthesis in the MVA pathway are overexpressed and overactivated in several cancers, 
including multiple myeloma, as well as breast, gastric, lung, colon, and prostate cancers. Targeting 
MVA can effectively inhibit the survival and proliferation ability of cancer cells and reduce the 
tumorigenic potential[99-104]. Overactivation of key enzymes in cholesterol synthesis in the MVA 
pathway is usually associated with a poor prognosis with shorter disease-free survival and reduced 
overall survival[105-107]. Statins inhibit HMGCR, the rate-limiting enzyme of the MVA pathway. 
Genetic variants associated with low HMG-CoA reductase function significantly reduced the risk of 
epithelial ovarian cancer[108]. Lovastatin inhibited SOX2 promoter transactivation and reduced the 
efficiency of mammosphere formation and the percentage of ALDH+ cells in vitro. Gene set enrichment 
analysis indicated that lovastatin downregulates genes that are involved in stemness and invasiveness 
of breast CSCs[109]. Atorvastatin has a stronger anti-proliferative effect on CSCs by inhibiting the MVA 
pathway[110]. Cholesterol and MVA increase the proliferation of breast CSCs and promote breast 
cancer progression, invasion, and chemotherapy resistance through activation of the estrogen-related 
receptor α pathway[111]. Long non-coding RNA (lncRNA)/mRNA microarray assays showed that a 
novel lncRNA (named lnc030) cooperates with poly (rC) binding protein 2 (PCBP2) to stabilize SQLE 
mRNA, resulting in increased cholesterol which activates PI3K/Akt signaling in governing BCSC 
stemness[112].

In addition, the MVA pathway is the only source of intracellular isopentenyl- diphosphate, which 
produces farnesyl-diphosphate and geranylgeranyl-diphosphate (GGPP) for the prenylation of proteins. 
For example, different types of preacylation enable the RasGTPase superfamily, including Ras and 
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Ral/Rho, to be correctly directed to specific subcellular membranes to function. The RasGTPase 
superfamily affects a variety of cellular processes in cancer progression and participates in EMT, tumor 
progression, metastasis, and chemotherapy resistance. Inhibition of the MVA pathway can reduce 
GTPases prenylation and can induce the death of cancer cells, suggesting that these MVA pathway 
metabolites are essential for cancer cell viability[91,110]. In addition, inhibiting the MVA pathway with 
small-molecule inhibitors such as statins has been shown to cause inhibition of YAP/transcriptional co-
activator with PDZ-binding motif (TAZ) activity. Studies have shown that the activation of RhoGTPases 
requires GGPP, and the Rho-dependent YAP/TAZ regulatory pathway inhibits YAP/TAZ phos-
phorylation and promotes their nuclear accumulation to play a role[113-115]. Decreasing the activation 
of Rho-GTPases and Hippo-YAP/TAZ represses the expression of genes associated with breast cancer 
stemness[116]. YAP/TAZ nuclear accumulation and transcriptional activity are attenuated by Rho-
GTPase/F-actin signaling to increase the sensitivity to chemotherapeutic drugs and suppress breast 
cancer chemoresistance[117].

MECHANISM OF LIPID SYNTHESIS REPROGRAMMING IN CSCS
In CSCs, there are a series of pathways involved in lipid metabolism to maintain cell stemness, and 
sustain their survival, proliferation, and invasion, including Notch, hippocampal cascade, HH, and Wnt 
signaling (Figure 3).

Notch signaling
Notch signaling is a highly conservative signal transduction pathway, which is closely related to various 
biological behaviors such as tumor metastasis and immune escape[22,118,119]. In terms of lipid 
metabolism, the Notch signaling pathway can regulate the expression of peroxisome proliferator-
activated receptor α and lipid oxidation genes to achieve lipid homeostasis and redox homeostasis[120]. 
In colon cancer, targeting SCD1-dependent lipid desaturation selectively eliminates colon CSCs by 
inhibiting Notch signaling[49,121].

Wnt signaling pathway
The Wnt signal cascade includes three main pathways: The canonical Wnt pathway, which leads to the 
accumulation of β-catenin, activates the transactivation complex, and participates in tumorigenesis, the 
non-canonical planar cellular polarity pathway, and the non-canonical Wnt-calcium pathway[119]. At 
least 19 Wnt family members have been identified in humans, all of which are lipid-modified secretory 
glycoproteins. They are the ligands of ten Frizzled family receptors[22,122].

Wnt signaling plays a key role in regulating CSCs[13,123,124]. The canonical Wnt signaling pathway, 
activated by ligands such as Wnt2β and Wnt3, promotes the proliferation of CSC by up-regulating β-
catenin and terminating target β-catenin and STOP-target proteins, such as FOXM1, MYC, and 
YAP/TAZ, while the non-canonical Wnt signaling pathway in CSCs is activated by non-canonical Wnt 
ligands such as Wnt5A and Wnt11, thus activating the PI3K/AKT signal and inducing YAP/TAZ-
dependent transcriptional activation to promote survival and therapeutic resistance of CSCs[125]. In 
contrast, tumor invasion and metastasis are driven by both the canonical and non-canonical Wnt 
signaling cascades. Canonical Wnt/β-catenin and Wnt/STOP signaling cascades cooperatively 
upregulate SNAI1 to initiate EMT of CSCs[126].

Wnt signaling has also been associated with lipid synthesis in CSCs. The canonical Wnt/β-catenin 
pathway regulates de novo lipogenesis and fatty acid monounsaturation[127]. SCD could be a key 
regulator between the Wnt signaling pathway and lipid metabolism. In mouse liver CSCs, the 
expression of SCD is regulated by the Wnt-β-catenin signaling pathway, while MUFAs produced by 
SCD provide a positive feedback loop to amplify Wnt signaling by promoting the stability and 
expression of Lrp5/6 mRNA[128]. Another study suggests that MUFAs are crucial in the production 
and secretion of Wnt ligands[129]. Finally, FA metabolism, especially SCD1 activity, in YAP/TAZ 
signaling depends on the activity of the β-catenin pathway in CSCs[130].

Hippo signaling
The core of the Hippo signaling pathway is the kinase cascade involving mammalian STE20-like 
(MST)1/2 and LATS1/2. MST1/2 activates LATS1/2 by promoting autosphosphorylation of LATS1/2 
or by phosphorylation of MOB1, resulting in degradation of the downstream transcriptional 
coactivators YAP1 and TAZ, thereby limiting YAP activity[22,131]. YAP/TAZ activation leads to the 
induction of CSC properties, including self-renewal, tumorigenic potential, anoikis resistance, EMT, 
drug resistance, and metastasis, in a wide range of human cancers[132,133]. As mentioned earlier, in 
lung CSCs, SCD1 regulates lung cancer stemness by stabilizing YAP/TAZ and nuclear localization
[130]. The positive feedback loops of LATS2 and p53 inhibit cholesterol synthesis, and LATS2 binds to 
the endoplasmic reticulum tethered precursor (P-SREBP) of SREBP1 and SREBP2, and inhibits the 
transcription of SREBP mRNA, thus inhibiting the activity of cellular SREBP[134]. Recent studies have 
revealed that the cancer-promoting properties of YAP/TAZ depend on cholesterol biosynthesis activity 
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Figure 3 Signaling pathways involved in lipid metabolism in cancer stem cells. There are four major signaling pathways, including Notch, Wnt, Hippo, 
and Hedgehog signaling, involved in lipid metabolism to maintain cell stemness, and sustain their survival, proliferation, and invasion. GGPP: Geranylgeranyl 
pyrophosphate; MUFA: Monounsaturated fatty acids; YAP: Yes-associated protein; TAZ: Transcriptional co-activator with PDZ-binding motif; SREBP: Sterol 
regulatory element-binding protein; SCD1: Stearyl coenzyme A desaturase 1; TEAD: Transcriptional enhanced associate domain; FAO: Fatty acid oxidation; SMO: 
Smoothened; HH: Hedgehog; SMP: Scalp micropigmentation.

and MVA-dependent nuclear localization and activity of YAP/TAZ[114]. YAP/TAZ-mediated lipid 
synthesis may be an important factor affecting the metabolic changes of CSCs[135].

HH signaling
The HH signaling pathway, which is responsible for the signal transmission from the cell membrane to 
the nucleus, is a highly conservative pathway. HH ligands mainly include Sonic hedgehog (SHH), 
Indian HH, and Desert HH. The HH signal pathway is activated by the binding of HH ligands to the 
transmembrane proteins Patched (PTCH)1/2, which release the inhibition of smoothened (SMO), 
leading to the activation of glioma transcription factors, thus inducing target gene transcription[22]. HH 
ligands have been found to be activated in CSCs. High fibrillar collagen content resulting from HH 
pathway activation promotes breast cancer cell stemness. In cholangiocarcinoma, hypoxia promoted 
SHH pathway activation. Inhibition of the SHH pathway by cyclopamine significantly attenuated the 
expression of CSC transcription factors, leading to the abrogation of CD133 expression and EMT[136].

Previous evidence suggested that lipids are key regulators of HH signaling. The cholesterol covalent 
modification of SMO is regulated by the HH signaling pathway and is very important for the signal 
transduction and cell biological function of HH. PTCH1 inhibits the cholesterol modification of SMO, 
while the overexpression of SHH increases the cholesterol modification of SMO[137]. In addition, SMO 
activates adenosine monophosphate kinase via the non-canonical pathway, directly or indirectly 
inhibiting FA and cholesterol synthesis[138].

APPLICATION PROSPECTS OF LIPID SYNTHESIS REPROGRAMMING IN THE TR-
EATMENT OF CSCS
CSCs can adapt easily to changes in the nearby environment and are more resistant to conventional 
therapies than other cancer cells. However, their proliferation and survival are highly dependent on 
lipid synthesis, which provides a point of penetration for the establishment of efficient targeting 
strategies to eliminate CSCs. Targeted clearance of CSCs can be achieved by interfering with different 
aspects of lipid synthesis, such as FA synthesis, lipid desaturation, and cholesterol synthesis (Table 1).
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Table 1 Inhibitors related to lipid synthesis enzymes of cancer stem cells

Metabolism type Targeting 
enzyme Drug Cancer type

Metabolic processes or 
signaling pathways 
involved

Study type

FASN Cerulenin Glioma stem cells[63], 
pancreatic CSCs[65]

FASN Preclinical trial

FASN TVB-2640 NSCLC and breast 
cancer[139]

FASN Clinical trial

ACC Soraphen A Breast CSCs[140] FASN Preclinical trial

ACC ND-646 Non-small-cell lung 
CSCs[142]

FASN Preclinical trial

Lipogenesis

ACC Leptin Breast CSCs[141] TAK1-AMPK signaling Preclinical trial

SCD1 CAY10566 Ovarian CSCs[46], 
glioblastoma CSCs[84]

NF-κB pathway, ER stress Preclinical trial

SCD1 A939572 Liver cancer[146], etc. MUFA synthesis Preclinical trial

SCD1 MF-438 Colon CSCs[121], lung 
CSCs[85]

Wnt, Notch, and YAP/TAZ 
signaling

Preclinical trial

SCD1 PluriSIn#1 Colon CSCs[121], liver 
CSCs[150]

Wnt/β-catenin and Notch 
signaling

Preclinical trial

Lipid desaturation

Delta 6 desaturase SC-26196 Ovarian CSCs[46] Polyunsaturated fatty acid 
synthesis

Preclinical trial

25-HC or fatostatin Colon CSCs[98] Fatty acid synthesis and 
cholesterol synthesis

Preclinical trialSREBPs

Pyrvinium pamoate TNBC CSCs[45] Cholesterol biosynthesis Preclinical trial

Cholesterol synthesis

HMGCR Simvastatin Breast CSCs[95] Cholesterol biosynthesis FDA-approved 
cardiovascular system 
drug

HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; CSCs: Cancer stem cells; FDA: Food and Drug Administration; TNBC: Triple negative breast cancer; 
ACC: Acetyl-CoA carboxylase; FASN: Fatty acid synthase; MUFA: Monounsaturated fatty acid; NSCLC: Non-small cell lung cancer; YAP: Yes-associated 
protein; TAZ: Transcriptional co-activator with PDZ-binding motif; SREBP: Sterol regulatory element-binding protein; SCD1: Stearyl coenzyme A 
desaturase 1.

Targeting FA synthesis
FASN is the most targetable among the lipogenesis genes. Some FASN inhibitors have shown anti-CSC 
and anti-tumor activities. Both inhibitor and RNA silencing of FASN decreased invasiveness, sphere 
formation, and expression of stemness markers to kill various CSCs[63,65]. A new generation of FASN 
inhibitors is being developed, and data from early clinical trials on TVB-2640, a FASN inhibitor, show a 
partial tumor response in patients with non-small-cell lung cancer and breast cancer when TVB-2640 
was used in combination with paclitaxel[139]. Similarly, Soraphen A, an ACC inhibitor, suppressed 
mammosphere formation. Sorafen A treatment inhibited the self-renewal and growth of CSC-like cells 
by blocking FA synthesis and eliminated the promoting effect of human epidermal growth factor 
receptor 2 on CSC proliferation[140]. Moreover, inhibition of ACC suppresses tumor growth, metastasis, 
and recurrence in non-small-cell lung cancer and breast cancer[141,142], indicating that ACC has great 
significance and potential in inhibiting CSCs and cancer.

However, in addition to being produced through the ACLY pathway, acetyl-CoA can also be 
produced by glucose or acetate metabolism to enter the process of fatty acid synthesis[143,144]. In 
cancer cells, ACLY silencing increases the expression of ACC2, which maintains lipid synthesis in an 
acetate-dependent manner[145]. Despite the knockdown of ACLY diminishing the number of breast 
CSCs, the effect of ACLY deficiency remains to be studied in CSCs.

Targeting lipid desaturation
Targeting SCD1, which converts fully saturated fatty acids to MUFAs, can selectively kill CSCs. It is 
reported that SCD1 inhibitors, such as CAY10566 and A939572, suppress cancer stemness and prevent 
tumorigenesis, and can counteract cancer cell chemoresistance[46,146]. Significantly, MF-438 and 
PluriSIn #1, as SCD1 inhibitors, selectively eliminate colon CSCs but not the bulk cancer cells[121]. 
Furthermore, inhibition of SCD1 increased the sensitivity of CSCs to cisplatin and reduced drug 
resistance[85]. Therefore, combining SCD1 inhibitors with chemotherapy may be a more effective 
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treatment strategy. Other studies have shown that miR-600 targeting SCD1 regulates Wnt/β-catenin 
signaling, thereby inhibiting the self-renewal and differentiation of mammary CSCs. Therefore, in 
addition to SCD1 inhibitors, nanovectorized miR-600 agonists (promiRNAs) may serve as a targeted 
tumor stem cell therapy[87]. Delta 6-desaturase inhibitors block the globular formation and tumor-
initiating ability of ovarian CSCs by inhibiting the synthesis of PUFAs[46].

Targeting cholesterol synthesis
Activation of cholesterol synthesis could be relevant to the aggressive and metastatic potential in CSCs. 
Inhibition of SREBP activation by 25-HC or fatostatin inhibits lipogenesis, including FA and cholesterol, 
and decreases the expression of genes associated with CSCs[98]. PP significantly inhibits lipid 
anabolism in CSCs. In triple-negative breast cancer, PP exerts cytotoxic effects on TNBCSCs by 
inhibiting cholesterol synthesis[45]. Simvastatin significantly reduced mammosphere formation and 
growth through inhibition of cholesterol biosynthesis[96]. In addition, statins target CSCs by inhibiting 
the signaling associated with protein farnesylation, and protein geranylgeranylation in the MVA 
pathway[147,148]. Similarly, metformin suppresses CSCs through inhibiting protein prenylation of the 
MVA pathway in colorectal cancer[149].

CONCLUSION
In the past few years, many studies have shown that CSCs are responsible for tumor occurrence and 
development, distant metastasis, and therapy resistance. Metabolic alterations are the main pathways 
for cancer cells and CSCs to escape from adverse environmental effects. Among the reprogrammed 
metabolic pathways, alterations in lipid synthesis such as de novo lipogenesis, lipid desaturation, and 
cholesterol synthesis are closely related to CSC generation and stemness maintenance. Furthermore, 
lipid synthesis is also involved in the activation of several important oncogenic signaling pathways, 
including Notch, Wnt/β-catenin, Hippo, and HH signaling. Taking the key molecules of lipid synthesis 
as the target shows promising application potential in the elimination of CSCs. Therefore, we believe 
that altered lipid synthesis metabolism is a promising target for CSC elimination and tumor therapy.
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