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Abstract
BACKGROUND 
Endoplasmic reticulum (ER) stress-related hepatocyte apoptosis is responsible for 
multiple hepatic diseases. Previous studies have revealed that endoplasmic reticu-
lophagy (ER-phagy) promotes the selective clearance of damaged ER fragments 
during ER stress, playing a crucial role in maintaining ER homeostasis and inhibi-
ting apoptosis. Family with sequence similarity 134 member B (FAM134B) is a 
receptor involved in ER-phagy that can form a complex with calnexin (CNX) and 
microtubule-associated protein 1 light chain 3 (LC3). The complex can mediate the 
selective isolation of ER fragments to attenuate hepatocyte apoptosis. However, 
the precise regulatory mechanisms remain unclear.

AIM 
To elucidate the effect of FAM134B-mediated ER-phagy on ER stress-induced 
apoptosis in buffalo rat liver 3A (BRL-3A) rat hepatocytes and the potential 
regulatory mechanisms.

METHODS 
ER stress-related hepatocyte apoptosis was induced using dithiothreitol (DTT). 
Proteins related to ER stress and autophagy were measured with western blotting. 
Protein complex interactions with FAM134B were isolated by co-immunoprecip-
itation. ER-phagy was evaluated in immunofluorescence experiments. Cell cycle 
distribution and apoptosis were measured by flow cytometry. Mitochondrial Ca2+ 

levels were evaluated by the co-localization of intracellular Ca2+-tracker and Mito-
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tracker. The small interfering RNA against FAM134B was used to knockdown FAM134B in BRL-
3A cells.

RESULTS 
ER stress-related and autophagy-related proteins in BRL-3A cells were elevated by both short and 
long-term DTT treatment. Furthermore, co-immunoprecipitation confirmed an interaction between 
FAM134B, CNX, FAM134B, and LC3 in BRL-3A cells. Immunofluorescence assays revealed that 
autolysosomes significantly decreased following short-term DTT treatment, but increased after 
long-term treatment. Mitochondrial Ca2+ levels and apoptotic rates were dramatically elevated, and 
more cells were arrested in the G1 stage after short-term DTT treatment; however, these decreased 
48 h later. Moreover, FAM134B downregulation accelerated mitochondrial apoptotic pathway 
activation and aggravated hepatocyte apoptosis under ER stress.

CONCLUSION 
FAM134B-mediated ER-phagy attenuates hepatocyte apoptosis by suppressing the mitochondrial 
apoptotic pathway. Our findings provide new evidence highlighting the importance of FAM134B-
mediated ER-phagy in attenuating hepatocyte apoptosis.

Key Words: Hepatocytes; Reticulophagy; Family with sequence similarity 134 member B; Apoptosis; 
Endoplasmic reticulum stress; Endoplasmic reticulum homeostasis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We show that family with sequence similarity 134 member B (FAM134B)-mediated reticu-
lophagy maintains the endoplasmic reticulum (ER) homeostasis in ER-stressed hepatocytes via the 
clearance of damaged ER fragments. Thereby FAM134B-mediated reticulophagy ameliorates dithio-
threitol-induced hepatocyte apoptosis. Our findings provide emerging evidence of the prominence of ER-
phagy in ER stress-related hepatocyte apoptosis. FAM134B may represent a potential therapeutic target 
for liver disease treatment.

Citation: Guo YX, Han B, Yang T, Chen YS, Yang Y, Li JY, Yang Q, Xie RJ. Family with sequence similarity 134 
member B-mediated reticulophagy ameliorates hepatocyte apoptosis induced by dithiothreitol. World J 
Gastroenterol 2022; 28(23): 2569-2581
URL: https://www.wjgnet.com/1007-9327/full/v28/i23/2569.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i23.2569

INTRODUCTION
Endoplasmic reticulum (ER) stress-related hepatocyte apoptosis participates in multiple hepatic 
diseases, including viral hepatitis[1], hepatic fibrosis[2], fatty liver[3,4] and cirrhosis[5]. Therefore, the 
alleviation of ER stress-mediated hepatocyte apoptosis is crucial in the treatment of hepatic diseases. 
Recent findings have indicated that endoplasmic reticulophagy (ER-phagy) promotes degradation of 
damaged ER fragments during ER stress. Although ER-phagy has a vital role in maintaining ER 
homeostasis and inhibiting cell apoptosis[6-8], the exact regulatory mechanisms behind this are largely 
unknown.

Glucose-regulated protein 78 (GRP78) is a prominent ER molecular chaperone, while calnexin (CNX) 
is a membrane-bound lectin protein in the ER that can increase the protein folding capacity[9,10]. Even 
though the excessive build-up of misfolded or unfolded proteins can be alleviated via ER stress, 
previous studies reported that a selective autophagic mechanism, defined as ER-phagy, can also be 
activated by ER stress to restore ER homeostasis[11,12]. Family with sequence similarity 134 member B 
(FAM134B), an ER-resident protein, may interact with CNX in the cytosol or the ER membrane[13]. 
Since FAM134B is not predicted to have an ER lumenal domain, there is an indirect interaction between 
FAM134B and lumenal proteins through the lumen-resident segment, which has a chaperone activity 
attributed to CNX. CNX forms transient but relatively stable complexes with unfolded ER proteins until 
they either become folded or are degraded. Moreover, it has been reported that as with other cargo 
receptor molecules, FAM134B can interact directly with microtubule-associated protein 1 light chain 3 
(LC3) when its LIR motif is exposed. The CNX-FAM134B-LC3 complex can mediate the selective 
isolation of ER fragments containing misfolded proteins, which are subsequently transported to 
lysosomes for degradation[14-16]. Thus, FAM134B-mediated ER-phagy may play an essential role in 

https://www.wjgnet.com/1007-9327/full/v28/i23/2569.htm
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maintaining ER homeostasis and promoting cell survival. However, it is unclear whether FAM134B-
mediated ER-phagy is involved in the regulation of hepatocyte apoptosis induced by ER stress. In this 
study, dithiothreitol (DTT) was used to induce ER stress in buffalo rat liver 3A (BRL-3A) hepatocytes, 
and the expression of ER stress-related and autophagy-related proteins was assessed. In addition, small 
interfering RNA (siRNA) was used to knockdown the expression of FAM134B in hepatocytes and an 
apoptosis analysis followed. Our study reveals an emerging role of FAM134B-mediated ER-phagy in ER 
stress-mediated hepatocyte apoptosis, which may provide a novel target for the treatment of hepatic 
diseases.

MATERIALS AND METHODS
Antibodies and reagents
Dulbecco's modified Eagle medium (DMEM) and fetal bovine serum (FBS) were purchased from Gibco 
(Grand Island, NY, United States). Trypsin-EDTA solution, trypsin solution without EDTA, and 
penicillin-streptomycin were purchased from Biological Industries (BioInd, Israel). Bicinchoninic acid 
(BCA) protein assay kit, DTT, RIPA lysis buffer, and protease inhibitor were obtained from Solarbio 
(Beijing, China). Annexin V-FITC/PI Apoptosis Detection Kit and Cell Cycle Detection Kit were 
purchased from KeyGEN BioTECH (Nanjing, China). PVDF membranes were obtained from Merck 
Millipore. Rabbit polyclonal antibody against FAM134B was purchased from Proteintech (Wuhan, 
China). Rabbit polyclonal antibodies against ATG12, cytochrome c (cyt c), and cleaved caspase-3 were 
obtained from Cell Signaling Technology (Danvers, MA, United States). Rabbit polyclonal antibodies 
against β-actin, LC3, CNX, CHOP and GRP78, and the Ca2+ indicator (Rhod-2 AM) were purchased from 
Abcam (Cambridge, United Kingdom). Dynabeads protein G immunoprecipitation kit and lipofecta-
mine 3000 reagent were purchased from Thermo Fisher Scientific, Inc. HRP-labeled Goat Anti-Rabbit 
IgG (H + L), Mito-Tracker Green, Lyso-Tracker Green, ER-Tracker Red, and immunofluorescence-
related reagents were purchased from Beyotime Institute of Biotechnology (Nanjing, China).

Cell culture and experiment protocol
BRL-3A cells, bought from Cell Bank of the Chinese Academy of Sciences (Shanghai, China), were 
cultivated and maintained in DMEM culture media supplemented with 1% penicillin-streptomycin and 
10% FBS. BRL-3A cells were seeded at 37 °C and 5% CO2 in a constant temperature and humid 
atmosphere, pre-cultured every 3 d, and further passaged until the density reached approximately 80%. 
To induce the ER stress, BRL-3A cells were treated with DTT (2.0 mmol/L based on previous studies[17]
) for 0, 3, 6, 12, 24, or 48 h.

Apoptosis assessment
Cells were cultured to 80% confluency and treated with 2.0 mmol/L DTT for the specified point-in-time 
intervals. To determine the efficacy of the different DTT treatments, a cell apoptosis analysis was 
evaluated with flow cytometry. Each group of cells was trypsinized without EDTA and rinsed thrice 
with PBS. After centrifugation at 2000 rpm for 5 min, cells were loaded with 500 μL binding buffer and 
labeled with 5 μL of Annexin V-FITC/PI, according to the manufacturer’s instructions. Labeled cells 
were detected and analyzed with flow cytometry and NovoExpress® software 1.4.1. The experiments 
were performed in triplicate.

Cell cycle analysis
To determine the effect of DTT’s 0, 3, 6, 12, 24, and 48 h incubation on the cell cycle progression of BRL-
3A, the harvested cells were trypsinized without EDTA and rinsed three times with cold PBS, followed 
by fixation with 70% ethanol in cold storage. After 24 h incubation at 4 °C, 500 μL PI/RNase was added 
to each group and maintained at 37 °C for 60 min in a dark place. Stained cells were processed using 
flow cytometry and further measured via the NovoExpress® software 1.4.1. The experiments were 
performed in triplicate.

Western blot analysis
BRL-3A cells were grown on 10 cm diameter dishes and treated with 2.0 mmol/L DTT for different 
times. Cells were rinsed three times with pre-cooled PBS after experimentation and collected with cell 
scrapers in 100 μL RIPA buffer containing 1 mmol/L PMSF. After centrifugation at 12000 rpm for 25 
min at 4 °C, the concentrations of total cellular protein extracts were determined using the BCA kit 
(Solarbio Science, Beijing, China), and known concentrations of BSA were used as standard. The total 
cellular protein extracts were denatured by boiling at 100 °C using dry bath incubator (Hangzhou Miu 
Instruments Co., Ltd, Zhejiang, China). Protein samples (30–40 mg) were loaded onto SDS-PAGE and 
transferred onto PVDF membranes for immunostaining. After blocking with 5% defatted milk for 90 
min, membranes were stained overnight with primary antibodies, including β-actin (1:1000), GRP78 
(1:1000), CNX (1:3000), ATG12 (1:1000), LC3 (1:1000), FAM134B (1:1000), CHOP (1:1000), cleaved 



Guo YX et al. Reticulophagy ameliorates hepatocyte apoptosis

WJG https://www.wjgnet.com 2572 June 21, 2022 Volume 28 Issue 23

caspase-3 (1:1000), cyt c (1:1000) in cold storage, followed by incubation with secondary antibodies 
(1:4000). The density of protein bands on membranes was exposed and quantified via fluorography 
using Image J software. The images shown are representative of experiments carried out at least three 
times.

Co-immunoprecipitation analysis
BRL-3A cells, treated with DTT (2.0 mmol/L for 0 h and 24 h), were lysed in RIPA lysis buffer and the 
lysates were centrifuged at 12000 rpm for 15 min at 4 °C. The supernatant was resuspended in ice-cold 
PBS to a total volume of 500 μL, and 5 μL of the designated antibody was added overnight at 4 °C. The 
next day, the Ab-Ag complexes were bound to Dynabeads magnetic beads on a rotary shaker for 10 
min. The magnetic bead-Ab-Ag complex was washed and eluted by adding a washing buffer and 
elution buffer, respectively, according to the manufacturer's protocol. Immunocomplexes were heated 
for 5 min at 100 °C and prepared for analysis by western blot. The images shown are representative of 
experiments carried out at least three times.

Calcium imaging and mitochondrial labeling
To observe the effects of DTT treatment at 2.0 mmol/L for specified time points, mitochondrial Ca2+ 
levels were determined using Rhod-2 AM, a specific detection dye for calcium. The treated cells were 
rinsed with HBSS three times and stained with a mixture of 5 μM Rhod-2 AM and 20 nM Mito-Tracker 
Green at 37 °C for 30 min in the dark. Finally, live cells were extensively rinsed thrice by adding HBSS 
without calcium, and images were visualized with Zeiss LSM Image Browser using a Zeiss LSM 900 
confocal microscope. The images shown are representative of experiments carried out at least three 
times.

Live imaging of ER and lysosome
To observe the intracellular localization of the ER and lysosomes, after treatment with 2.0 mmol/L DTT 
for 0, 3, 6, 12, 24, and 48 h, ER and lysosomes were stained with ER-tracker and Lyso-tracker. Prior to 
staining, trackers were diluted appropriately in DMEM, on the basis of the manufacturer's instructions. 
Following dilution, cells were simultaneously incubated with the two trackers listed above, maintained 
for 30 min at 37 °C, and finally rinsed thrice with HBSS. Stained cells were visualized under the Zeiss 
LSM 900 confocal microscope. Images shown are representative of experiments carried out at least three 
times.

SiRNA transfections
Specific siRNA against buffalo rat FAM134B was designed and synthesized by OriGene. Product 
number and targeting sequence: SR510501A-rGrGrArArGrUrGrGrUrUrUrArUrCrArArArUr-
UrCrUrGrATA; SR510501B-rArArArUrUrUrGrArCrUrUrArCrArGrUrGrGrArArArCrCAA; 
SR510501C-rArArGrUrGrGrUrUrUrArUrCrArArArUrUrCrUrGrArUrAGA. Cells were cultured in six-
well dishes until the density of cell fusion reached 60%. Briefly, 75 pmol of FAM134B siRNA were added 
to Lipofectamine 3000 Transfection Reagent and gently mixed for 15 min, then administered to BRL-3A 
cells, which were resuspended in DMEM. After transfection for 6 h, cells were washed, and then supple-
mented with fresh medium. Finally, cells were treated with DTT (2.0 mmol/L) for a further 24 h and 
subjected to western blot assay and apoptosis assessment.

Statistical analysis
GraphPad Prism 7 software was used to perform all the statistical analyses and prepare experimental 
graphs. Data are expressed as the mean ± SD. Shapiro-Wilk normality test was used to test the normal 
distribution of the data and all the data were fit to a normal followed by Tukey's post hoc test was 
performed, and a significant difference was considered as P < 0.05.

RESULTS
DTT-mediated ER stress upregulates ER-phagy-related FAM134B in BRL-3A cells
To assess whether the drug treatments could alter the protein expression of CNX and GRP78, BRL-3A 
cells were subjected to short-term (3, 6, 12, 24 h) or long-term (48 h) treatment with DTT, and the protein 
extracts from BRL-3A cells were analyzed by western blot. We found that treatment of BRL-3A cells 
with 2.0 mmol/L DTT resulted in a prominent increase in CNX and GRP78 levels, both in a time-
dependent manner (Figure 1A and B). Moreover, CHOP is a specific and stress-responsive transcription 
factor during ER stress and its protein expression was significantly increased in the 12, 24, and 48 h 
groups (Figure 1A and B). However, the expression of CHOP in BRL-3A cells treated with DTT for 48 h 
was lower than that after DTT treatment for 24 h. These alterations in CNX, GRP78, and CHOP confirm 
that ER stress in BRL-3A was activated.
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Figure 1 Impact of the endoplasmic reticulum stressor, dithiothreitol, on endoplasmic reticulophagy mediated by family with sequence 
similarity 134 member B in buffalo rat liver 3A cells. A and B: Buffalo rat liver 3A (BRL-3A) cells were treated with 2.0 mmol/L dithiothreitol (DTT) for the 
time intervals (0, 3, 6, 12, 24, 48 h); Western blot showed the effect of endoplasmic reticulum (ER) stressor, DTT, on expression of the ER stress-related proteins 
glucose-regulated protein 78 (GRP78), calnexin (CNX), and C/EBP homologous protein (CHOP); β-actin was used as a control for normalization; C and D: Analysis 
of autophagy related gene 12 (ATG12), family with sequence similarity 134 member B (FAM134B), and microtubule-associated protein 1 light chain 3 (LC3) protein 
expression by western blot. Protein levels were normalized to β-actin; E: BRL-3A cells were treated with 2.0 mmol/L DTT for 0 and 24 h; co-immunoprecipitation 
analysis detected the presence of CNX-FAM134B-LC3 complex in BRL-3A cells. Values are represented as mean ± SD (n = 3), aP < 0.05 vs 0 h group; bP < 0.05 vs 
48 h group.

To determine the effects of ER stress on FAM134B-mediated ER-phagy, alterations in FAM134B, 
ATG12, and LC3 expression were detected by western blot. As expected, DTT treatment for 3, 6, 12, 24, 
and 48 h increased the conversion ratio of LC3-I to LC3-II and the FAM134B and ATG12 expression 
levels compared to those in the 0 h group (Figure 1C and D). Thus, our results revealed that the 
expression of FAM134B is induced in response to ER stress.

Furthermore, we used an anti-CNX antibody to immunoprecipitate the CNX-FAM134B-LC3 complex, 
confirming the hypothesis that FAM134B forms a complex with CNX and LC3, exerting a positive 
influence on ER-phagy (Figure 1E).

Long-term DTT treatment relieved the gradually blocked ER autolysosome delivery in BRL-3A cells
Typically, ER is delivered to lysosomes and finally degraded. To analyze whether ER autolysosomes are 
formed, we examined the subcellular location of the ER and lysosomes using cell organelle markers. As 
shown in Figure 2, the treatment groups of 3, 6, 12, 24, and 48 h DTT incubation significantly alleviated 
the co-localization of the ER with lysosomes, compared to that in the 0 h group. Notably, the colocal-
ization of ER and lysosomes in BRL-3A cells treated with DTT for 48 h was increased compared to those 
treated for 24 h (Figure 2).

Short-term DTT treatment induces mitochondrial calcium uptake while prolonged DTT treatment 
reduces it 
Calcium in the ER can be released and transferred to the mitochondria owing to an imbalance of ER 
homeostasis. To explore the altered localization of calcium, collected cells were co-loaded with Rhod-2 
AM and Mito-Tracker Green. In response to DTT treatment for 3, 6, 12, 24, and 48 h, the co-localized 
fluorescence increased considerably (Figure 3). However, the distribution of the co-localized signal was 
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Figure 2 Impact of dithiothreitol treatment on the formation of autolysosomes in buffalo rat liver 3A cells. After dithiothreitol treatment for 0, 3, 6, 
12, 24, and 48 h, the buffalo rat liver 3A cells labeled with endoplasmic reticulum (ER)-Tracker Red and Lyso-Tracker Green were observed and captured under 
confocal fluorescence microscopy (200 ×) in a live cell imaging experiment. Insets show the magnification of the pictures. Scale bars indicate 100 μm. Arrows head to 
indicate ER-localized lysosomes. Values are represented as mean ± SD (n = 3), aP < 0.05 vs 0 h group; bP < 0.05 vs 48 h group.

Figure 3 Impact of dithiothreitol treatment on mitochondrial calcium uptake in buffalo rat liver 3A cells. Buffalo rat liver 3A cells were treated for 
0, 3, 6, 24, and 48 h with 2.0 mM dithiothreitol, followed by co-incubating with Mitochondria-Tracker Green and Rhod-2 AM, and visualized by confocal microscopy 
(400 ×). Scale bars indicate 100 μm. Values are represented as mean ± SD (n = 3), aP < 0.05 vs 0 h group; bP < 0.05 vs 48 h group.

weaker in the 48 h group, compared to that in the 24 h group (Figure 3). These results strongly suggest 
that mitochondrial calcium accumulation is related to DTT treatment.

DTT treatment induces cell cycle arrest and apoptosis in BRL-3A cells, which is relieved at 48 h
To further validate that DTT treatment leads to apoptosis in BRL-3A cells, we quantitatively measured 
the number of apoptotic cells using the Annexin V-FITC/PI double staining assay. As shown in 
Figure 4A and B, the ratio of apoptotic cells treated with DTT for 0, 3, 6, 12, and 24 h exhibited a time-
dependent increase. Interestingly, the apoptotic percentage in the 48 h group was significantly lower 
than that in the 24 h group (Figure 4A and B). Subsequently, we sought to use flow cytometry to 
determine the impact of DTT treatment on the cell cycle progression, and the data suggests that the 
proportion of BRL-3A cells in G1 phase after DTT treatment was noticeably higher than that of the 0 h 
group (Figure 4C and D and Table 1). Moreover, the number of cells in G1 phase in the 48 h group was 
smaller than that of the 24 h group.

BRL-3A cells undergo apoptosis upon FAM134B knockdown
We further verified whether FAM134B knockdown could alter DTT-induced apoptosis. We first invest-
igated the transfection efficiency of siRNA with three different siRNAs targeting FAM134B (siRNA 1, 2, 
and 3) and found that the FAM134B siRNA2 was the most effective (Figure 5A and B). Next, we invest-
igated FAM134B protein levels by performing a western blot on already transfected samples, which 
were treated with DTT for 24 h. As shown in Figure 5C and D, FAM134B and β-actin expression levels 
were determined, and it was found that FAM134B protein levels were down-regulated compared with 
the control and control siRNA groups.

It has been reported that cyt c and cleaved caspase-3 are apoptosis-related proteins and important 
hallmarks of apoptosis activation involved in mitochondrial dysfunction. Consequently, siRNA-
mediated silencing of FAM134B caused a high level of cleaved caspase-3 and cyt c in BRL-3A cells 
treated with DTT for 24 h (Figure 5E and F). We examined the rates of apoptotic cells using Annexin-V-
FITC/PI staining assays, which revealed that the apoptotic rates also increased in the FAM134B siRNA 
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Table 1 The cell cycle distribution of buffalo rat liver 3A cells treated with dithiothreitol for different times was detected by flow 
cytometry

Group G0/G1 S G2/M 

0 h 17.08 ± 0.13 58.48 ± 3.82 23.05 ± 4.46

3 h 24.28 ± 2.03a 42.12 ± 3.98a 33.6 ± 4.72a

6 h 33.91 ± 1.39a 25.11 ± 0.11a 41.71 ± 2.45a

12 h 41.57 ± 1.08a 24.81 ± 5.45a 33.62 ± 4.73a

24 h 51.83 ± 1.14a,b 38.1 ± 3.00a 10.08 ± 3.28a,b

48 h 38.72 ± 1.18a 37.12 ± 8.06a 24.16 ± 8.38

aP < 0.05 vs 0 h group.
bP < 0.05 vs 48 h group.

group, compared with those in the control and control siRNA groups (Figure 5G and H). These results 
suggest that ER-phagy mediated by FAM134B is likely to serve a cytoprotective function in response to 
DTT treatment in BRL-3A cells.

DISCUSSION
Hepatic injury caused by multiple harmful factors is closely associated with ER stress-induced 
hepatocyte apoptosis[18-20]. The ER is responsible for proper protein folding, intracellular calcium 
storage, and lipid biosynthesis[21,22]. Various stressors, including unfolded protein aggregation in the 
ER, intracellular Ca2+ disturbance, and pharmacological inducers, such as DTT, can disrupt ER 
homeostasis and lead to ER stress in hepatocytes. If the ER stress cannot be alleviated, aberrant ER stress 
can trigger cell apoptosis[23]. In the present study, we found that the protein levels of GRP78 and CNX, 
which are ER stress biomarkers, were upregulated in BRL-3A cells during ER stress. GRP78 and CNX 
are ER chaperone proteins and accelerate the proper folding of the accumulated unfolded proteins in 
the ER, which engages effector mechanisms to rebalance ER homeostasis[24,25]. A series of studies have 
revealed that ER-phagy is an ER selective autophagy mechanism that can promote the clearance of 
damaged ER lumens containing the unfolded proteins, and helps restore ER homeostasis[26-28]. ER-
phagy is a critical quality control mechanism for the ER in multiple cell types. Defects in ER-phagy 
pathways are associated with multiple human pathologies, including infectious and neurodegenerative 
diseases, aging and cancer. However, whether ER-phagy is involved in the regulation of ER homeostasis 
in hepatocytes under ER stress remains elusive. In this study, we assessed the levels of reticulophagy-
related proteins in BRL-3A cells treated with DTT. We found that the levels of FAM134B and ATG12 
were markedly elevated, and the ratio of LC3II/LC3I also increased. These data indicate that DTT-
induced ER stress increases the level of reticulophagy-associated proteins.

Recent findings have indicated that receptor proteins of ER-phagy play crucial roles in driving the 
sequestration of isolated ER fragments into autophagosomes[29]. FAM134B, an ER-anchored protein, 
was recently proposed as a major mammalian receptor for reticulophagy[30,31]. FAM134B contains an 
LC3-interacting region that can interact with LC3 protein to form autophagosomal membranes, leading 
to efficient ER sequestration into an autophagosomal lumen[32-34]. In a previous report, the authors 
found that CNX serves as a co-receptor that recognizes misfolded proteins within the ER lumen and 
interacts with FAM134B[35,36]. In turn, the CNX-FAM134B complex binds with LC3, the autopha-
gosome membrane-related protein, which delivers ER lumens containing misfolded proteins to the 
lysosome for degradation. To investigate how FAM134B modulates ER-phagy in BRL-3A cells, immuno-
precipitation was performed to detect the interaction between CNX, FAM134B, and LC3. The results 
confirmed that CNX interacted with FAM134B, and FAM134B interacted with LC3 after DTT treatment. 
Thus, the formation of the CNX-FAM134B-LC3 complex allows for the selective delivery of ER lumens 
containing misfolded proteins to the lysosome for eventual degradation. Complete ER-phagy indicates 
that autophagosomes fuse to form autolysosomes[37,38], hence, we detected the number of autoly-
sosomes in BRL-3A cells treated with DTT. We found that the formation of autolysosomes decreased in 
the early stages of ER stress, whereas autolysosomes were elevated in later stages. As it has been 
reported that CHOP can suppress autolysosome formation[39], we speculated that decreased 
autolysosomes in the early stages of ER stress were associated with increased CHOP expression.

The ER is the main pool for Ca2+ storage, and ER dysfunction leads to Ca2+ efflux from the ER[40,41]. 
In the early stages of ER stress, the suppression of the autophagosomes’ fusion with lysosomes may lead 
to calcium release and subsequent Ca2+ overload in mitochondria[42-44]. As expected, we found that 
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Figure 4 Impact of dithiothreitol treatment on cell cycle and apoptosis of buffalo rat liver 3A cells. A and B: Buffalo rat liver 3A (BRL-3A) cells 
were treated with 2.0 mmol/L dithiothreitol (DTT) for 0, 3, 6, 12, 24 and 48 h. The population of apoptotic cells was detected by flow cytometry. The lower right 
quadrant represents the early apoptotic cells, and the upper right quadrant represents the late apoptotic cells; C and D: BRL-3A cells were treated with 2.0 mmol/L 
DTT for 0, 3, 6, 12, 24 and 48 h. The analysis of the cell cycle was assessed by flow cytometry. aP < 0.05 vs 0 h group; bP < 0.05 vs 48 h group.
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Figure 5 Impact of dithiothreitol treatment on apoptosis of buffalo rat liver 3A cells lacking FAM134B. A and B: Buffalo rat liver 3A (BRL-3A) cells 
were transfected with FAM134B small interfering RNAs (siRNAs) 1, 2, and 3; immunoblot was used to detect the transfection efficiency of siRNA. Protein levels were 
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normalized to β-actin; C and D: BRL-3A cells were transfected with FAM134B siRNA, followed by treatment with 2.0 mmol/L dithiothreitol (DTT) for 24 h. Immunoblot 
was used to detect the expression of FAM134B in BRL-3A cells. Protein levels were normalized to β-actin; E and F: BRL-3A cells were transfected with FAM134B 
siRNA, followed by treatment with 2.0 mmol/L DTT for 24 h. Immunoblot showed the expression of cleaved caspase-3 and cyt c. Protein levels were normalized to β-
actin; G and H: BRL-3A cells were transfected with FAM134B siRNA, followed by treatment with 2.0 mmol/L DTT for 24 h. Representative results showed the 
apoptotic rate in BRL-3A cells. Untransfected cells served as controls. Cells transfected with control siRNA served as transfection controls. The lower right quadrant 
represents the early apoptotic cells and the upper right quadrant represents the late apoptotic cells. Values are mean ± SD (n = 3), aP < 0.05 vs control group; bP < 
0.05 vs transfection control siRNA group.

DTT treatment dramatically elevated the levels of mitochondrial Ca2+, the apoptotic rate, and G1 arrest 
in BRL-3A cells. Nevertheless, these trends were relieved after treatment with DTT for 48 h. Our results 
reveal that hepatocytes initiate adaptive mechanisms in response to DTT-induced ER stress; 
consequently, apoptosis in BRL-3A cells treated with DTT for 48 h was lower than that in cells treated 
with DTT for 24 h.

To clarify whether FAM134B is involved in the regulation of cellular homeostasis during ER stress, 
we used a small interference RNA technique to knockdown FAM134B expression in hepatocytes. We 
found that FAM134B silencing not only significantly attenuated the DTT-upregulated FAM134B 
expression, but also accelerated the activation of the mitochondrial apoptotic pathway and aggravated 
DTT-triggered hepatocyte apoptosis.

CONCLUSION
In conclusion, DTT treatment significantly upregulated the protein levels of GRP78, CNX, FAM134B, 
and ATG12, and also increased the ratio of LC3II/LC3I in BRL-3A cells. Moreover, FAM134B-mediated 
reticulophagy ameliorates DTT-induced hepatocyte apoptosis via selective clearance of damaged ER 
lumens. Accordingly, knockdown of FAM134B enhanced ER stress-mediated apoptosis in BRL-3A cells. 
Our data show that FAM134B-mediated reticulophagy plays a key role in rebalancing ER homeostasis 
in hepatocytes undergoing ER stress. Therefore, FAM134B-mediated reticulophagy may be a novel 
therapeutic target, and our findings may provide emerging evidence to demonstrate the prominence of 
ER-phagy in ER stress-related hepatocyte apoptosis. Alleviation of ER stress-mediated hepatocyte 
apoptosis via restoring ER homeostasis is critical in the treatment of liver diseases.

ARTICLE HIGHLIGHTS
Research background
Hepatocyte apoptosis induced by endoplasmic reticulum (ER) stress has a strong association with the 
development of fibrosis, cirrhosis, and hepatocellular carcinoma. Previous studies have revealed that 
endoplasmic reticulophagy (ER-phagy) promotes the selective clearance of damaged ER fragments 
during ER stress, playing a crucial role in maintaining ER homeostasis and inhibiting apoptosis. 
However, the precise regulatory mechanisms remain unclear.

Research motivation
Defects in ER-phagy pathways are associated with multiple human pathologies, including infectious 
and neurodegenerative diseases, aging and cancer. However, whether ER-phagy is involved in the 
regulation of ER homeostasis in hepatocytes under ER stress remains elusive.

Research objectives
To elucidate the effect of family with sequence similarity 134 member B (FAM134B)-mediated ER-phagy 
on normal buffalo rat hepatocytes apoptosis induced by dithiothreitol (DTT) and explore the potential 
regulatory mechanism.

Research methods
A model of ER stress was established by DTT. The levels of proteins related to ER stress and ER-phagy 
were determined by western blot. An interaction between FAM134B, calnexin (CNX), and microtubule-
associated protein 1 light chain 3 (LC3) was investigated by co-immunoprecipitation. ER-Tracker Red 
probe and Lyso-Tracker Green probe were used to detect the colocalization of ER with lysosome in cells. 
Mito-Tracker Green and Rhod-2 AM probes were used to detect the level of mitochondrial Ca2+ under 
the confocal microscopy. Flow cytometry was conducted to analyze the effect of DTT treatment on cell 
cycle distribution and apoptosis. The small interfering RNA against FAM134B was used to knockdown 
FAM134B in buffalo rat liver 3A (BRL-3A) cells.
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Research results
DTT treatment upregulated glucose-regulated protein 78 (GRP78), CNX, FAM134B, and autophagy 
related gene 12 (ATG12) protein levels and increased the ratio of LC3II/LC3I in BRL-3A cells. 
FAM134B-mediated reticulophagy maintains ER homeostasis in ER-stressed hepatocytes via the 
clearance of damaged ER fragments. FAM134B-mediated reticulophagy ameliorates DTT-induced 
hepatocyte apoptosis. Knockdown of FAM134B enhanced ER stress-mediated apoptosis in BRL-3A cells.

Research conclusions
FAM134B-mediated ER-phagy attenuates hepatocyte apoptosis by suppressing the mitochondrial 
apoptotic pathway.

Research perspectives
FAM134B-mediated reticulophagy may be a novel therapeutic target, and our findings provide 
emerging evidence demonstrating the prominence of ER-phagy in ER stress-related hepatocyte 
apoptosis. Alleviation of the ER stress-mediated hepatocyte apoptosis via restoring ER homeostasis is 
critical in the treatment of liver diseases.
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