# World Journal of Critical Care Medicine

World J Crit Care Med 2022 September 9; 11(5): 311-341



# **Contents**

Quarterly Volume 11 Number 5 September 9, 2022

# **EDITORIAL**

311 Data science in the intensive care unit

Luo MH, Huang DL, Luo JC, Su Y, Li JK, Tu GW, Luo Z

# **ORIGINAL ARTICLE**

# **Retrospective Study**

Prediction of hospital mortality in intensive care unit patients from clinical and laboratory data: A machine 317 learning approach

Caires Silveira E, Mattos Pretti S, Santos BA, Santos Corrêa CF, Madureira Silva L, Freire de Melo F

# **CASE REPORT**

- 330 Acute kidney injury associated with consumption of starfruit juice: A case report Zuhary TM, Ponampalam R
- 335 Cardiac arrest due to massive aspiration from a broncho-esophageal fistula: A case report Lagrotta G, Ayad M, Butt I, Danckers M

#### **Contents**

# Quarterly Volume 11 Number 5 September 9, 2022

#### **ABOUT COVER**

Peer Reviewer of World Journal of Critical Care Medicine, Rakesh Garg, DNB, MD, Additional Professor, Department of Anaesthesiology, Critical Care, Pain and Palliative Medicine, All India Institute of Medical Sciences, Delhi 110029, India. drrgarg@hotmail.com

#### **AIMS AND SCOPE**

The primary aim of the *World Journal of Critical Care Medicine (WJCCM, World J Crit Care Med*) is to provide scholars and readers from various fields of critical care medicine with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJCCM mainly publishes articles reporting research results and findings obtained in the field of critical care medicine and covering a wide range of topics including acute kidney failure, acute respiratory distress syndrome and mechanical ventilation, application of bronchofiberscopy in critically ill patients, cardiopulmonary cerebral resuscitation, coagulant dysfunction, continuous renal replacement therapy, fluid resuscitation and tissue perfusion, hemodynamic monitoring and circulatory support, ICU management and treatment control, sedation and analgesia, severe infection, *etc*.

#### INDEXING/ABSTRACTING

The WJCCM is now abstracted and indexed in PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database.

#### **RESPONSIBLE EDITORS FOR THIS ISSUE**

Production Editor: Yi-Xuan Cai; Production Department Director: Xiang Li; Editorial Office Director: Li-Li Wang.

#### NAME OF JOURNAL

World Journal of Critical Care Medicine

#### ISSN

ISSN 2220-3141 (online)

#### **LAUNCH DATE**

February 4, 2012

#### **FREQUENCY**

Quarterly

# **EDITORS-IN-CHIEF**

Hua-Dong Wang

#### **EDITORIAL BOARD MEMBERS**

https://www.wjgnet.com/2220-3141/editorialboard.htm

#### **PUBLICATION DATE**

September 9, 2022

#### COPYRIGHT

© 2023 Baishideng Publishing Group Inc

#### **INSTRUCTIONS TO AUTHORS**

https://www.wjgnet.com/bpg/gerinfo/204

# **GUIDELINES FOR ETHICS DOCUMENTS**

https://www.wjgnet.com/bpg/GerInfo/287

#### **GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH**

https://www.wjgnet.com/bpg/gerinfo/240

#### **PUBLICATION ETHICS**

https://www.wjgnet.com/bpg/GerInfo/288

# **PUBLICATION MISCONDUCT**

https://www.wjgnet.com/bpg/gerinfo/208

#### ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

#### STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

#### **ONLINE SUBMISSION**

https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wignet.com https://www.wignet.com

Submit a Manuscript: https://www.f6publishing.com

World J Crit Care Med 2022 September 9; 11(5): 330-334

ISSN 2220-3141 (online) DOI: 10.5492/wiccm.v11.i5.330

CASE REPORT

# Acute kidney injury associated with consumption of starfruit juice: A case report

Thajudeen Mohammed Zuhary, R Ponampalam

Specialty type: Toxicology

#### Provenance and peer review:

Invited article; Externally peer reviewed.

Peer-review model: Single blind

# Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C, C Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Chen BH, Taiwan; Tu GW, China

Received: January 6, 2022 Peer-review started: January 6,

First decision: March 24, 2022 Revised: May 6, 2022 Accepted: July 18, 2022 Article in press: July 18, 2022 Published online: September 9,



Thajudeen Mohammed Zuhary, R Ponampalam, Department of Emergency Medicine, Singapore General Hospital, Singapore 169608, Singapore

Corresponding author: Thajudeen Mohammed Zuhary, MBBS, Doctor, Department of Emergency Medicine, Singapore General Hospital, Outram Road, Singapore 169608, Singapore. thajudeen.mohd.zuhary@sgh.com.sg

# **Abstract**

#### **BACKGROUND**

This study aims to highlight the potential serious complications of acute kidney injury (AKI) resulting from the consumption of excessive amounts of starfruit, a common traditional remedy.

#### CASE SUMMARY

A 78-year-old male with a past medical history of hypertension, diabetes mellitus and hyperlipidemia without prior nephropathy presented to the emergency department (ED) with hiccups, nausea, vomiting and generalized weakness. In the preceding 1 wk, he had consumed 3 bottles of concentrated juice self-prepared from 1 kg of small sour starfruits. His serum creatinine was noted to be 1101 umol/L from baseline normal prior to his ED visit. He was diagnosed with AKI secondary to excessive starfruit consumption.

#### **CONCLUSION**

Consumption of starfruit can cause acute renal failure, with a good outcome when promptly identified and treated.

Key Words: Acute kidney injury; Acute renal failure; Starfruit; Hemodialysis; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

330

Core Tip: Physicians should have a high index of suspicion on possible interactions and toxicities that may occur with the use of traditional medications in combination with prescription drugs in susceptible patients. This report highlights the toxicity of starfruit when consumed as a traditional remedy for diabetes mellitus resulting in acute kidney injury.

Citation: Zuhary TM, Ponampalam R. Acute kidney injury associated with consumption of starfruit juice: A case report. World J Crit

Care Med 2022; 11(5): 330-334

URL: https://www.wjgnet.com/2220-3141/full/v11/i5/330.htm

**DOI:** https://dx.doi.org/10.5492/wjccm.v11.i5.330

#### INTRODUCTION

The starfruit (Averrhoa carambola) is a popular fruit in tropical countries due to its nutritional and medicinal benefits[1], and is used to treat various ailments such as diabetes mellitus, rheumatism, and cough. The starfruit is used as a traditional remedy in Asian countries such as Malaysia and Indonesia to treat diabetes mellitus due to its hypoglycemic properties[2]. Despite its frequent consumption, many people are unaware of the dangers of overindulging in starfruit. When consumed in large quantities, the fruit contains high levels of oxalic acid, which can be nephrotoxic. Starfruitinduced neurotoxicity and nephrotoxicity, which manifests as acute kidney injury (AKI) in individuals with underlying renal dysfunction, is well documented [3,4]. AKI in individuals with normal renal function is rare. We present a case report of AKI following the consumption of starfruit.

# CASE PRESENTATION

# Chief complaints

A 78-year-old male presented to the emergency department (ED) with hiccups, nausea, vomiting and generalized weakness.

# History of present illness

In the preceding week, he had consumed 3 bottles of concentrated juice which were self-prepared from 1 kg of starfruits. Following ingestion of the third bottle of the fruit juice, he developed bouts of severe nausea and vomiting without abdominal pain or diarrhea.

#### History of past illness

He had a past medical history of hypertension, diabetes mellitus and hyperlipidemia.

# Personal and family history

No significant family history.

#### Physical examination

On arrival at the ED, his vital signs were stable (temperature was 36.8°C, pulse rate 60 bpm, respiratory rate 18 breaths/ min, and blood pressure 161/78 mmHg) and there was no pitting edema. Examinations of his cardiovascular, respiratory, abdominal and neurological systems were normal.

#### Laboratory examinations

Laboratory examination results are shown in Figure 1 and Table 1.

#### Imaging examinations

No imaging was undertaken.

# **MULTIDISCIPLINARY EXPERT CONSULTATION**

The patient was initially seen in the ED and admitted under renal medicine for specialized care.

#### FINAL DIAGNOSIS

Acute kidney injury.

# TREATMENT

The patient was treated with 4 sessions of hemodialysis and supportive care such as intravenous fluid. After each session



| Table 1 Trend in patient's blood investigations |       |       |       |       |       |       |        |        |        |        |         |
|-------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|---------|
|                                                 | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 7 | Day 13 | Day 17 | Day 24 | Day 60 | Day 135 |
| Renal function                                  |       |       |       |       |       |       |        |        |        |        |         |
| Serum creatinine (µmol/L)                       | 1101  |       | 680   | 659   | 495   | 340   | 328    | 208    | 177    | 127    | 99      |
| Serum urea (mmol/L)                             | 38.1  |       | 23.1  | 27.1  | 22.0  | 14.5  | 25.2   | 17.4   | 10.6   | 12.4   | 6.2     |
| Electrolytes                                    |       |       |       |       |       |       |        |        |        |        |         |
| Sodium (mmol/L)                                 | 134   |       | 142   | 146   | 147   | 137   | 135    | 136    | 138    | 140    | 144     |
| Potassium (mmol/L)                              | 4.4   |       | 3.5   | 3.5   | 3.1   | 4.0   | 4.3    | 4.0    | 4.1    | 3.8    | 3.9     |
| Chloride (mmol/L)                               | 101   |       | 105   | 102   | 100   | 98    | 101    | 102    | 105    | 108    | 110     |
| Bicarbonate (mmol/L)                            | 15.9  |       | 22.8  | 26.8  | 31.1  | 24.6  | 28.3   | 23.7   | 24.6   | 23.5   | 24.9    |
| Magnesium (mmol/L)                              | 0.91  |       |       |       |       |       |        |        |        |        |         |
| Liver function                                  |       |       |       |       |       |       |        |        |        |        |         |
| Total protein (g/L)                             | 60    |       |       |       |       |       |        |        |        |        | 76      |
| Serum albumin (g/L)                             | 32    |       |       |       |       |       |        |        |        |        | 41      |
| Total bilirubin (mmol/L)                        | 07    |       |       |       |       |       |        |        |        |        | 09      |
| Alkaline phosphatase (U/L)                      | 58    |       |       |       |       |       |        |        |        |        | 65      |
| Alkaline transaminase (U/L)                     | 57    |       |       |       |       |       |        |        |        |        | 17      |
| Routine tests                                   |       |       |       |       |       |       |        |        |        |        |         |
| White blood cells (× $10^9/L$ )                 | 9.33  |       |       |       |       | 10.25 |        |        |        |        | 9.89    |
| Neutrophil (%)                                  | 78.8  |       |       |       |       | 74.6  |        |        |        |        | 74.1    |
| Lymphocytes (%)                                 | 11.1  |       |       |       |       | 11.6  |        |        |        |        | 15.9    |
| Hemoglobin (g/dL)                               | 12.3  |       |       |       |       | 13.8  |        |        |        |        | 14.1    |
| Platelet count (× 10 <sup>9</sup> /L)           | 208   |       |       |       |       | 307   |        |        |        |        | 281     |
| Coagulation                                     |       |       |       |       |       |       |        |        |        |        |         |
| APTT (secs)                                     | 27.0  |       |       |       |       | 28.5  |        |        |        |        |         |
| Prothrombin time (secs)                         | 11.2  |       |       |       |       | 11.4  |        |        |        |        |         |
| Other indicators                                |       |       |       |       |       |       |        |        |        |        |         |
| Creatine kinase (U/L)                           | 7224  |       |       | 4755  | 2863  | 754   |        | 84     |        |        | 84      |
| PTH (pg/mL)                                     | 11.0  |       |       |       |       |       |        |        |        |        |         |
| Urine creatinine (µmol/L)                       |       |       | 5233  |       |       |       |        | 3862   | 7747   |        | 8035    |

APTT: Activated partial thromboplastin time; PTH: Parathyroid hormone.

of hemodialysis, blood tests to determine renal function were repeated. Progressive improvement in renal function was noted with each session of hemodialysis.

# **OUTCOME AND FOLLOW-UP**

The patient's renal function returned to normal.

# **DISCUSSION**

Starfruit has several toxins including caromboxin, an excitatory central nervous system stimulant and oxalate a nephrotoxic agent[5-7]. The sour type of starfruit has higher levels of oxalate than the sweet type. Homemade and medicinal supplements often have high levels of oxalate. When consumed in large amounts, especially when fasting or dehydrated, deposits of calcium oxalate crystals in the renal tubules lead to kidney damage[6]. Chronic kidney disease

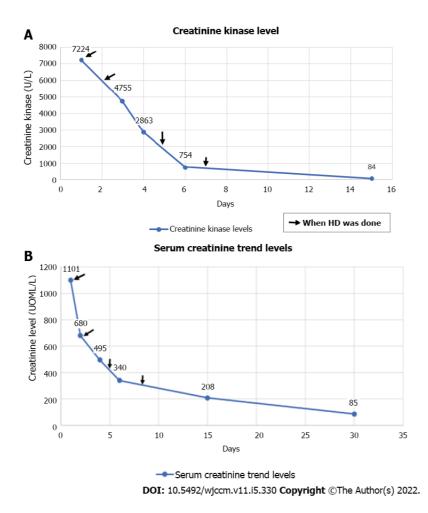



Figure 1 Laboratory examination results. A: Trend in creatinine kinase following hemodialysis; B: Trend in serum creatinine.

has been identified as a major risk factor for starfruit-induced kidney toxicity. Starfruit juice volume of approximately 25 mL is known to cause nephrotoxicity in patients with chronic kidney disease. Other known risk factors include dehydration, the amount of starfruit ingested, and consumption on an empty stomach. Patients with starfruit toxicity show gastrointestinal symptoms such as nausea, vomiting, and abdominal discomfort immediately after ingestion. These symptoms are believed to be due to the direct corrosive effects of dietary oxalates rather than systemic effects[8]. This may be followed by a decrease in urinary output, which can lead to renal dysfunction and acute renal failure. Typical histological findings are the intraluminal and intraepithelial deposition of colorless oxalate crystals. There is no specific treatment for acute kidney damage from starfruit. In patients requiring renal replacement therapy, hemodialysis and hemoperfusion are preferred[9].

Our patient had no evidence of pre-existing renal failure or other contributory factors predisposing to AKI such as sepsis, dehydration, nephrotoxic drugs or obstructive urological causes based on clinical evaluation and tests done. In addition, over the course of four sessions of hemodialysis, he had gradual restoration of his renal function. The temporal relationship between the ingestion of large amount of fruit juice and the onset of symptoms in this case strongly suggests starfruit intoxication as the transient and reversible etiology likely due to resolving oxalate nephropathy.

# CONCLUSION

In Asian countries where starfruit is commonly consumed as a traditional remedy, it is imperative for emergency physicians to be aware of starfruit toxicity in patients with unexplained AKI. This will help identify and treat these patients promptly to prevent starfruit-induced nephrotoxicity. Patient history is the key to reaching an early diagnosis. It is essential to prevent starfruit nephrotoxicity by educating the public and especially diabetics on the risks of consuming excess starfruit. Consumption of starfruit as a traditional remedy to control blood sugar levels in diabetics should be discouraged by educating the public.

333

# **ACKNOWLEDGEMENTS**

We thank the staff of both the Emergency Department and Nephrology Departments for their major contributions in the daily care of this patient.

#### **FOOTNOTES**

Author contributions: Zuhary TM and Ponampalam R equally contributed to this case study.

**Informed consent statement:** Informed written consent was obtained from the patient.

Conflict-of-interest statement: All authors report no relevant conflict of interest for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Singapore

**ORCID number:** Thajudeen Mohammed Zuhary 0000-0003-1196-2670; R Ponampalam 0000-0002-5813-2044.

S-Editor: Wu YXI L-Editor: Webster JR P-Editor: Wu YXJ

# REFERENCES

- Muthu N, Lee SY, Phua KK, Bhore SJ. Nutritional, Medicinal and Toxicological Attributes of Star-Fruits (Averrhoa carambola L.): A Review. Bioinformation 2016; 12: 420-424 [PMID: 28405126 DOI: 10.6026/97320630012420]
- Gunasekara LCA, Fernando PHP, Sivakanesan R. A Preliminary Study on the Hypoglycaemic Effect of Averrhoa carambola (Star Fruit) in 2 Rats. Sri Lanka: Proceedings of the Peradeniya University Research Sessions; 2011; 83 [DOI: 10.18006/2015.3(5).423.429]
- Neto MM, Silva GE, Costa RS, Vieira Neto OM, Garcia-Cairasco N, Lopes NP, Haendchen PF, Silveira C, Mendes AR, Filho RR, Dantas M. 3 Star fruit: simultaneous neurotoxic and nephrotoxic effects in people with previously normal renal function. NDT Plus 2009; 2: 485-488 [PMID: 25949386 DOI: 10.1093/ndtplus/sfp108]
- Chang JM, Hwang SJ, Kuo HT, Tsai JC, Guh JY, Chen HC, Tsai JH, Lai YH. Fatal Outcome after Ingestion of Star Fruit (AverrhoaCarambola) in Uremic Patients. Am J Kidney Dis 2000; 35: 189-193 [DOI: 10.1016/S0272-6386(00)70325-8]
- Fang HC, Lee PT, Lu PJ, Chen CL, Chang TY, Hsu CY, Chung HM, Chou KJ. Mechanisms of star fruit-induced acute renal failure. Food 5 Chem Toxicol 2008; 46: 1744-1752 [PMID: 18294746 DOI: 10.1016/j.fct.2008.01.016]
- Chen CL, Fang HC, Chou KJ, Wang JS, Chung HM. Acute oxalate nephropathy after ingestion of star fruit. Am J Kidney Dis 2001; 37: 418-6 422 [PMID: 11157385 DOI: 10.1053/ajkd.2001.21333]
- Su YJ, Lee CH, Huang SC, Chuang FR. Quiz page April 2011. A woman with oliguria. Acute oxalate nephropathy caused by excess intake of pure carambola juice. Am J Kidney Dis 2011; 57: A23-A25 [PMID: 21421133 DOI: 10.1053/j.ajkd.2010.11.023]
- Konta T, Yamaoka M, Tanida H, Matsunaga T, Tomoike H. Acute renal failure due to oxalate ingestion. Intern Med 1998; 37: 762-765 [PMID: 9804084 DOI: 10.2169/internalmedicine.37.762]
- Chen LL, Fang JT, Lin JL. Chronic renal disease patients with severe star fruit poisoning: hemoperfusion may be an effective alternative therapy. Clin Toxicol (Phila) 2005; 43: 197-199 [PMID: 15902795 DOI: 10.1081/CLT-57872]



# Published by Baishideng Publishing Group Inc

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

**Telephone:** +1-925-3991568

E-mail: bpgoffice@wjgnet.com

Help Desk: https://www.f6publishing.com/helpdesk

https://www.wjgnet.com

