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Abstract
The cholinergic anti-inflammatory pathway (CAP) refers to the anti-inflammatory 
effects mediated by the parasympathetic nervous system. Existence of this path-
way was first demonstrated when acetylcholinesterase inhibitors showed benefits 
in animal models of sepsis. CAP functions via the vagus nerve. The systemic anti-
inflammatory effects of CAP converges on the α7 nicotinic acetylcholine receptor 
on splenic macrophages, leading to suppression of pro-inflammatory cytokines 
and simultaneous stimulation of anti-inflammatory cytokines, including 
interleukin 10. CAP offers a novel mechanism to mitigate inflammation. Electrical 
vagal nerve stimulation has shown benefits in patients suffering from rheumatoid 
arthritis. Direct agonists like nicotine and GTS-1 have also demonstrated anti-
inflammatory properties in models of sepsis and acute respiratory distress 
syndrome, as have acetylcholinesterase inhibitors like Galantamine and 
Physostigmine. Experience with coronavirus disease 2019 (COVID-19) induced 
acute respiratory distress syndrome indicates that immunomodulators have a 
protective role in patient outcomes. Dexamethasone is the only medication 
currently in use that has shown to improve clinical outcomes. This is likely due to 
the suppression of what is referred to as a cytokine storm, which is implicated in 
the lethality of viral pneumonia. Nicotine transdermal patch activates CAP and 
harvests its anti-inflammatory potential by means of an easily administered depot 
delivery mechanism. It could prove to be a promising, safe and inexpensive 
additional tool in the currently limited armamentarium at our disposal for 
management of COVID-19 induced acute hypoxic respiratory failure.

Key Words: COVID-19; Acute respiratory distress syndrome; Medicinal nicotine; 
Cholinergic anti-inflammatory pathway; Corticosteroid
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Core Tip: Cholinergic anti-inflammatory pathway is novel pathway of the inflammatory reflex. Activation 
of this pathway can suppress maladaptive inflammatory response seen in coronavirus disease 2019 
(COVID-19) acute respiratory distress syndrome (ARDS). Nicotine is a potent activator of this pathway 
and may offer benefits in the management of COVID-19 ARDS, via immune suppressive effects similar to 
dexamethasone.
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URL: https://www.wjgnet.com/2220-3141/full/v11/i4/228.htm
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INTRODUCTION
A dramatic inflammatory response is a common manifestation of severe coronavirus disease 2019 
(COVID-19) infection[1]. The purpose of such an inflammatory surge, under normal conditions, is to 
allow the body to attack, constrain, and kill invading organisms. However, that same inflammatory 
cascade has negative downstream consequences which can cause direct damage to the host.

Sepsis is the consequence of this hyperactive immune state, most commonly due to a poorly 
controlled infection or significant tissue injury[2]. The unbalanced immune reaction perpetuates further 
injury. Neutrophils are recruited and infiltrate the lungs where they undergo apoptosis, further causing 
tissue damage leading to the development of shock and acute respiratory distress syndrome (ARDS)[3]. 
These cells and the molecules they release are a potent force designed to neutralise pathogens, but cause 
significant collateral damage in the process. Another casualty of this inflammatory dysregulation is 
vasodilatation and microvascular thrombi that lead to poor tissue perfusion, further perpetuating the 
cycle of destruction. This self-perpetuating cycle of tissue damage and release of pro-inflammatory 
cytokines[4,5] causes further dysregulation of the immune system.

Cytokine is a term given to molecules that carry out inflammatory responses of the immune system, 
each having their respective receptors distributed across the body. They orchestrate most, if not all, of 
the consequences of sepsis. This phenomenon is now dubbed a ‘cytokine storm’[6] and has been partic-
ularly devastating in the current pandemic of COVID-19 infection[7,8].

In recent years many immune modulators have been administered to mitigate sepsis and shock but 
with limited success in changing the disease course, morbidity, and mortality outcomes. Tocilizumab 
was used widely during the initial phase of the COVID-19 pandemic in ICUs across the world. But it 
failed to demonstrate mortality benefits[9]. The reason could partly be explained by the fact that it has a 
narrow scope of action, only blocking the interleukin (IL)-6 receptor. Upregulation of alternate 
pathways of inflammation likely are at play. A mechanism to reduce the global immune response is 
required to suppress collectively the molecules perpetuating inflammation. Corticosteroids are touted as 
one of the strongest tools in our arsenal to achieve such a goal. Dexamethasone is the only drug we have 
at our disposal that has shown mortality benefits during the COVID-19 pandemic[10]. Although 
corticosteroids are considered to globally suppress inflammation, patients are still succumbing to this 
coronavirus infection despite high doses administered over several days. Other medications for global 
suppression of inflammation are needed.

One potential pathway that may hold promise in achieving global suppression of the immune system 
is the cholinergic anti-inflammatory pathway (CAP). CAP is a component of the inflammatory reflex, 
mediated by the cholinergic nervous system and augmenting its tone has been shown to decrease 
inflammation in both human and animal models. The first evidence of the cholinergic system having 
immunomodulatory properties dates back to 1987. Zabrodskiĭ[11] showed that Armin, an irreversible 
acetylcholinesterase inhibitor reduces mortality in animal models of sepsis. It was first recognized in 
humans when patients with Rheumatoid Arthritis and drug-resistant epilepsy underwent Vagal Nerve 
stimulation to ameliorate their recurrent seizures. After initiation of Vagal Nerve stimulation, patients 
incidentally reported improvement in joint pains[12].

INFLAMMATORY REFLEX
The inflammatory reflex[13] is a central nervous system mediated reflex arc that modulates the immune 
system. Like other prototypical reflexes, it has an incoming and outgoing arm. Instead of a sensory 
input that begets a motor response, this circuit senses inflammation and responds with appropriate 
inflammatory inhibition to reestablish homeostasis. The afferent arm is activated by the products of 
sterile or infectious inflammation.

https://www.wjgnet.com/2220-3141/full/v11/i4/228.htm
https://dx.doi.org/10.5492/wjccm.v11.i4.228
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The efferent arm is termed the CAP which, through diverse mechanisms, suppresses inflammation
[14]. Both the afferent and efferent limbs of the reflex are transmitted predominantly by the vagus 
nerves. Tracey KJ team[15,16] has conducted extensive research in the potential therapeutic application 
of vagal stimulation in modulating the immune system, thereby providing initial major contributions to 
mapping this pathway (Figure 1)[17,18].

THE AFFERENT LIMB
We are more familiar with the afferent limb of this pathway[19], which plays a role in triggering the 
mammalian febrile response. Disrupting the afferent arm, for example with a subdiaphragmatic 
vagotomy, prevented IL-1β induced fever in mice[20]. The afferent limb is activated by pro-inflam-
matory cytokines like tumor necrosis factor-α (TNF-α) and IL-1β, neuropeptide Y and prostaglandins. 
Vagal fibers innervating visceral organs like the lungs and gastrointestinal tract demonstrate sensitivity 
to IL-1β. Furthermore, the nodose ganglion expresses Toll-like receptors[18] which are directly 
stimulated by pathogen associated molecular patterns such as those found on bacterial cell walls[21]. 
Area postrema directly expresses proinflammatory cytokine receptors[22]. The afferent limb converges 
on the nucleus tractus solitarius (NTS), the primary central vagal afferent nucleus. Interneurons connect 
the NTS to the dorsal motor nucleus of vagus (DMV), which are the primary efferent nuclei of the vagus 
nerve (Figure 2).

THE EFFERENT LIMB/CAP
The systemic anti-inflammatory effects of CAP are thought to exert its effects via the spleen[23,24]. The 
efferent limb originates at the DMV, the motor nuclei of the vagus nerve. Motor signals are transmitted 
via cholinergic fibers down the vagus nerve to mount an anti-inflammatory response, reestablishing 
homeostasis. The vagus nerve does not directly innervate the spleen like it does with other visceral 
organs such as the heart, intestines and liver. So to realize a response from splenic lymphocytes and 
macrophages, the splenic nerve functions as an intermediary. The efferent pathway is as follows: 
Cholinergic fibers from the vagus nerve innervate the celiac ganglion; Noradrenergic neurons from the 
celiac ganglion, via the splenic nerve, innervate the spleen, and by releasing norepinephrine stimulate β
-2 adrenergic receptors on choline-acetyltransferase positive T cells that reside in the spleen; Activation 
of the β-2 adrenergic receptors with norepinephrine induces the release of acetylcholine (ACh) from 
these splenic T cells; ACh then activates α-7 nicotinic acetylcholinergic receptor (α7nAChr) on the 
splenic macrophages; Activation of α7nAChr causes downstream inhibition of the NF-Kappa β pathway 
and subsequent suppression of pro-inflammatory cytokines. It also induces the release of anti-inflam-
matory molecules by activating the JAK2-STAT3 pathway[13,14].

Iatrogenic activation of the efferent limb of the inflammatory reflex, irrespective of the modality, has 
demonstrated anti-inflammatory effects in diverse pathological conditions[15] (Figure 3).

HARVESTING THE POTENTIAL OF CAP
Augmenting the CAP offers an effective tool in controlling maladaptive inflammatory responses[25,26]. 
Modulating the cholinergic tone, irrespective of the modality used, has been shown to suppress inflam-
mation[27]. Direct electrical stimulation of the vagus nerve aims to trigger an action potential that 
consequently activate this pathway downstream. Vagal nerve stimulation has been shown to suppress 
inflammation and decrease serum levels of TNF, IL-1β and IL-6[28-32]. Pharmacological modalities to 
increase the activity of CAP have also yielded similar results. Direct agonists of α7nAChr like the 
pharmacological agent nicotine have demonstrated anti-inflammatory properties[33-39]. Ongoing trials 
using GTS-1, a specific α7nAChr agonist, are being conducted in human models of sepsis[40,41]. 
Another feasible pharmacological strategy is to use inhibitors of acetylcholinesterase to delay degra-
dation of ACh and, thus, enhance the tone of this pathway[42-47]. It must be noted that acetylcholin-
esterase inhibitors require a functional vagal pathway and fail to demonstrate anti-inflammatory effects 
in vagotomized animals[48].

Practical modalities for bedside manipulation of CAP is limited. Vagal nerve stimulation has limited 
feasibility for critically ill septic patients. GTS-1, an α7nAChr agonist, is in an experimental phase 
acetylcholinesterase inhibitors like physostigmine increase cholinergic tone systemically and cause 
undesirable muscarinic side effects. That currently leaves nicotine as the only feasible and medically 
available potentiator of CAP as an agonist of α7nAChr. As such, it has demonstrated anti-inflammatory 
properties in ulcerative colitis and models of human sepsis[33,34].
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Figure 1 The inflammatory reflex. The above graphic demonstrates the inflammatory reflex. The afferent limb is activated by pro-inflammatory cytokines like 
tumor necrosis factor and interleukin 1βor by pathogen-associated molecular patterns via Toll-like receptors. The afferent limb connects to the nucleus tractus 
solitarius (NTS), the primary vagal afferent nuclei. The mammalian febrile response is initiated at the NTS. Interneurons connect NTS to dorsal motor nucleus of 
vagus (DMV) incoming signals. The DMV is the primary efferent nuclei of the vagus nerve. This efferent signal initiates an anti-inflammatory effect, reestablishing 
homeostasis. PAMPS: pathogen-associated molecular patterns.

Figure 2 Afferent limb of the inflammatory reflex. This figure demonstrates the mechanisms by which the vagus nerve senses inflammation. Vagal sensory 
neurons directly express receptors for various pro-inflammatory cytokines such as, tumor necrosis factor, interleukin 1β, neuropeptide Y and prostaglandins. Vagal 
fibers innervating the lymphatic system demonstrate sensitivity to interleukin-1β. In addition, the nodose ganglion has been shown to express Toll-like receptors. Area 
postrema directly expresses proinflammatory cytokine receptors[22]. The signal is transmitted via the vagal afferents to the bilateral nucleus tractus solitarius, the 
primary vagal afferent nucleus[19].

NICOTINE
Humans have been using nicotine since prehistoric times[49], mostly in the form of tobacco. Even 
though it is widely acknowledged that smoking or chewing tobacco is unequivocally injurious to health, 
nicotine by itself has not been shown to be harmful. Medicinal nicotine has demonstrated potent anti-
inflammatory properties while being safe and possessing a low side-effect profile in short term adminis-
tration. Nicotine administration in animal models of ARDS and sepsis have shown improved survival 
with lower serum inflammatory markers and reduced migration of neutrophils[36-38]. Human models 
of lipopolysaccharide (LPS) induced sepsis show faster resolution of sepsis[33]. Nicotine has also shown 
anti-inflammatory effects in patients with ulcerative colitis[34,35].

Nicotine patches are well suited as a modality for increasing nicotinic cholinergic receptor activity, 
and possess the following advantages: Nicotine does not have any underlying muscarinic effects and, 
therefore, lack concerns of increasing airway secretions that occur with acetylcholinesterase inhibitors 
like galantamine or physostigmine; Using a nicotine patch achieves therapeutic levels of nicotine in the 
blood within 4-6 h, offering a rapid drug onset profile[50]; The active drug nicotine has a short half-life 
of 2 h. Its metabolite, cotinine, has minimal biological activity[51]. This allows for rapid withdrawal of 
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Figure 3 Efferent limb of the inflammatory reflex. Signal from the dorsal nuclei of vagus is transmitted via cholinergic fibers of the vagus nerve to the celiac 
ganglion. Noradrenergic neurons from the celiac ganglion via the splenic nerve innervate the spleen. Choline-acetyltransferase positive T cells that reside in the 
spleen express β-2 adrenergic receptors. Activation of this receptor causes the release of Acetylcholine which binds to the α-7 nicotinic acetylcholinergic receptor on 
splenic macrophages causing the inhibition of NF-kappa β pathway and upregulation of STAT3, ultimately suppressing inflammation[16,23].

treatment if necessary. Most acetylcholinesterase inhibitors have a much longer half-life; The depot 
mechanism of drug delivery for the nicotine patch allows for a rapid onset, prolonged drug delivery 
during the duration of application, with a quick withdrawal time; The 24-h depot administration avoids 
repeated administrations and minimized nursing exposure for delivery of the medication; Ease of 
administration; Nicotine transdermal patches are widely used as clinical medication for nicotine 
replacement therapy in both the hospital and outpatient settings; There are minimal drug-drug 
interactions[52].

IN-HOSPITAL SAFETY DATA ON NICOTINE REPLACEMENT THERAPY
The data on the safety of nicotine on non-smoking patients in an inpatient setting is limited.

Safety data on current or former smokers receiving nicotine replacement therapy in ICU settings and 
hospital settings fail to demonstrate an increase in adverse events[53-58]. Potential side effects of 
medicinal nicotine administration are few. They may include hypertension and tachyarrhythmias. Rash 
at the site of the nicotine patch application has been described. Patients with end stage renal disease 
have a decreased rate of nicotine metabolism so the safety profile for patients on dialysis is uncertain[59,
60].

CONCLUSION
The current ongoing pandemic of severe acute respiratory syndrome coronavirus 2 proves a new 
challenge for the medical community. Owing to the tremendous ingenuity and grit demonstrated by 
teams across the globe, we now have several promising vaccines which demonstrate remarkable 
efficacy. However, we are yet to develop a similarly promising tool for management of severe infection 
which is still very prevalent. Consequently, patients continue to succumb in ICUs across the world to 
the COVID-19 acute hypoxic respiratory failure and septic shock. Several touted treatment modalities 
during this pandemic have emerged only to quickly fall out of favour due to lack of documented 
benefit, including Hydroxychloroquine, Tocilizumab, and transfusion of convalescent plasma. 
Management for COVID-19 pneumonia, at present, comprises two parallel approaches. Remdesivir or 
other upcoming potential antivirals, to control viral replication and immunomodulators like 
dexamethasone to control the maladaptive immune response. Dexamethasone has shown utility in 
reducing mortality in patients with COVID-19 induced acute hypoxic respiratory failure. However, 
despite its use early in the course of the disease, many still deteriorate, requiring increased levels of 
oxygen support or even mechanical ventilation. Patients continue to die even with dexamethasone as 
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part of their pharmacological regimen. Better modalities are needed to further improve patient 
outcomes. The hope is bringing to the attention of the medical community a fairly well studied, yet 
paradoxically unknown pathway of global immune modulation.

CAP is a part of a neural reflex termed the inflammatory reflex. It plays a central role in the neural 
control of inflammation. Inflammatory reflex has an afferent limb that senses systemic inflammation via 
the vagus nerve. This signal is relayed to the NTS, the sensory vagal nucleus in the central nervous 
system. Interneurons then communicate to the DMV, which is the primary motor nucleus of the vagus 
nerve. The efferent limb of the inflammatory reflex originates from the DMV via motor vagal fibers and 
trigger various anti-inflammatory mechanisms, reestablishing homeostasis. The systemic anti-inflam-
matory effects of CAP is thought to be due to suppression of pro-inflammatory cytokines from splenic 
macrophages. Nicotinic ACh receptors on these splenic macrophages are the point of convergence of 
this pathway’s systemic anti-inflammatory effect. This translates to survival benefits with lower levels of 
serum TNF-α, and IL-6, along with reduced migration of neutrophils in models of sepsis. The potential 
of augmenting this pathway to mitigate inflammation has been demonstrated in several animal and 
human studies.

Nicotine is a commonly used molecule that is a potent activator of α7nAChr, with demonstrated anti-
inflammatory effects. Animal models of sepsis show improved survival with nicotine administration. 
Nicotine patch has been studied in the human model of LPS induced sepsis and demonstrated faster 
resolution of inflammation compared to controls. Nicotine transdermal patch has been used for decades 
as a means of nicotine delivery for nicotine replacement therapy in active tobacco users and has 
demonstrated a favorable safety profile. Thus, nicotine transdermal patch may offer a readily available 
tool with significant benefit-to-risk ratio in the setting of COVID-19 induced acute hypoxic respiratory 
failure.

With patients suffering daily across the globe with COVID ARDS, there is little downside to the 
administration of this relatively inexpensive, widely available medication with a high safety. There is 
presently a lack of literature regarding the use of nicotine in COVID-19 ARDS patients and it must be 
further studied first before being applied routinely.
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