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Abstract
Abdominal magnetic resonance imaging (MRI) and computed tomography (CT) 
are commonly used for disease screening, diagnosis, and treatment guidance. 
However, abdominal MRI has disadvantages including slow speed and vulner-
ability to motions, while CT suffers from problems of radiation. It has been 
reported that deep learning reconstruction can solve such problems while 
maintaining good image quality. Recently, deep learning-based image reconstru-
ction has become a hot topic in the field of medical imaging. This study reviews 
the latest research on deep learning reconstruction in abdominal imaging, 
including the widely used convolutional neural network, generative adversarial 
network, and recurrent neural network.

Key Words: Abdominal imaging; Reconstruction; Magnetic resonance imaging; Computed 
tomography; Deep learning
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Core Tip: We summarized the current deep learning-based abdominal image 
reconstruction methods in this review. The deep learning reconstruction methods can 
solve the issues of slow imaging speed in magnetic resonance imaging and high-dose 
radiation in computed tomography while maintaining high image quality. Deep 
learning has a wide range of clinical applications in current abdominal imaging.
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INTRODUCTION
The emergence of deep learning has made intelligent image reconstruction a hot topic 
in the field of medical imaging. The applications of deep learning technology in image 
reconstruction have the advantages of reduced scan time and improved image quality. 
Magnetic resonance imaging (MRI) is a critical medical imaging technology with 
characteristics such as non-invasiveness, non-radiation, and high contrast. However, 
prolonged scanning time is the main obstacle that restrict the development of MRI 
technology[1]. Long acquisition time can cause discomfort to the patients and severe 
artifacts due to the patient's motion. In order to solve this issue, under-sampled k-
space data can be acquired by reducing the measuring time during scans, and then an 
artifact-free image can be obtained through advanced reconstruction. Deep learning 
reconstruction (DLR) produces high-quality images while reducing scan time and 
patient discomfort. However, traditional MRI, has problems including low 
acceleration factor, long calculation time, and variability in parameter selection in the 
reconstruction algorithm[2]. Deep learning automatically captures high-level features 
from a large amount of data and builds non-linear mapping between the input and 
output. Wang et al[3] introduced deep learning into fast MRI reconstruction. The deep 
learning-based MRI reconstruction avoids the difficulty of parameter adjustment in 
traditional model-based reconstruction algorithms, which has the potential for a wide 
range of clinical applications. In addition, deep learning has also been used to solve 
the problem of abdominal motion. Presently, abdominal MRI reconstruction based on 
deep learning mainly adopts end-to-end remodeling. The current network structures 
for MRI reconstruction include the convolutional neural network (CNN)[4], U-net[5], 
generative adversarial network (GAN)[6], recurrent neural network (RNN)[7], and 
cascade-net[8].

On the other hand, CT imaging suffers from the problem of radiation. Low-dose CT 
(LDCT) is achieved by reducing the radiation dose. However, reduced radiation dose 
decreases the image quality, causing bias in the diagnosis. Therefore, an improved 
reconstruction algorithm is required for LDCT images. Traditional methods for 
reconstructing CT images include total variation[9], model-based iterative recon-
struction (MBIR)[10], and dictionary learning[11]. However, the performance of LDCT 
image reconstruction could be improved further by introducing some latest 
techniques. The emergence of deep learning[12-15] has become the mainstream 
research of LDCT in recent years.

In this review, we assessed the current status of deep learning in abdominal image 
reconstruction. Specifically, we reviewed the latest research on deep learning methods 
in abdominal image reconstruction, attempted to solve the related problems, and 
address the challenges in this field.

DEEP LEARNING ALGORITHM
The deep learning method is obtained through a simple combination of non-linear 
layers. Each module can transform the initial low-level features into high-level repres-
entation. The core of deep learning is feature representation to obtain information at 
various levels through network layering. Compared to traditional machine learning 
algorithms, deep learning improves the accuracy of learning from a large amount of 
data. Another advantage of deep learning is that it does not require feature 
engineering. Typically, classic machine learning algorithms require complex feature 
engineering. Conversely, deep learning algorithms only need to feed data into the 
network and learn the representation. Finally, the deep learning network is highly 
adaptable and easily converted into different applications. Transfer learning makes the 
pre-trained deep networks suitable for similar applications.

At present, several studies have applied deep learning to different aspects of 
medical imaging, such as image detection[16,17], image segmentation[18,19], image 
denoising[20,21], super-resolution[22,23], and image reconstruction[3,24,25]. As 
described above, traditional model-based reconstruction algorithms require manual 
adjustment of the reconstruction parameters, which results in low reconstruction 
speed and unstable performance. With the increased acceleration factor, the image 
quality worsens. The reconstruction method based on deep learning avoids the 
difficulty of manual parameter adjustment. In the case of high acceleration, DLR can 
still perform well. After the network model is trained, the image can be reconstructed 
within seconds.
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CNN FOR IMAGE RECONSTRUCTION
MRI 
CNN has an excellent performance in image reconstruction[4]. In recent years, a large 
number of CNN-based abdominal image reconstruction methods have been proposed
[26-36]. A major problem in abdominal imaging is the patient's motion, which blurs 
the image and produces severe artifacts. Breath holding while scanning can minimize 
these artifacts, but residual artifacts are persistent[37]. Self-gating techniques[38,39] 
can overcome this problem, but the reconstructed image at a low sampling rate causes 
additional streaking artifacts. In order to address the problem of free-breathing 
abdominal imaging under a high under-sampling rate, Lv et al[26] proposed a 
reconstruction algorithm based on a stacked convolutional autoencoder (SCAE). 
Experimental results showed that the SCAE method eliminates the streak artifacts 
caused by insufficient sampling. In order to realize high-resolution image 
reconstruction from radial under-sampled k-space data, Han et al[27] proposed a deep 
learning method with domain adaptation function. The network model was pre-
trained with CT images, and then tuned for MRI with radial sampling. This method 
could be applied to limited training real-time data and multichannel reconstruction, 
which is in line with the clinical situation when multiple coils are used to acquire 
signals. Zhou et al[28] proposed a network combining parallel imaging (PI) and CNN 
for reconstruction. Real-time abdominal imaging was used to train and test the 
network; expected results were obtained.

In addition, CNN can also be applied to improve the quality of dynamic contrast-
enhanced MRI. Tamada et al[29] proposed a multichannel CNN to reduce the artifacts 
and blur caused by the patient's motion. The detailed information on the MRI 
reconstruction methods mentioned above is described in Table 1.

CT imaging
In addition to the above application in abdominal MRI, CNN-based reconstruction 
methods show satisfactory results in CT images. Kang et al[30] used a deep CNN with 
residuals for LDCT imaging. The experimental results showed that this method 
reduces the noise level in the reconstructed image. Chen et al[31] proposed a residual 
encoder-decoder CNN by adding the autoencoder, deconvolution, and short jump 
connection to the residual encoder-decoder for LDCT imaging. This method had great 
advantages over the conventional method in terms of noise suppression, structure 
preservation, and lesion detection. Ge et al[32] proposed an ADAPTIVE-NET that 
directly reconstructs CT from sinograms. CNN can also be applied to pediatric LDCT 
images[33]. Zhang et al[34] proposed a graph attention neural network and CNN to 
reconstruct liver vessels.

Limited view tomographic reconstruction aimed to reconstruct images with a 
limited number of sinograms that could lead to high noise and artifacts. Zhou et al[35] 
proposed a novel residual dense reconstruction network architecture with spatial 
attention and channel attention to address this problem. The network used sinogram 
consistency layer interleaved to ensure that the output by the intermediate loop block 
was consistent with the sampled sinogram input. This method used the AAPM LDCT 
dataset[40] for validation and achieved the desired performance in both limited-angle 
and sparse-view reconstruction. In order to further improve the quality of sparse-view 
CT and low-dose CT reconstruction, Kazuo et al[36] proposed a reconstruction 
framework that combined CS and CNN. This method input a degraded filtered back 
projection image and multiplied CS reconstructed images obtained using various 
regularization items into a CNN. The detailed information on the abdominal CT 
reconstruction methods mentioned above is listed in Table 1.

GAN FOR IMAGE RECONSTRUCTION
MRI
GAN is optimized and learned through the game between generator G and discrim-
inator D. This method is also suitable for abdominal image reconstruction. Mardani et 
al[41] used GAN for abdominal MRI reconstruction. This method also solves the 
problem of poor reconstruction performance of traditional CS-MRI[42,43] due to its 
slow iteration process and artifacts caused by noise. This method used least-squares 
GAN[44] and pixel-wise L1 as the cost function during training. The data showed that 
the reconstructed abdominal MR image was superior to that obtained using the 
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Table 1 Abdominal image reconstruction algorithms based on a convolutional neural network

Ref. Task Method Images Metric

Kang et al[30], 2017 Low-dose CT reconstruction CNN Abdominal CT images PSNR: 34.55

Chen et al[31], 2017 Low-dose CT reconstruction RED-CNN Low-dose abdominal CT 
images

PSNR: 43.79 ± 2.01; SSIM: 0.98 ± 
0.01; RMSE: 0.69 ± 0.07

Han et al[27], 2018 Accelerated projection-
reconstruction MRI

U-netCNN Low-dose abdominal CT 
images; synthetic radial 
abdominal MR images

PSNR: 31.55

Lv et al[26], 2018 Undersampled radial free-
breathing 3D abdominal MRI

Auto-encoderCNN 3D golden angle-radial SOS 
liver MR images

P < 0.001

Ge et al[32], 2020 CT image reconstruction directly 
from a sinogram

Residual encoder-decoder 
+ CNN

Low-dose abdominal CT 
images

PSNR: 43.15 ± 1.93; SSIM: 0.97 ± 
0.01; NRMSE: 0.71 ± 0.16

MacDougall et al[33], 
2019

Improving low-dose pediatric 
abdominal CT

CNN Liver CT images;Spleen CT 
images

P < 0.001

Tamada et al[29], 2020 DCE MR imaging of the liver CNN T1-weighted liver MR images SSIM: 0.91

Zhou et al[28], 2019 Applications in low-latency 
accelerated real-time imaging

PICNN bSSFP cardiac MR images; 
bSSFP abdominal MR images

Abdominal: NRMSE: 0.08 ± 
0.02; SSIM: 0.90 ± 0.02

Zhang et al[34], 2020 Reconstructing 3D liver vessel 
morphology from contrasted CT 
images

GNNCNN Multi-phase contrasted liver 
CT images

F1 score: 0.8762 ± 0.0549

Zhou et al[35], 2020 Limited view tomographic 
reconstruction

Residual dense spatial-
channel attention + CNN

Whole body CT images LAR: PSNR: 35.82; SSIM: 0.97 
SVR: PSNR: 41.98; SSIM: 0.97

Kazuo et al[36], 2021 Image reconstructionin low-dose 
and sparse-view CT 

CS + CNN Low-dose abdominal CT 
images; Sparse-view abdominal 
CT images

Low-Dose CT case: PSNR: 33.2; 
SSIM: 0.91 Sparse-View CT case: 
PSNR: 29.2; SSIM: 0.91

NRMSE (× 10-2); RMSE (10-2). MRI: Magnetic resonance imaging; CT: Computed tomography; CNN: Convolutional neural network; PSNR: Peak signal to 
noise ratio; SSIM: Structural similarity; RMSE: Root mean square error; NRMSE: Normalized root mean square error; RED: Residual encoder-decoder; 
DCE: Dynamic contrast-enhanced; PI: Parallel imaging; CS: Compressed sensing; LAR: Limited angle reconstruction; SVR: Sparse view reconstruction; 
GNN: Graph neural network; RNN: Recurrent neural network; SOS: Stack-of-stars.

traditional CS method with respect to image quality and reconstruction speed. Lv et al
[45] compared the performance of GAN-based image reconstruction with DAGAN
[46], ReconGAN[25], RefineGAN[25], and KIGAN[47]. Among these, the RefineGAN 
method was slightly better than DAGAN and KIGAN. In addition, Lv et al[48] 
combined PI and GAN for end-to-end reconstruction. The network added data fidelity 
items and regularization terms to the generator to obtain the information from 
multiple coils.

Most supervised learning methods require a large amount of fully sampled data for 
training. However, it is difficult or even impossible to obtain the full sampled data, 
and hence, unsupervised learning is necessary under the circumstances. Cole et al[49] 
proposed an unsupervised reconstruction method based on GAN. The detailed 
information on the reconstruction methods is described in Table 2.

CT imaging
The usage of GAN can also improve the quality of abdominal LDCT images. Yang et al
[50] used GAN combined with Wasserstein distance and perceptual loss for LDCT 
abdominal image denoising. Based on Wasserstein GAN (WGAN)[51], Kuanar et al[52] 
proposed an end-to-end RegNet-based autoencoder network model, in which GAN 
was used in the autoencoder. The loss function of this network was composed of 
RegNet perceptual loss[52] and WGAN adversarial loss[51]. The experimental results 
showed that this method improves the quality of the reconstructed image while 
reducing the noise.

Zhang et al[53] proposed the use of conditional GAN (CGAN) to reconstruct super-
resolution CT images. The edge detection loss function was proposed in the CGAN to 
minimize the loss of the image edge. In addition, this study used appropriate 
bounding boxes to reduce the number of rays when performing 3D reconstruction. 
The reconstruction methods are described in Table 2.
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Table 2 Abdominal image reconstruction based on generative adversarial network and recurrent neural network

Ref. Task Method Images Metric

Mardani et al
[41], 2017

Compressed sensing 
automates MRI 
reconstruction

GANCS Abdominal MR images SNR: 20.48; SSIM: 0.87

Yang et al[50], 
2018

Low dose CT image 
denoising

WGAN Abdominal CT images PSNR: 23.39; SSIM: 0.79

Kuanar et al
[52], 2019

Low-dose abdominal CT 
image reconstruction

Auto-encoderWGAN Abdominal CT images PSNR: 37.76; SSIM: 0.94; 
RMSE: 0.92

Lv et al[45], 
2021

A comparative study of 
GAN-based fast MRI 
reconstruction

DAGANKIGANReconGANRefineGAN T2-weighted liver images; 
3D FSE CUBE knee images; 
T1-weighted brain images

Liver: PSNR: 36.25 ± 3.39; 
SSIM: 0.95 ± 0.02; RMSE: 2.12 
± 1.54; VIF: 0.93 ± 0.05; FID: 
31.94

Zhang et al[53], 
2020

3D reconstruction for 
super-resolution CT 
images 

Conditional GAN 3D-IRCADb-01database 
liver CT images

Male: PSNR: 34.51; SSIM: 
0.90Female: PSNR: 34.75; 
SSIM: 0.90

Cole et al[49], 
2020

Unsupervised MRI 
reconstruction 

UnsupervisedGAN 3D FSE CUBE knee images; 
DCE abdominal MR images

PSNR: 31.55; NRMSE: 0.23; 
SSIM: 0.83

Lv et al[48], 
2021

Accelerated multichannel 
MRI reconstruction

PIGAN 3D FSE CUBE knee MR 
images; abdominal MR 
images

Abdominal: PSNR: 31.76 ± 
3.04; SSIM: 0.86 ± 0.02; NMSE: 
1.22 ± 0.97

Zhang et al[54], 
2019

4D abdominal and in utero 
MR imaging

Self-supervised RNN bSSFP uterus MR images; 
bSSFP kidney MR images

PSNR: 36.08 ± 1.13; SSIM: 0.96 
± 0.01

RMSE (× 10-2); NMSE (× 10-5). MRI: Magnetic resonance imaging; CT: Computed tomography; SNR: Signal-to-noise ratio; PSNR: Peak signal to noise ratio; 
SSIM: Structural similarity; RMSE: Root mean square error; NRMSE: Normalized root mean square error; VIF: Variance inflation factor; FID: Frechet 
inception distance; GAN: Generative adversarial network; RNN: Recurrent neural network; PI: Parallel imaging.

RNN FOR IMAGE RECONSTRUCTION
RNN is suitable for processing data with sequence information. The dynamic 
abdominal images were collected from the currently collected frame and were similar 
to the previous and following frames. Unlike other networks, the nodes between the 
hidden layers of RNN are connected. Zhang et al[54] proposed a self-supervised RNN 
to estimate the breathing motion of the abdomen and in utero 4D MRI. The network 
used a self-supervised RNN to estimate breathing motion and then a 3D deconvo-
lution network for super-resolution reconstruction. Compared to slice-to-volume 
registration, the experimental results of this method predicted the respiratory motion 
and reconstructed high-quality images accurately. The detailed information on the 
reconstruction method mentioned above is shown in Table 2.

APPLICATION OF DL IMAGE RECONSTRUCTION
Motion correction
Deep learning can also be applied to abdominal motion correction. Lv et al[55] 
proposed a CNN-based image registration algorithm to obtain images during the 
respiratory cycle. In addition, methods based on U-net and GAN can also be applied 
to abdominal motion correction. Jiang et al[56] proposed a densely connected U-net 
and GAN for abdominal MRI respiration correction. Küstner et al[57] combined non-
rigid registration with 4D reconstruction networks for motion correction. The detailed 
information on the reconstruction methods mentioned above is summarized in 
Table 3.

DLR
The DLR developed by Canon Medical Systems’ Advanced Intelligent Clear-IQ Engine 
is a commercial deep learning tool for image reconstruction. Some studies have 
confirmed the feasibility and effectiveness of this tool for abdominal image 
reconstruction. Akagi et al[58] used DLR for abdominal ultra-high-resolution 
computed tomography (U-HRCT) image reconstruction. The present study proved 
that DLR reconstruction has clinical applicability in U-HRCT. Compared to hybrid-IR 
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Table 3 Applications of deep learning in abdominal reconstruction

Ref. Task Method Images Metric

Lv et al[55], 2018 Respiratory motion correction for 
free-breathing 3D abdominal MRI

CNN 3D golden angle-radial SOS 
abdominal images

SNR: 207.42 ± 96.73

Jiang et al[56], 2019 Respiratory motion correction in 
abdominal MRI

U-NetGAN T1-weighted abdominal 
images

FSE: 0.920; GRE: 0.910; Simulated 
motion: 0.928

Küstner et al[57], 2020 Motion-corrected image 
reconstruction in 4D MRI 

U-netCNN T1-weighted in-vivo 4D MR 
images

EPE: 0.17 ± 0.26; EAE: 7.9 ± 9.9; 
SSIM: 0.94 ± 0.04; NRMSE: 0.5 ± 
0.1

Akagi et al[58], 2019 Improving image quality of 
abdominal U-HRCT using DLR 
method

DLR U-HRCT abdominal CT 
images

P < 0.01

Nakamura et al[59], 2019 To evaluate the effect of a DLR 
method 

DLR Abdominal CT images P < 0.001

NRMSE (× 10-2). MRI: Magnetic resonance imaging; CT: Computed tomography; CNN: Convolutional neural network; GAN: Generative adversarial 
network; SNR: Signal-to-noise ratio; SSIM: Structural similarity; NRMSE: Normalized root mean square error; EPE: End-point error; EAE: End-angulation 
error; U-HRCT: Ultra-high-resolution computed tomography; DLR: Deep learning reconstruction; SOS: Stack-of-stars; FSE: Fast-spin echo; GRE: Gradient 
echo.

and MBIR[10], DLR reduces the noise of abdominal U-HRCT and improves image 
quality. In addition, the DLR method is applicable to widely-used CT images. 
Nakamura et al[59] evaluated the effectiveness of the DLR method on hypovascular 
hepatic metastasis on abdominal CT images. The detailed information on the 
reconstruction methods mentioned is summarized in Table 3.

CURRENT CHALLENGES AND FUTURE DIRECTIONS
In summary, deep learning provides a powerful tool for abdominal image 
reconstruction. However, deep learning-based abdominal image reconstruction has 
several challenges. First, collecting a large amount of data for training the neural 
networks is rather challenging. Supervised learning means that a large amount of fully 
sampled data is required, which is time-consuming in clinical medicine. In addition, it 
is difficult or even impossible to obtain full sampling data in some specific applic-
ations[49]. Therefore, some semi-supervised learning is necessary. In addition, some 
researchers have proposed the use of self-supervised learning methods[54,60,61]. Self-
supervised learning does not require training labels. It is suitable for image 
reconstruction problems when fully sampled data cannot be obtained easily. 
Therefore, self-supervised learning has great development potential and is one of the 
major research directions in the future. Second, deep learning is difficult to explain 
even if satisfactory reconstruction is achieved.

The current workflow of abdominal imaging starts from data acquisition to image 
reconstruction and then to diagnosis, deeming it possible to perform multiple tasks at 
the same time. For example, SegNetMRI[62] realizes image segmentation and image 
reconstruction simultaneously. Joint-FR-Net[63] can directly use k-space data for 
image segmentation. Thus, future studies could use the k-space data for lesion 
detection, classification, and other clinical applications directly.

CONCLUSION
We summarized the current deep learning-based abdominal image reconstruction 
methods in this review. The DLR methods can solve the issues of slow imaging speed 
in MRI and high-dose radiation in CT while maintaining high image quality. Deep 
learning has a wide range of clinical applications in current abdominal imaging. More 
advanced techniques are expected to be utilized in future studies.
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