
World Journal of
Diabetes

ISSN 1948-9358 (online)

World J Diabetes  2021 October 15; 12(10): 1587-1811

Published by Baishideng Publishing Group Inc



WJD https://www.wjgnet.com I October 15, 2021 Volume 12 Issue 10

World Journal of 

DiabetesW J D
Contents Monthly Volume 12 Number 10 October 15, 2021

EXPERT RECOMMENDATIONS

Expert opinion on the preoperative medical optimization of adults with diabetes undergoing metabolic 
surgery

1587

Bhattacharya S, Kalra S, Kapoor N, Singla R, Dutta D, Aggarwal S, Khandelwal D, Surana V, Dhingra A, Kantroo V, 
Chittawar S, Deka N, Bindal V, Dutta P

REVIEW

Estrogens and the regulation of glucose metabolism1622

Alemany M

Role of nucleic acid sensing in the pathogenesis of type 1 diabetes1655

Badal D, Sachdeva N, Maheshwari D, Basak P

Interactions between diabetes and COVID-19: A narrative review1674

Sabri S, Bourron O, Phan F, Nguyen LS

MINIREVIEWS

Diabetes and gut microbiota1693

Xi Y, Xu PF

Tale of two kinases: Protein kinase A and Ca2+/calmodulin-dependent protein kinase II in pre-diabetic 

cardiomyopathy

1704

Gaitán-González P, Sánchez-Hernández R, Arias-Montaño JA, Rueda A

Glycemic targets in critically ill adults: A mini-review1719

See KC

Galectin-3 possible involvement in antipsychotic-induced metabolic changes of schizophrenia: A 
minireview

1731

Borovcanin MM, Vesic K, Jovanovic M, Mijailovic NR

ORIGINAL ARTICLE

Basic Study

Medication adherence and quality of life among type-2 diabetes mellitus patients in India1740

Mishra R, Sharma SK, Verma R, Kangra P, Dahiya P, Kumari P, Sahu P, Bhakar P, Kumawat R, Kaur R, Kaur R, Kant R

Metabolic and inflammatory functions of cannabinoid receptor type 1 are differentially modulated by 
adiponectin

1750

Wei Q, Lee JH, Wu CS, Zang QS, Guo S, Lu HC, Sun Y



WJD https://www.wjgnet.com II October 15, 2021 Volume 12 Issue 10

World Journal of Diabetes
Contents

Monthly Volume 12 Number 10 October 15, 2021

Case Control Study

Diabetic kidney disease: Are the reported associations with single-nucleotide polymorphisms disease-
specific?

1765

Saracyn M, Kisiel B, Franaszczyk M, Brodowska-Kania D, Żmudzki W, Małecki R, Niemczyk L, Dyrla P, Kamiński G, Płoski 
R, Niemczyk S

Retrospective Cohort Study

Utility of oral glucose tolerance test in predicting type 2 diabetes following gestational diabetes: Towards 
personalized care

1778

Bayoumi RAL, Khamis AH, Tahlak MA, Elgergawi TF, Harb DK, Hazari KS, Abdelkareem WA, Issa AO, Choudhury R, 
Hassanein M, Lakshmanan J, Alawadi F

Retrospective Study

Diabetes patients with comorbidities had unfavorable outcomes following COVID-19: A retrospective 
study

1789

Luo SK, Hu WH, Lu ZJ, Li C, Fan YM, Chen QJ, Chen ZS, Ye JF, Chen SY, Tong JL, Wang LL, Mei J, Lu HY

LETTER TO THE EDITOR

Non-alcoholic fatty liver disease, diabetes medications and blood pressure1809

Ilias I, Thomopoulos C



WJD https://www.wjgnet.com III October 15, 2021 Volume 12 Issue 10

World Journal of Diabetes
Contents

Monthly Volume 12 Number 10 October 15, 2021

ABOUT COVER

Editorial Board Member of World Journal of Diabetes, Sze M Ng, MBBS, FHEA, FRCPCH, SFFMLM, MSc, LLM, 
MBA, PhD, Associate Professor, University of Liverpool, Consultant Paediatric Endocrinologist, Southport & 
Ormskirk NHS, Ormskirk L39 2AZ, United Kingdom. may.ng@nhs.net

AIMS AND SCOPE

The primary aim of World Journal of Diabetes (WJD, World J Diabetes) is to provide scholars and readers from various 
fields of diabetes with a platform to publish high-quality basic and clinical research articles and communicate their 
research findings online. 
  WJD mainly publishes articles reporting research results and findings obtained in the field of diabetes and 
covering a wide range of topics including risk factors for diabetes, diabetes complications, experimental diabetes 
mellitus, type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes, diabetic angiopathies, diabetic 
cardiomyopathies, diabetic coma, diabetic ketoacidosis, diabetic nephropathies, diabetic neuropathies, Donohue 
syndrome, fetal macrosomia, and prediabetic state.

INDEXING/ABSTRACTING

The WJD is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), 
Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 
2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJD as 3.763; IF without journal self 
cites: 3.684; 5-year IF: 7.348; Journal Citation Indicator: 0.64 Ranking: 80 among 145 journals in endocrinology and 
metabolism; and Quartile category: Q3. 

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Lin-YuTong Wang; Production Department Director: Yu-Jie Ma; Editorial Office Director: Jia-Ping Yan.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Diabetes https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1948-9358 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

June 15, 2010 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Monthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Lu Cai, Md. Shahidul Islam, Jian-Bo Xiao, Manfredi Rizzo https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/1948-9358/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

October 15, 2021 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2021 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/1948-9358/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJD https://www.wjgnet.com 1731 October 15, 2021 Volume 12 Issue 10

World Journal of 

DiabetesW J D
Submit a Manuscript: https://www.f6publishing.com World J Diabetes 2021 October 15; 12(10): 1731-1739

DOI: 10.4239/wjd.v12.i10.1731 ISSN 1948-9358 (online)

MINIREVIEWS

Galectin-3 possible involvement in antipsychotic-induced metabolic 
changes of schizophrenia: A minireview

Milica M Borovcanin, Katarina Vesic, Milena Jovanovic, Natasa R Mijailovic

ORCID number: Milica M 
Borovcanin 0000-0002-2992-814X; 
Katarina Vesic 0000-0001-8861-
4987; Milena Jovanovic 0000-0002-
2026-2599; Natasa R Mijailovic 0000-
0002-2125-0565.

Author contributions: Borovcanin 
MM presented the idea, structured 
the manuscript, incorporated all 
parts of the manuscript, and drew 
a figure; all authors have 
additionally searched the 
literature; Vesic K, Jovanovic M, 
and Mijailovic RN have given 
some new insights in specific fields 
of their competencies, and done 
the final revision of the manuscript 
and figure corrections; All authors 
have read, discussed, and 
approved the final version of the 
manuscript.

Supported by Ministry of Science 
and Technological Development of 
the Republic of Serbia, No. 175069; 
and Faculty of Medical Sciences, 
University of Kragujevac, No. JP15-
05.

Conflict-of-interest statement: 
Milica M Borovcanin has received 
research funding from Ministry of 
Science and Technological 
Development of the Republic of 
Serbia, No. 175069; Faculty of 
Medical Sciences, University of 
Kragujevac No. JP15-05. Katarina 
Vesic, Milena Jovanovic, and 
Natasa R Mijailovic declare that 

Milica M Borovcanin, Department of Psychiatry, University of Kragujevac, Faculty of Medical 
Sciences, Kragujevac 34000, Sumadija, Serbia

Katarina Vesic, Department of Neurology, University of Kragujevac, Faculty of Medical 
Sciences, Kragujevac 34000, Sumadija, Serbia

Milena Jovanovic, PhD Studies, University of Kragujevac, Faculty of Medical Sciences, 
Kragujevac 34000, Sumadija, Serbia

Milena Jovanovic, Clinic for Nephrology and Dialysis, University Clinical Center Kragujevac, 
Kragujevac 34000, Sumadija, Serbia

Natasa R Mijailovic, Department of Pharmacy, University of Kragujevac, Faculty of Medical 
Sciences, Kragujevac 34000, Sumadija, Serbia

Corresponding author: Milica M Borovcanin, MD, PhD, Associate Professor, Department of 
Psychiatry, University of Kragujevac, Faculty of Medical Sciences, 69 Svetozara Markovica St, 
Kragujevac 34000, Sumadija, Serbia. milicaborovcanin@medf.kg.ac.rs

Abstract
Recently, specific immunometabolic profiles have been postulated in patients 
with schizophrenia, even before full-blown disease and independent of 
antipsychotic treatment. Proteomic profiling studies offer a promising potential 
for elucidating the cellular and molecular pathways that may be involved in the 
onset and progression of schizophrenia symptoms, and co-occurrent metabolic 
changes. In view of all this, we were intrigued to explore galectin-3 (Gal-3) as a 
glycan, and in our previous study, we measured its elevated levels in remission of 
schizophrenia. The finding may be a consequence of antipsychotic treatment and 
may have an impact on the onset of inflammation, the development of obesity, 
and the presumed cognitive changes in schizophrenia. In the animal study, it was 
shown that downregulation of Gal-3 was beneficial in insulin regulation of obesity 
and cognitive preservation. Strategies involving plasma exchange are discussed in 
this review, particularly in the context of Gal-3 elimination.

Key Words: Galectin-3; Schizophrenia; Metabolic syndrome; Insulin resistance; Cognition; 
Antipsychotics
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Core Tip: Atypical antipsychotic use can be associated with undesired metabolic 
effects. In that context, glycosylation has become a new target in the investigation of 
schizophrenia pathophysiology. As a glycan, galectin-3 (Gal-3) might be involved in 
the inflammation-insulin resistance-obesity cascade in schizophrenia, leading to 
cognitive changes. Eliminating Gal-3 influence may be beneficial in preserving 
cognition and reestablishing metabolic balance.

Citation: Borovcanin MM, Vesic K, Jovanovic M, Mijailovic NR. Galectin-3 possible 
involvement in antipsychotic-induced metabolic changes of schizophrenia: A minireview. 
World J Diabetes 2021; 12(10): 1731-1739
URL: https://www.wjgnet.com/1948-9358/full/v12/i10/1731.htm
DOI: https://dx.doi.org/10.4239/wjd.v12.i10.1731

INTRODUCTION
Clinical practice raises many questions regarding somatic states that accompany or are 
a consequence of mental illnesses. As schizophrenia is an extremely complex and 
debilitating mental disorder, overall treatment must take into account the somatic 
comorbidity of the patients. Although schizophrenia requires special attention and 
care in terms of lifestyle and antipsychotic treatment, a particular immunometabolic 
profile has recently been postulated, even before the disease onset[1]. The use of 
atypical antipsychotics is often associated with undesired metabolic and endocrine 
side effects including obesity, dyslipidemia, hyperglycemia, and insulin resistance[2]. 
To summarize, patients with schizophrenia most probably could have other 
comorbidities, regardless of their specific immunometabolic profile and antipsychotic 
therapy, and the somatic states may also lead to metabolic changes.

The identification of defects in cell biology and molecular phenotype underlying 
schizophrenia represents a challenging new approach to the study of this complex 
neurodegenerative disorder. Proteomic profiling studies, in which many proteins are 
tested for their relevance to the disease, are still in their infancy but the potential for 
elucidating the cellular and molecular pathways that may be involved in the onset and 
progression of schizophrenia is promising[3].

Altered protein post translational modifications such as glycosylation have become 
a new target of investigation in the pathophysiology of schizophrenia[4]. Glycosy-
lation is an enzyme-mediated process in which a carbohydrate or carbohydrate 
structure, also referred to as a glycan, binds to a protein, lipid, or glycan substrate. 
Glycosylation is the most common and complex post translational modification and 
plays a critical role in protein-protein, protein-cell, and cell-cell interactions, including 
antibody binding, protein degradation, cellular endocytosis, and protease protection
[5]. This process regulates nearly all cellular activities and has a critical role in the 
development and functioning of the central nervous system (CNS). Glycans are 
involved in many processes, such as neurite outgrowth and fasciculation, synapse 
formation and stabilization, modulation of synaptic efficacy, neurotransmission, and 
synaptic plasticity[6]. Altered glycosylation can significantly affect the properties of 
the glycosylated substrate, resulting in changes in its structure, localization, expression 
levels, molecular interactions, and/or substrate function.

Aberrant glycosylation has been identified in the serum, cerebrospinal fluid, urine, 
and postmortem brain tissue of schizophrenia patients[7]. Early evidence of 
glycosylation abnormalities in schizophrenia reported reduced glycoprotein 
expression in urine samples from male schizophrenia patients, and was consistent 
with abnormal glycan composition[8]. Altered monosaccharide composition of 
attached glycans was also found in the blood serum of the patients[9]. An increased 
serum glycoprotein level was also confirmed in young schizophrenia patients 13-17 
years of age[10].

Abnormalities of N-linked glycosylation in schizophrenia have been observed in 
neurotransmitter receptor and transporter subunits, subunits from α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid, kainate, and gamma-aminobutyric acid 
(GABA)A receptor families in various brain regions, including the dorsolateral 
prefrontal cortex, anterior cingulate cortex, and superior temporal gyrus[11-14]. 
Receptors containing abnormally N-glycosylated subunits have also been shown to 
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exhibit abnormal subcellular distribution in schizophrenia, suggesting cellular 
consequences of abnormal protein glycosylation[15]. Widespread glycosylation 
abnormalities due to abnormal glycosylation enzyme expression have also been 
reported in schizophrenia[16-18].

We have recently elaborated on the contrasting roles of the galectin-3 (Gal-3) 
through the schizophrenia continuance[19]. We also discussed the various somatic 
states co-occurring in schizophrenia that could be related to Gal-3. In this review, our 
interdisciplinary team seeks to further elucidate the mechanisms underlying the 
impact of glycans on early development, and how Gal-3 may further influence 
subsequent metabolic changes. However, our focus will be on the interplay of Gal-3 
with antipsychotics during the course of the disease in an attempt to elucidate specific 
non-CNS systemic changes. Overall, that may lead to conclusions that allow more 
selective therapy of schizophrenia in the future.

GAL-3 AND NEURO-IMMUNO-METABOLIC CROSSTALK
In recent years, an increasing body of evidence has highlighted the involvement of 
Gal-3 in neurodevelopment and neurodegenerative diseases[20]. Scientific advances 
during the last decade have led to the discovery that Gal-3 plays a significant role in 
normal murine brain development, neuroblast migration, oligodendrocyte differen-
tiation, and basal gliogenesis[21-24]. Chronic inflammation, mitochondrial damage 
and oxidative stress are factors common to neurodegenerative and metabolic diseases, 
in which sustained responses to inflammation contribute to neurodegeneration and 
progression of the disease[24,25]. Glial cell dysregulation is the main characteristic of 
chronic inflammation in neurodegenerative diseases, leading to changes in glycan 
expression in brain cells[26,27]. Previous studies have shown that inflammatory 
stimuli upregulate Gal-3 expression in activated microglia, and conversely, Gal-3 has 
been proposed as a modulator of the inflammatory response through microglial 
activation, cell adhesion, and cytokine release[28-32]. Recently, Gal-3 was shown to 
regulate microglial response to promote remyelination[23]. All this leads to the 
conclusion that Gal-3 is a key player in control of the switch between protective and 
disruptive microglial effects. In multiple sclerosis, Gal-3 expression is increased in 
periventricular inflammatory lesions[33]. Nishihara et al[34] investigated whether anti-
Gal-3 antibodies might be a novel diagnostic marker and a possible therapeutic target 
in patients with secondary, progressive multiple sclerosis. Gal-3 deficiency reduces 
inflammation and disease severity in experimental autoimmune encephalomyelitis, 
Alzheimer’s, and Parkinson’s disease[35-37]. We reported elevated levels of Gal-3 in 
the stable phase of schizophrenia, with the suggestion that this glycan has a proinflam-
matory effect in the later phase[19] (Figure 1A). All the data indicate that Gal-3 might 
be a potential biomarker and therapeutic agent in this cohort of neurodegenerative 
disorders. Gal-3 is not only found in the cells themselves but is also secreted into the 
extracellular space in kidneys and heart, suggesting its multiple functions[38]. In 
addition to cell proliferation and differentiation, it promotes oxidative stress and 
proinflammatory processes and plays an important role in angiotensin II and 
aldosterone-induced myocardial and kidney fibrosis[39,40]. Studies have shown that 
elevated levels of Gal-3 are predictors of coronary disease in diabetes mellitus type 2
[41]. Gal-3 levels are elevated in maintenance hemodialysis patients, and can be used 
as a biomarker of vascular calcification, left ventricular hypertrophy, and left 
ventricular diastolic dysfunction[42-44].

Gal-3 has recently been recognized as an important modulator of biological 
functions and an emerging participant in the pathogenesis of immune/inflammatory 
and metabolic disorders[45-47] (Figure 1B). Gal-3 serum levels are elevated in women 
with polycystic ovary syndrome, especially those with insulin resistance, and those 
with increased insulin and glucose levels in the glucose tolerance test and it is 
considered a potential biomarker in prediabetes and diabetes[48-50]. The role of Gal-3 
in metabolic disorders and the mechanism by which this lectin modulates excess fat 
mass, adipose tissue, systemic inflammation, and the associated impairment of glucose 
regulation, remains to be elucidated. Gal-3 is produced by many cell types, including 
adipocytes, and increased levels have been confirmed in obese patients[51,52]. Gal-3 is 
upregulated in growing adipose tissue and during inflammation[53,54]. Gal-3 is an 
important chemotactic factor for tissue macrophages in adipose tissue[55]. However, 
the role of Gal-3 in adipose tissue remains disputable because it exerts both deleterious 
and protective effects. In the general population, levels of circulating Gal-3 correlate 
positively with age, the prevalence of obesity, diabetes, hypercholesterolemia, and 
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Figure 1 Galectin-3 and neuro-immuno-metabolic crosstalk. A and B: Considering the aspects of neuroprogression in schizophrenia, antipsychotics (APs) 
could have a beneficial role in improving cognitive functioning (A), but also, with galectin (Gal-3), could participate in undesired effects of immunometabolic 
disturbances (B); C: A potential cascade of metabolic syndrome (Sy) onset could be through the processes of glycosylation, Gal-3 elevation in the circulation, and 
secretion of proinflammatory cytokines, which individually and together could lead to cognitive deterioration.

hypertension, markers of inflammation, and target organ damage, indicating a clear 
association of Gal-3 with metabolic disorders and associated risk factors and complic-
ations[50,52,56,57]. Seemingly contradictory results were reported by Ohkura et al[58], 
who demonstrated that Gal-3 affected the concentration of insulin more than that of 
glucose, and that the increase of Gal-3 activity in diabetic patients had a protective 
effect on insulin resistance.

Obesity may influence not only behavior, cognition, and mood, but also adipose 
tissue dysfunction and inflammation, trigger impairment of insulin signaling, 
compromise the storage of triglycerides, and contribute to insulin resistance with high 
levels of free fatty acids[59]. Moreover, all the processes associated with insulin 
resistance and chronic hyperglycemia induce oxidative stress and inflammatory 
responses that lead to neuronal death, cognitive impairment, and neurodegeneration.

Hippocampal insulin resistance is the key factor in cognitive deficits. In an animal 
model study, insulin signaling in the hippocampus was shown to be affected by a 
cascade in which obesity induced chronic inflammation and chronic inflammation had 
role in obesity-related insulin resistance[60]. Moreover, chronic inflammation is 
suppressed by Gal-3, so Gal-3 directly impacts insulin signaling and might be a 
targetable link between inflammation and insulin sensitivity. Qin et al[60] suggested 
that the development of cognitive deficits in obese people could be inhibited through 
Gal-3 decrement.

Obesity is reported in approximately 50% of patients, metabolic syndrome in up to 
40%, glucose intolerance in up to 25%, and diabetes in up to 15% of patients with 
schizophrenia[61]. The increased prevalence of these conditions is multifactorial. 
Antipsychotics can cause weight gain, glucose intolerance, and other metabolic 
complications[62] (Figure 1C). A recent meta-analysis of metabolic parameters in 
patients with first-episode psychosis, which can be described as early schizophrenia, 
showed increased insulin resistance and impaired glucose tolerance in the patients 
compared with healthy, matched controls, implying that schizophrenia might share 
intrinsic inflammatory disease pathways with type 2 diabetes[63]. We have previously 
discussed our findings of the possibly protective properties of Gal-3 in type-2 diabetes, 
but triggering metabolic changes and myocardial fibrosis[19].

GAL-3 AND ANTIPSYCHOTIC TREATMENT IN SCHIZOPHRENIA
Relatively few studies have investigated the effects of antipsychotic treatment on the 
serum glycosylation profiles in schizophrenia patients. Reports examining glycan 
expression in schizophrenia patients showed that the glycan profile in serum and 
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cerebrospinal fluid of first onset, unmedicated schizophrenia patients differs from the 
profile of healthy controls[64]. The results showed that some types of sialylated N-
glycans derived from low-abundance serum proteins are significantly increased in 
patients with schizophrenia compared with controls. The study found a two-fold 
increase in serum glycan levels in male schizophrenia patients, with gender-specific 
differences also apparent[65]. Glycemic differences have also been reported in patients 
with acute paranoid schizophrenia before and after 6 wk of treatment with olanzapine, 
an atypical antipsychotic medication[65]. Olanzapine administration increased 
galactosylation and sialylation of serum N-glycans, suggesting increased activity of 
specific galactosyltransferases and increased availability of galactose residues for 
sialylation. The results indicate that the glycosylation profile of serum proteins can be 
used to monitor patients with schizophrenia after treatment. Given the confirmed 
effects of olanzapine on hepatic enzymes, it is possible that the reported changes in 
glycosylation induced by olanzapine treatment may occur because of the altered 
activity of hepatic glycosylation-processing enzymes[66].

As schizophrenia may have an evolving, progressive pathology, Narayan et al[67] 
focused on changes in gene expression and molecular pathways throughout illness 
progression. They assessed the alterations in patients treated with the typical 
antipsychotic medication, chlorpromazine, at early (≤ 4 years), intermediate (7-18 
years), and late (≥ 28 years) stages of schizophrenia. The results showed that 
biopolymer glycosylation, protein amino acid glycosylation, and glycoprotein biosyn-
thesis were increased in intermediate-stage patients. Analysis of differences in gene 
expression revealed that carbohydrate metabolism was dominant in short-term illness, 
whereas lipid metabolism prevailed in intermediate-term illness. Overall, short-term 
illness was particularly associated with disruptions in gene expression, metal ion 
binding, ribonucleic acid processing, and vesicle-mediated transport. Considerably 
different from short-term illness, long-term illness was associated with inflammation, 
glycosylation, apoptosis, and immune dysfunction.

A postmortem study compared the effects of atypical (olanzapine and risperidone) 
vs typical antipsychotics (chlorpromazine and haloperidol) on the livers, various 
genes, and molecular functions of patients[68]. The results demonstrated that typical 
antipsychotics affected genes associated with nuclear protein, stress responses, and 
phosphorylation, whereas atypical antipsychotics increased gene expression 
associated with Golgi/endoplasmic reticulum, and cytoplasmic transport, suggesting 
that atypical antipsychotics affect post translational modifications. The study showed 
that olanzapine treatment increased the expression of the B4GALT1 gene in the liver of 
schizophrenia patients. That gene encodes β1,4-galactosyltransferase I (Gal-T1). 
Increased expression and activity of the enzyme lead to increased galactosylation of 
GlcNAc residues in glycans, which is consistent with the results of a study performed 
by Telford et al[65]. Genes associated with lipid metabolism were consistently 
downregulated in the typical compared with the atypical antipsychotic group.

However, dysregulation of adipose tissue homeostasis appears to be a critical factor
[69]. An untargeted proteomic analysis of the effect of antipsychotics on adipose tissue 
was performed in a rat schizophrenia-like methylazoxymethanol acetate model[70]. 
Chronic, 8-wk-long application of three antipsychotics was characterized by 
differences in the likelihood of inducing metabolic alterations. Olanzapine, 
risperidone, and haloperidol, caused alterations in protein N-linked glycosylation in 
adipose tissue, providing further evidence that dysregulated glycosylation in schizo-
phrenia may also be caused to some extent by antipsychotic treatment. Drug-specific 
effects included upregulation of insulin resistance (olanzapine), upregulation of fatty 
acid metabolism (risperidone), and upregulation of nucleic acid metabolism 
(haloperidol). Individual metabolic characteristics might also predispose to a different 
likelihood of becoming obese after antipsychotic treatment. Gal-3 has been shown to 
be associated with the onset of schizophrenia, and its elevation could have consequent 
deleterious effects (Figure 1). In addition, it must be taken into account that our 
patients were treated with risperidone or paliperidone, which are antipsychotics that 
may upregulate fatty acid metabolism and have Gal-3-elevating properties[71].

CONCLUSION
In this context, it is necessary and urgent to develop more selective treatment 
strategies. The phase of the illness also needs to be considered, with a focus on early 
interventions. The possibility that schizophrenia is secondary to a circulating, large 
molecular-weight substance has been explored with variable success. However, a 
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double-blind evaluation of plasmapheresis in ten patients with schizophrenia yielded 
negative results, and the procedure did not lead to a reduction in psychosis[72]. As 
hypercholesterolemia has been treated with plasmapheresis, and recently the 
therapeutic usefulness of Gal-3 depletion apheresis has been demonstrated in inflam-
mation-mediated disease, targeting Gal-3 molecule may be a useful way to address 
immunometabolic problems and cognitive deterioration in schizophrenia in the future
[73,74].

The question is whether extrapolations of preclinical and research data are 
applicable in clinical practice. Gal-3 relevance could be very interesting in further 
exploration of the genesis of schizophrenia in parallel with the metabolic alterations of 
the patients. It might be useful for clinicians to become familiar with this molecule and 
its precise roles in each phase of the disease in order to improve cognition and reestab-
lishing metabolic balance in schizophrenia.
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