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Abstract
The development of maintenance hemodialysis (HD) for end stage kidney disease 
patients is a success story that continues to save many lives. Nevertheless, 
intermittent renal replacement therapy is also a source of recurrent stress for 
patients. Conventional thrice weekly short HD is an imperfect treatment that only 
partially corrects uremic abnormalities, increases cardiovascular risk, and 
exacerbates disease burden. Altering cycles of fluid loading associated with 
cardiac stretching (interdialytic phase) and then fluid unloading (intradialytic 
phase) likely contribute to cardiac and vascular damage. This unphysiologic 
treatment profile combined with cyclic disturbances including osmotic and 
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electrolytic shifts may contribute to morbidity in dialysis patients and augment the health burden 
of treatment. As such, HD patients are exposed to multiple stressors including cardiocirculatory, 
inflammatory, biologic, hypoxemic, and nutritional. This cascade of events can be termed the 
dialysis stress storm and sickness syndrome. Mitigating cardiovascular risk and morbidity 
associated with conventional intermittent HD appears to be a priority for improving patient 
experience and reducing disease burden. In this in-depth review, we summarize the hidden effects 
of intermittent HD therapy, and call for action to improve delivered HD and develop treatment 
schedules that are better tolerated and associated with fewer adverse effects.

Key Words: End stage kidney disease; Cardiovascular mortality; Dialytic morbidity; Circulatory stress; 
Biologic storm; Dialysis sickness; Personalized medicine

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this in-depth review, we summarize the hidden effects of intermittent hemodialysis (HD) 
therapy, namely, dialysis sickness and dialysis related morbidity. We call for action to improve delivered 
HD and develop treatment schedules that are better tolerated and associated with fewer adverse effects. 
The final aim is to reduce cardiovascular burden and improve patient outcomes.
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Kotanko P. Hidden risks associated with conventional short intermittent hemodialysis: A call for action to mitigate 
cardiovascular risk and morbidity. World J Nephrol 2022; 11(2): 39-57
URL: https://www.wjgnet.com/2220-6124/full/v11/i2/39.htm
DOI: https://dx.doi.org/10.5527/wjn.v11.i2.39

INTRODUCTION
Conventional hemodialysis (HD) is a mature treatment that sustains life in almost 3 million patients 
with end stage kidney disease (ESKD) worldwide and provides a valuable bridging solution to kidney 
transplant[1-4]. However, by nature intermittent HD is an imperfect treatment that only partially 
corrects uremic abnormalities, increases cardiovascular risk, and is associated with a high disease 
burden[5-11]. The high treatment costs of renal replacement therapy represent in addition a significant 
health economic burden[12-14].

Recent evidence indicates that conventional high efficiency thrice-weekly intermittent HD schedules 
may be harmful to patients by provoking alternating cycles of fluid loading associated with cardiac 
stretching during the interdialytic period and fluid unloading that contribute to cardiac and vascular 
damage. This unphysiologic loading and unloading phenomenon combined with cyclical disturbances 
including osmotic and electrolytic shifts may contribute to dialytic morbidity and augment the health 
burden associated with the treatment of uremia[15-17].

Over past few years, several studies have emphasized the importance of ensuring optimal fluid 
volume and arterial pressure control, as well as adequately dosed and better tolerated dialysis therapy 
to improve patient outcomes[18]. The benefits of a dry weight first policy approach has been reinforced 
by interventional studies[19-21]. Fluid volume guidance has also been facilitated by means of 
supportive tools[22-24]. On the other hand, prospective clinical studies not only have documented that 
intermittent treatment might cause significant circulatory stress depending on treatment time and 
schedule[10,25-27], but have also shown that guided interdialytic and/or specific dialysis-based 
interventions might be able to reduce this risk[10,28,29].

However, few reports have focused on all aspects of dialysis patient management in a comprehensive 
way[30-32]. In this in-depth review, we summarize potential harmful effects of intermittent HD and 
propose solutions for achieving more cardioprotective and tolerable treatment.

INTERMITTENT EXTRACORPOREAL RENAL REPLACEMENT THERAPY IS THE SOURCE 
OF PERMANENT STRESS IN MAINTENANCE HD PATIENTS
Cardiocirculatory stress
The ‘unphysiology’ of intermittent HD is recognized as a leading cause of dialysis intolerance and 
multiorgan morbidity[33,34]. This phenomenon was exacerbated by operational changes that resulted in 

https://www.wjgnet.com/2220-6124/full/v11/i2/39.htm
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shortening of dialysis treatment schedules and increasing dialysis efficiency[35]. As such, intermittent 
HD generates periodic changes in volume and blood pressure, osmotic shifts, and variation in 
circulating levels of compounds and electrolytes. Treatment-induced disturbances are in complete 
contrast with strictly regulated and stable conditions of the internal milieu in healthy subjects[32,36,37] 
(Figure 1).

During the interdialytic period, anuric HD patients tend to accumulate sodium and fluid according to 
fluid and diet intake, leading to chronic fluid overload[38]. In this condition, fluid overload has two 
components: The first, resulting from cyclic changes imposed by intermittent treatment marked by 
weight gain and progressive increase of systemic arterial pressure and pulmonary arterial pressure with 
cardiac stretching occurring between two treatment sessions; and the second, which reflects chronic 
fluid overload that has accumulated over time, exposing patients to chronic cardiac stretching and 
structural cardiac remodeling[39] (Figure 1).

During the intradialytic period, sodium and fluid removal resulting from ultrafiltration (intradialytic 
weight loss) and the patient to dialysate sodium gradient contributes to reducing circulating blood 
volume and triggering an adaptative hemodynamic response[40,41]. In response to ultrafiltration 
provoking a reduction in blood volume and cardiac stroke volume, arterial pressure and tissue 
perfusion are maintained by an increase in vascular tone, mainly through vasoconstriction of alpha-
adrenoceptor territories, and an increase of vascular refilling and in venous return[42,43]. Recent 
intradialytic imaging studies have shown that reductions in myocardial perfusion and contractility 
(myocardial stunning) are linked to ultrafiltration rate that happens even without ischemic cardiac 
disease[17,44,45]. Several observational studies have reported a strong association between mortality 
and high ultrafiltration rate or volume changes, drop in blood pressure, and end-organ ischaemic insult
[10]. The systemic response is more complex than a simple reaction to hypovolemia, since it 
incompasses others factors such as vascular refilling capacity, thermal balance, electrolyte fluxes, 
nutrient losses, as well as the individual patient’s baseline cardiac reserve and neurohormonal stress 
responses[45,46]. Interesting, this response may be mitigated by various factors (e.g., age, gender, 
comorbidity, and medication) explaining individual or temporal variations in hemodynamic response
[38,47]. The hemodynamic stress induced by dialysis must be considered as a potent disease modifier in 
highly susceptible patients[48] (Figure 1).

Whatever the exact contribution of these phenomena, dialysis-induced cyclical volemic changes 
(hyper- and hypo-volemia) provoke alternating cardiac loading and unloading. This volemia variation 
cycle is responsible for repetitive myocardial stretching, a mechanism that leads to release of inflam-
matory mediators and promotes cardiac fibrosis and arrhythmias[49,50] (Figure 1).

Inflammatory stress
Bio-incompatibility (or more specifically, hemo-incompatibility) of the extracorporeal blood circuit and 
its systemic effects is a well identified issue associated with several aspects of dialysis related morbidity
[51,52]. In brief, the activation of a cascade of serum proteins and blood cells is induced upon contact 
with foreign material in the extracorporeal circuit[53,54], and endothelial damage may further induce a 
vascular endothelial breach[55]. This process is further modified by the geometry, design (e.g., blood air 
interface and dead space), and nature of blood tubing (e.g., type of polymer and plasticizer) or dialyzer 
membrane (e.g., cellulosic and synthetic), and may be amplified by microbial-derived products from 
dialysis fluid (e.g., lipopolysaccharide, endotoxins, and bacterial DNA)[56-59]. As a result, endothelial 
cells and circulating blood cells (e.g., platelets, leukocytes, and monocytes) are primed and activated to 
release pro-inflammatory mediators (e.g., platelet activating factor 4, beta-thromboglobulin, granu-
locytes proteinases, anaphylatoxins, and cytokines) and activate protein cascades (e.g., clotting cascades, 
complement activation, surface contact, and kallikrein-kinin system)[60-66]. Activation of the innate 
immune and coagulation systems amplifies and propagates this reaction[67]. Platelets and endothelial 
cell activation trigger coagulation, endothelial damage, vascular reactivity, and pulmonary trapping of 
cells. Mononuclear leukocyte activation results in the release of enzymes (e.g., granulocyte neutral 
proteinase and elastase)[60,68-70], and increases their reactivity and adhesiveness that may cause 
obstruction at the microcirculatory level. In the lungs, this may contribute to hypoxemia[71-73]. 
Activation of monocytes and macrophages induces release of proinflammatory cytokines [interleukin 
(IL)-1, IL-6, and tumor necrosis factor-α][74,75]. In addition, acute inflammatory reactions are amplified 
by oxidative stress in an amplifying loops contributing to a vicious circle[74]. Seminal studies performed 
in various HD settings (e.g., cellulosic vs synthetic dialyzers and contaminated vs ultrapure dialysate) 
have documented the importance of this “biologic storm” and provided evidence of its damaging effects 
(e.g., allergic reaction, lung dysfunction, thrombocytopenia, and inflammation)[67,76] (Figure 1).

Despite significant improvements in extracorporeal circuit biocompatibility and wide-spread use of 
ultrapure dialysis fluid, systemic hemobiological reactions periodically induced by extracorporeal 
treatment[77,78] are likely to contribute to a micro-inflammatory state in chronic HD patients that 
amplifies long-term deleterious effects[30,75,79] (Figure 1).

Biological stress
In the absence of significant kidney function, internal metabolic processes and dietary intake produce 
metabolites during the interdialytic phase that steadily accumulate over 48 h and lead to classical 
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Figure 1 Intermittent extracorporeal renal replacement therapy is the source of permanent stress in hemodialysis patients. HD: 
Hemodialysis; CVC: Central venous catheter.

biologic uremic abnormalities[80]. During dialysis, biologic disorders are usually corrected, at least 
partially, within 4 h. Biologic gradients between the dialysate and blood may be large, resulting in high 
amplitude changes of body composition during each session[32,76,81,82]. This gradient stress may be 
easily quantitated by dialysate-blood gradient concentrations and time averaged deviations for various 
solutes that are exchanged during the dialysis session[81]. Solutes exchange in HD follows negative or 
positive gradients, knowing that solute gradient is conventionally defined as dialysate-plasma concen-
tration difference. Uremic retention toxins (e.g., urea, creatinine, uric acid, potassium, and phosphate) 
are removed according to a negative gradient from blood to dialysate, while selected electrolytes (e.g., 
bicarbonate, calcium, and magnesium) or nutritional compounds (e.g., glucose) may move in the 
opposite direction. Unwanted removal of essential nutrients (e.g., amino acids, peptides, and water 
soluble vitamins such vitamin D) and albumin may occur, contributing to a nutritional stress. The 
description of biochemical changes during dialysis is beyond the scope of this review. Through this 
remark we emphasize the fact that dialysis patients are challenged by various and large osmotic 
changes due to movements of urea and uraemic metabolites, water shift from extra- to intra-cellular 
space, acid-base changes moving the patient from metabolic acidosis to mixed alkalosis, potassium 
swings from hyper- to hypo-kalemia, and divalent ion alterations moving from hyper- to hypo-
phosphatemia and from hypo- to hyper-calcemia, while at the same time patients are losing amino acids 
and other important nutrients[83-86]. Clinical manifestations of these metabolic derangements range 
from none, through minor to severe symptoms (fatigue, headache, and cognitive impairment), with the 
most extreme manifestation being dialysis disequilibrium syndrome[87,88] (Figure 1).

Hypoxemic stress
During dialysis, in addition to circulatory stress and impaired tissue perfusion[89-91], hypoxemia may 
occur, which can be particularly marked in the early phase of a dialysis session, likely related to 
hemoincompatibility reactions inducing leukocyte trapping within the lungs. This observation suggests 
the occurrence of an additional respiratory stress resulting from impaired pulmonary gas exchange[92,
93]. Prolonged intradialytic hypoxemia is likely to play an aggravating role in end organ damage by 
reducing further tissue oxygen delivery. We can speculate that this is a pathophysiologic link that 
explains the increased mortality observed in patients presenting with prolonged hypoxemia during HD
[92] (Figure 1).
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During the interdialytic phase, sleep apnea syndrome (SAS) and nocturnal hypoxemia have emerged 
as important additional cardiovascular risk factors in HD patients[80]. SAS marked by repetitive pause 
of breathing during sleep resulting in hypoxemia and hypercapnia is highly prevalent in HD patients
[80,94]. In addition, SAS is associated with profound changes in cardiac loading conditions, lung arterial 
pressure, and autonomic activation, all factors that have been associated with significant cardiovascular 
morbidity such as left ventricular hypertrophy or arrhythmias and sudden cardiac death[95-98]. 
Although uremic abnormalities contribute to the development of SAS, the role of fluid overload exacer-
bating upper airways obstruction should not be neglected as recently pointed out by a study exploring 
fluid displacement into nuchal and peripharyngeal soft tissues in healthy subjects[99]. It is therefore 
tempting to speculate that chronic fluid overload is partly responsible for an edema of upper airway 
especially during sleep while in the supine position, thereby contributing to the occurrence of SAS 
(Figure 1).

In brief, whatever mechanisms are associated with impaired pulmonary gas exchange in HD patients, 
occurring either during intradialytic or interdialytic phases, prolonged periods of hypoxemia are likely 
to represent an additional stressor[34] (Figure 1).

Nutritional stress
Loss of muscle mass is common in HD patients and represents one of the most important predictors of 
mortality[100,101]. Sarcopenia is the main component of the protein-energy wasting syndrome that 
results from complex uremic abnormalities and the adverse effects of HD treatment[102-104] (Figure 1).

On one hand, acute studies assessing muscle and whole body protein turnover conducted in stable 
patients have consistently demonstrated an imbalance in protein synthesis and degradation during HD 
sessions[105-108]. It has been also shown that losses of amino acids during HD, ranging between 8 and 
10 g per session, contributed significantly to the net protein catabolism[85,109-111]. Interestingly, this 
amino acid loss leads to reprioritization of protein metabolism during HD sessions. Amino acid loss 
during HD stimulates muscle and liver protein catabolism in order to preserve plasma and intra-cellular 
amino acid concentrations. Furthermore, amino acid utilization for protein synthesis either by the liver 
or muscle is impaired in HD patients, mainly through activation of cytokine pathways (IL-6) rather than 
because of amino acid depletion[112-114]. Remarkably, amino acid repletion by IV administration 
during HD tends to increase muscle protein synthesis but does not decrease muscle protein breakdown
[115]. It is also interesting to note that dextrose depletion (when dextrose-free dialysate is used)[116] and 
other aspects of HD including type of membrane (cellulosic vs synthetic)[117,118] and dialysate microbi-
ologic purity[119,120] may modulate this muscle protein catabolism phenomenon[121] (Figure 1).

On the other hand, long-term precise nutritional studies conducted in stable patients under strict 
metabolic conditions have shown that HD-induced imbalance in protein metabolism[122,123] might be 
compensated for by dietary protein and caloric supplements[124,125]. As shown, the net negative 
protein metabolic imbalance observed on dialysis days might be compensated for by increasing dietary 
protein and caloric intake (about 25%) during non-dialysis days, leading to a neutral protein and caloric 
balance on a weekly basis[124,126]. However, in practice, this can be hard to achieve.

In brief, intermittent HD treatment is associated with repetitive nutritional stress conditions due to 
reprioritization of protein metabolism within the muscle and liver (Figure 1).

Dialysis sickness and dialysis related morbidity
Dialysis sickness (DS) refers to the concept that inter-, peri-, and intra-dialytic morbidity resulting from 
the hemodynamic, inflammatory, biological, hypoxemic, and nutritional stresses discussed above, and 
can result in the long-term in end organ damage as summarized in Figure 2.

Dialysis-related morbidity (intra- and peri-dialytic symptomatology) has a negative impact on 
patients’ perception and on their quality of life (QoL)[16,48,93,127,128]. This can be measured by scoring 
scales according to patient reported outcomes measures (PROM) or patient reported experience 
measures (PREM)[129-131]. Intra- and inter-dialytic symptoms that include hypotensive episodes, 
cramps, headache, fatigue, pruritus, and sleep disorders are the most frequently reported[132]. PROMs, 
PREMs, and most domains of health related QoL are significantly reduced in patients treated by 
conventional HD and tend to be improved by daily or extended treatment schedules[133-135]. 
Furthermore, dialysis symptom burden has been shown to be associated with increased mortality and 
hospitalization risks. Indeed, these clinical performance indicators are strongly recommended to assess 
dialysis adequacy and patient experience[129,136-139] (Figure 1).

End organ damage results from exposure to hemodynamic and pulmonary stressors leading to poor 
tissue perfusion and oxygen delivery, which are further aggravated by biological and cytokine 
“storms”. Multifactorial and repetitive systemic stressors induced by intermittent HD treatment are 
likely to have harmful long-term effects on the function and structural modeling of vital organs (e.g., 
cardiac stunning, leukoaraiosis, gut ischemia, and hepato-splanchnic changes). Some of these 
cardiovascular effects are enhanced by chronic low-grade inflammation acting on endothelial 
dysfunction and contributing to poor outcomes[10,28,140-142]. The combination of cardiocirculatory 
stress, hypovolemia, and electrolyte changes occurring during HD sessions creates pro-arrhythmogenic 
conditions that may contribute to clinically significant cardiac arrhythmias during the interdialytic 
phase[143-147]. Cardiac structural changes following myocardial stunning and remodeling in response 
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Figure 2  Dialysis Related Pathology linked to patient outcomes. GI: Glycaemic index; PROM: Patient reported outcomes measures; PREM: Patient 
reported experience measures; HRQOL: Health-related quality of life.

to cyclical dialysis-induced phenomenon, such as fibrotic scarring and loss of segmental contractile 
function with irregular electrical conductivity, are plausibly increasing the risk of sudden cardiac death
[44,146,148-151]. These findings mimick the intense physiologic demands endured by healthy subjects 
under extreme conditions[152]. In order to mitigate dialysis-induced organ damage, we propose that 
conventional HD treatment schedule may be adapted and personalized, as a new treatment paradigm.

CALL FOR DESIGNING AND APPLYING A MORE CARDIOVASCULAR PROTECTIVE HD 
TREATMENT
Optimizing hemodynamic management
The inevitable sodium and fluid accumulation that occurs during the interdialytic phase in anuric HD 
patients is responsible for chronic extracellular fluid overload with its adverse effects[153,154]. 
Hypertension is part of this constellation of disorders being recognized as the leading cause of cardiac 
and vascular disease in HD patients[19,20]. Management of fluid volume has been identified as a 
specific cardiovascular risk factor: On one hand, persistence of chronic fluid overload is independently 
associated with increased cardiovascular risk[155]; on the other hand, overly-rapid fluid volume 
reduction (i.e., ultrafiltration rate) and hypovolemia are also associated with an increased risk of 
cardiovascular mortality[10,156] (Figure 3).

In other words, sodium and fluid volume homeostasis and blood pressure need to be managed more 
precisely during the interdialytic phase to achieve suitable targets. Additionally, hemodynamic stress 
secondary to volume contraction should be mitigated during dialysis by the use of appropriate tools 
and adjustment of the treatment schedule. Better monitoring of blood pressure and hemodynamics that 
are applicable to the clinical setting are also needed. This is a fundamental challenge of intermittent HD 
(Figure 3).

Improving sodium, fluid volume, and pressure management during the interdialytic phase: Salt and 
fluid management of the dialysis patient represents a major challenge for clinicians. A combined 
approach is needed that includes clinical management (a dry weight probing policy, e.g., ultrafiltration, 
dialysate sodium prescription, and diet education) supported by assessment tools (e.g., multifrequency 
bioimpedance and lung ultrasound)[157], cardiac biomarkers [e.g., B-type natriuretic peptide (BNP) and 
NTproBNP], HD technical options (e.g., sodium control module), and algorithms (e.g., artificial 
intelligence) using advanced analytics in the future[38,158] (Figure 3).

Reducing hemodynamic stress induced by HD: Intradialytic morbidity (i.e., fatigue, headache, cramps, 
hypotension, and alteration of cognitive function) is largely dependent on fluid removal (i.e., ult-
rafiltration) and dialysis efficiency (i.e., osmotic and solute concentration changes, and electrolytes 
shifts). The intensity and frequency of these symptoms also depend on patient characteristics (e.g., age, 
gender, and anthropometrics), metabolism, and body composition, and on the HD treatment schedule 
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Figure 3 Action plan to design and implement a more cardioprotective renal replacement treatment in order to improve patient outcomes. 
HD: Hemodialysis; PBUT: Protein bound uremic toxins; LMW: Low-molecular-weight; HMW: High-molecular-weight; HDF: On-line hemodiafiltration.

(e.g., treatment time and frequency). It is well recognized that longer and more frequent dialysis 
treatment schedules are better tolerated with reduced circulatory stress and slower osmotic and 
electrolytic changes, as compared to short and less frequent dialysis schedules[159,160]. In that respect, 
ultrafiltration rate, reflecting fluid volume removed per time unit, is a well-recognized cardiac risk 
factor in dialysis patients that also associates with mortality risk[40]. In addition, it reflects the fact that 
biochemical gradients and solute fluxes are reduced per time unit, as well as osmotic changes and water 
shifts occurring within the central nervous system (Figure 3).

In a stepwise approach, increasing treatment time and/or dialysis frequency should ideally represent 
the first and most rational step to reduce risks associated with ultrafiltration rate and osmotic changes in 
non-compliant or fragile patients[161]. As a next step, modulating patients’ hemodynamic responses 
through various tools embedded in the HD machine is another appealing option[162]. Monitoring blood 
volume during dialysis sessions is useful to identify critical volemia, to estimate remaining fluid in the 
interstitium, or to quantify vascular refilling capacity[163], but it is not sufficient to manage patient 
hemodynamic response[164]. Instead, surveillance of central venous oxygen saturation (ScvO2) in 
patients with central venous catheters may indicate critical changes in organ perfusion before they 
result in clinical symptomatology. Interestingly, the decline in ScvO2 during dialysis has been correlated 
to ultrafiltration volume[165,166]. With arterio-venous fistula, near infrared spectroscopy, a non-
invasive method, could be of interest to estimate tissue oxygenation[167]. Feedback controlled 
ultrafiltration system relying on blood volume changes has improved hemodynamic stability in selected 
studies, but so far has not improved patient outcomes and intradialytic morbidity[168,169]. Some 
studies have shown that using dialysate sodium and ultrafiltration profiling, with or without blood 
volume monitoring, may preserve intradialytic hemodynamic status but at the expense of an increased 
risk of subclinical salt loading, thirst, high interdialytic weight gain, and chronic fluid overload[170]. 
Adjusting dialysis thermal balance to preserve peripheral vascular resistance and cardiac output is also 
a simple strategy to improve hemodynamic tolerance that has been proven effective in several studies
[171]. The main objective is to deliver isothermic or better, hypothermic dialysis, to prevent thermal gain 
during a dialysis session which is associated with an inappropriate hemodynamic response 
(vasodilation, tachycardia, and drop in ejection fraction)[172]. Hypothermic HD could be manually 
achieved by setting dialysate temperature 0.5-1 °C below the patient’s core temperature. Automated 
thermal control of dialysis sessions requires the use of an online blood temperature monitor that can 
control precisely the thermal balance of patients to a preset target[173]. Both approaches reduce 
hypotension incidence (Figure 3).

Another important component of intradialytic morbidity relates to biochemical stress as reflected by 
the magnitude of dialysate-plasma solute gradient, a major determinant of solute fluxes[170,174-176]. 
Reducing instantaneous solute fluxes while keeping solute mass removal constant during dialysis 
session may be an interesting approach to reduce intradialytic morbidity. This issue could be easily 
addressed by reducing blood flow and increasing treatment time and/or frequency to slow instant-
aneous solute fluxes. This is a usual practice in Japan but it is not the most popular nor the most 
appealing in Western countries[177]. Another approach within the current short dialysis treatment 
schedule would be to continuously adjust flow parameters to reduce instantaneous solute fluxes while 
keeping solute mass transfer constant. Advanced technology will facilitate such an approach in the 
future, relying on microsensors positioned on dialysate side, feeding specific algorithms, and then 
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providing feedback control to the HD monitor to adjust relative flows and gradients (Figure 3).
In summary, one should consider that fluid volume removal and solute fluxes (dependent in part on 

blood-dialysate concentration gradients) are potentially modifiable factors of the dialysis prescription 
(Figure 3).

Enhancing renal care efficacy
The limited efficiency of contemporary HD in restoring the internal milieu composition and in 
controlling circulating levels of middle and large molecular sized uremic toxins, has stimulated use of 
convective-based therapies (e.g., hemodiafiltration) and more porous membranes (i.e., high cut-off)[36]. 
Therefore, the so-called ‘residual syndrome’, reflecting incomplete removal of uremic toxins, is another 
potential contributor to patient morbidity and mortality[178,179] (Figure 3).

Enhancing treatment efficiency by combining high efficiency hemodiafiltration and extended 
treatment time has been shown in recent studies to be able to address most remaining issues in adults. 
In brief, extended on-line hemodiafiltration (HDF) treatment has been associated with tight control of 
fluid volume and blood pressure without antihypertensive medications, normalization of phosphate 
levels while phosphate binders were stopped, correction of anemia while erythropoietic stimulating 
agent consumption was reduced by 50%, and a significant improvement of nutritional status and 
physical activity[180,181]. Interestingly, in a pediatric population, extended HDF has been also shown to 
improve intermediary outcomes (i.e., fluid volume, blood pressure, inflammation, phosphate, and 
nutrition), to reduce cardiovascular disease progression, and to promote catch-up growth[182-184] 
(Figure 3).

Preserving residual kidney function is an important feature in dialysis patients since it is associated 
with a reduced disease and treatment burden and mortality[185-187]. Fluid volume and blood pressure 
control are usually better achieved with less dietary restriction[188]. Circulating levels of uremic toxins 
are significantly reduced, particularly for middle and large molecular weight substances but also for 
protein-bound uremic toxins[189]. In brief, all dialysis conditions, but particularly those ensuring a 
better hemodynamic stability, should be considered to prevent the repetitive ischemic kidney insults 
during HD[190] (Figure 3).

Acting on the gut to reduce protein-bound uremic toxin production has been recently suggested as a 
potential way of reducing circulating levels of protein bound uremic toxins (PBUT) such as indoxyl 
sulfate and paracresyl sulfate[191]. A few studies have confirmed positive effects of this option using 
either probiotics or adsorbers (AST120) administered orally in reducing plasma PBUT concentrations
[192,193]. Unfortunately, published interventional studies have not confirmed potential long-term 
clinical benefits on patient outcomes[194] but further studies with better design and greater statistical 
power are warranted (Figure 3).

Personalizing renal replacement treatment schedule
Treatment schedule adaptation: A ‘one–size–fits-all’ approach is unlikely to work, and this should be 
kept in mind for optimizing renal replacement therapies in the future. Accordingly, dialysis prescription 
including treatment schedule (time and frequency), modality, dose, and efficiency[134,195,196], and 
electrolyte prescription should be tailored to patient profile, needs, and tolerance[197,198]. Furthermore, 
treatment prescription should be adapted over time to an individual patient’s results in a personalized 
way to follow patient metabolic changes, treatment tolerance, and symptoms. Dialysis prescription 
should return to physiologic principles; it should not be the patient who must adapt to a fixed 
treatment, but the treatment should fit to the patient needs and tolerance instead.

In this context, the treatment schedules offered to patients should be expanded and become more 
flexible. It is not our intent to develop this concept further but to highlight recent interesting findings 
(Figure 3).

Incremental dialysis is an interesting concept that deserves more attention in particular in incident 
ESKD patients and in emerging countries[199]. It relies on the fact that HD acts as a complement to 
residual kidney function. In other words, the number of dialysis sessions and/or treatment time per 
week is inversely related to the glomerular filtration rate. Recent comprehensive reviews have 
addressed this issue to which we refer the interested reader for more details on clinical benefits and 
implementation[200]. In brief, incremental dialysis has the capacity to facilitate treatment imple-
mentation in new patients by reducing treatment burden, but also potentially to mitigate a shortage of 
renal replacement therapy resources in low and middle income countries (Figure 3).

Extended HD schedules (i.e., long and nocturnal dialysis, alternate day dialysis, and daily HD) 
appear particularly attractive in terms of improving outcomes[181]. Extended treatment schedules must 
be viewed from two aspects: On one hand, outcomes are favorable including with kidney transplant
[195,201-204]; on the other hand, they increase treatment burden and cost, except if home HD is chosen
[205]. In this context, to solve both logisitical and cost issues, it is therefore proposed to develop 
extended treatment schedules at home or in self-care facilities[206] (Figure 3).

Use of new tools for monitoring and adapting treatment prescription: A whole body bioimpedance 
cardiography (BIC) non-invasive device has been assessed in HD patients. BIC has interesting features 
to measure the hemodynamic response to fluid removal (e.g., cardiac output and total peripheral 
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vascular resistance) during dialysis. Based on these findings, it has been suggested that dialysis patients 
might be clustered into various categories defined as low or high cardiac output, low or high total 
peripheral vascular resistance, or normal hemodynamics[207,208]. BIC has the potential to support 
physicians to individualize dialysis treatment, although this would need to be tested in interventional 
studies[208]. Approaches using BIC warrant further studies to validate measurements and explore 
impact on patient outcomes[209] (Figure 3).

More recently, lung ultrasononography (LUS) has been proposed as a point-of-care tool to complete 
physical examination[24,210,211]. Lung ultrasound is a noninvasive method to estimate extravascular 
lung water easily mastered by nephrologists that help to quantify lung congestion by counting B-lines 
per lung area unit (Comet line scoring). The “Lung water by ultrasound guided treatment to prevent 
death and cardiovascular complications in high risk ESRD patients with cardiomyopathy” study has 
shown the clinical value of LUS in the management of HD patients at high cardiovascular risk[212,213] 
(Figure 3).

A further tool to reduce intradialytic hemodynamic stress is the development of wearable non-
pervasive methods for continuous blood pressure monitoring. This would allow detection of subtle 
changes in blood pressure to prompt interventions such as reduction of ultrafiltration rate to prevent 
hypotension. Recent work using additional pressure sensors placed on dialysis lines to derive blood 
pressure without the need for additional equipment attached to the patient, shows promise in this 
regard[214,215]. Considering the high cardiac mortality risk of HD patients (10 to 100 times greater than 
the general population)[216], it appears of utmost importance to pay closer attention to cardiovascular 
monitoring to ensure early and appropriate intervention for improving outcomes[49]. Interestingly, new 
remote technologies or so-called connected iHealth devices offer convenient new tools for monitoring 
high risk HD patients during the interdialytic period in a fully automated and ambulatory mode[217]. 
Detection of clinical significant arrhythmias would be one important functionality, as shown in recent 
studies[146,218] (Figure 3).

FUTURE DEVELOPMENT OF HD AND RENAL REPLACEMENT THERAPY
In order to reduce dialysis associated morbidity and to improve patient experience, three main 
approaches should be proposed and explored.

Designing and adapting HD treatment schedule to individual patient needs, tolerance, and risks
Aside from the introduction of more flexible treatment schedules, recent studies have also shown the 
potential interest of stratifying patients according to their risks at short or medium term outcomes[219,
220]. A better understanding of patient risks could help physicians to prescribe more appropriate and 
individualized therapy. Also, scoring systems could be tested as supports to alter specific treatment 
prescription features in an attempt to reduce early mortality of ESKD patients transitioning to dialysis.

Using automated systems embedded in intelligent dialysis machines
The technology relies on the combination of patient biologic sensors coupled to a feedback control loop 
and governed by adaptive algorithms embedded in the dialysis machine. The first example is the 
sodium control module that has been assessed and validated in clinical trials[72,221]. Using continuous 
conductivity cell measurements on inlet and outlet dialysate flow, an embedded algorithm controls 
plasma sodium concentration changes (i.e., tonicity) and allows precise monitoring of plasma sodium 
concentration and sodium mass removal occurring within dialysis session. Interestingly, sodium mass 
transfer and plasma tonicity rely on an automated and self-adapting function that follows medical 
prescription setting. Further outcome based studies are needed to establish clinical benefits to patients 
and the device’s clinical added value[222].

Combined use of connected iHealth devices, advanced analytics, and artificial intelligence will be 
able to support medical decision making and to predict future outcome
Personalized medicine relying on iHealth trackers, advanced analytics, and artificial intelligence 
(artificial neuronal networks and machine learning) may allow identification of patients at increased 
risk. In this respect, the use of such tools will be able to support physician decision-making for 
individual patients to select the most appropriate treatment modality or suitable technical approach (i.e., 
ultrafiltration rate and dialysate sodium) to reduce cardiovascular burden[223,224]. Furthermore, 
iHealth trackers and machine learning support may also be applied to continuous vital signs monitoring 
and other intra-dialytic hemodynamic variables. The ultimate goal is to detect or predict the occurrence 
of future clinical events with sufficient precision and time to intervene. Such iHealth trackers seem 
particularly attractive to monitor arrythmias and maybe to help prevent sudden cardiac death[217]. In 
brief, the paradigm of precision medicine appears particularly relevant to renal replacement therapy for 
designing a personalized, more effective, better tolerated, and more acceptable HD treatment[225].
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CONCLUSION
In this in-depth review, we have summarized factors that are implicated in the cardiovascular and 
multi-organ morbidity associated with conventional short intermittent HD treatment schedules. Hidden 
risks result mainly from the conjunction of two main phenomena: First, the intermittent nature of the 
treatment that is responsible for an unphysiologic profile (illustrated by peaks and troughs reflecting 
fluctuation of internal milieu composition) and a multifactorial systemic stress; second, the incomplete 
correction of uremic metabolic abnormalities that may be summarized as “residual syndrome”. Such 
systemic stress induced by HD treatment is likely implicated in the poor dialysis tolerance and end-
organ injury contributing to the DS syndrome. We summarize this cascade of events as the dialysis 
stress storm and sickness syndrome (D4S) and propose that D4S may act as a negative disease modifier 
of patient outcome.

Mitigating cardiovascular burden in HD requires further concerted actions to change the treatment 
paradigm. Such an approach will have multiple targets that should ideally include optimizing 
hemodynamic management both during the inter- and intra-dialytic phase, enhancing renal 
replacement therapy efficacy, and personalizing treatment schedule with use of new monitoring tools.
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