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Abstract
Stem cell fate determination is one of the central questions in stem cell biology, 
and although its regulation has been studied at genomic and proteomic levels, a 
variety of biological activities in cells occur at the metabolic level. Metabolomics 
studies have established the metabolome during stem cell differentiation and 
have revealed the role of metabolites in stem cell fate determination. While 
metabolism is considered to play a biological regulatory role as an energy source, 
recent studies have suggested the nexus between metabolism and epigenetics 
because several metabolites function as cofactors and substrates in epigenetic 
mechanisms, including histone modification, DNA methylation, and microRNAs. 
Additionally, the epigenetic modification is sensitive to the dynamic metabolites 
and consequently leads to changes in transcription. The nexus between 
metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy 
through manipulating metabolites. In the present review, we summarize the 
possible nexus between metabolic and epigenetic regulation in stem cell fate 
determination, and discuss the potential preventive and therapeutic strategies via 
targeting metabolites.
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Core Tip: Stem cell fate can be regulated by metabolites. Recent studies have suggested that there is a 
nexus between metabolism and epigenetics, as several metabolites could function as cofactors and 
substrates in epigenetic mechanisms. We review many basic and preclinical studies, and the results 
support this view. This finding may provide a clue to further studies on the co-effects of metabolism and 
epigenetics in cell fate determination.

Citation: Liu Y, Cui DX, Pan Y, Yu SH, Zheng LW, Wan M. Metabolic-epigenetic nexus in regulation of stem cell 
fate. World J Stem Cells 2022; 14(7): 490-502
URL: https://www.wjgnet.com/1948-0210/full/v14/i7/490.htm
DOI: https://dx.doi.org/10.4252/wjsc.v14.i7.490

INTRODUCTION
Stem cells are specialized cells with a capacity for prolonged self-renewal and production of various 
lineage cells, which contribute to the development, maintenance and repair of organs, such as teeth, hair 
follicles, and liver. These long-lived cells produce proliferating progenitors that differentiate into 
functional cells. Disorder of this procedure results in hyperplasia, hypoplasia or dysfunction of the 
organs[1]. How such cell fate determination is regulated is one of the central questions in stem cell 
biology. High-throughput sequencing has been conducted to establish gene expression profiles of both 
embryonic and adult stem cells, which helps address the crucial genes in stem cell fate regulation[2]. 
Epigenetic mechanisms, including histone modification, DNA methylation, and microRNAs (miRNAs), 
have uncovered the post-transcriptional regulation associated with stem cell fate[3]. Parallel proteomics 
studies have expanded our understanding of stem cell biology through constructing protein expression 
profiles of various stem cell populations. Despite these findings, the molecular network that regulates 
stem cell fate, maintaining pluripotency or initiating differentiation, is not completely understood due 
to the expression differences between mRNA and protein, the inconsistency between protein expression 
and its function, or the discordance between gene expression and cellular phenotype[4].

Although genomics and proteomics discuss the biological events at the gene and protein levels, 
respectively, several biological activities in cells occur at the metabolic level, including cell signaling, 
energy transfer, and intercellular communication[5]. To establish the metabolome, the collection of all 
metabolites at a specific time, metabolomics has been developed as one of the important components in 
system biology. Metabolomics is considered to be a prospective approach in various areas of researches, 
such as development, pathology, diagnosis, and environmental science, since it elaborates what 
happens in cells[6]. To address what occurs during regulation of stem cell fate determination, 
metabolomic research has been conducted to construct metabolic profiles of embryonic stem cells and 
differentiated neurons and cardiomyocytes in mice. Stem cells are characterized by highly unsaturated 
metabolites that regulate cell differentiation through oxidative reactions, suggesting the vital role of 
metabolism in stem cell fate determination. Metabolism is considered to function as a major energy 
source during the process[5,7,8]. Recent studies have demonstrated that lipid metabolism provided 90% 
of acetyl-CoA in histone acetylation. S-adenosylmethionine (SAM), one of the methionine metabolism 
metabolites, functions as a methyl donor in histone as well as DNA methylation[9]. Additionally, the 
epigenetic modification could be sensitive to the dynamic change in the metabolites, leading to changes 
in transcription. These findings provide compelling evidence that establishes the nexus exists between 
metabolism and epigenetics and propose a novel stem cell-based therapeutic strategy through manipu-
lating metabolites[10-12].

In the present review, we summarize the nexus between metabolic and epigenetic regulation in stem 
cell fate determination, along with potential preventive and therapeutic strategies targeting metabolites 
(Figures 1 and 2).

LIPID METABOLISM
Lipids, crucial in maintaining cellular homeostasis, is attached to epigenetic reprogramming of 
homeostasis[13]. Acetyl-CoA from lipid metabolism could promote histone acetylation and drive 
cellular growth. Hence, acetyl-CoA is a crucial indicator for cell growth and development. Furthermore, 
acetyl-CoA reduces the production of b-hydroxybutyrate, an inhibitor of histone deacetylases (HDACs), 
which functions as antiproliferative and prodifferentiative properties[14]. The relation between lipid 
metabolism and epigenetic modification of gene expression in different stem cells has been reported by 
several studies[15].

https://www.wjgnet.com/1948-0210/full/v14/i7/490.htm
https://dx.doi.org/10.4252/wjsc.v14.i7.490
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Figure 1 Schematic diagram of metabolic network. SAM: S-adenosylmethionine; TCA: Tricarboxylic acid; α-KG: α-ketoglutarate.

Lipid metabolism contributes 90% of acetyl. Chromatin structure opening occurs when histone 
acetylation is present, activating stem cell transcription[16]. This suggests that lipid availability 
regulates the pluripotency of stem cells and promotes cell differentiation[17]. Itokazu group’s research 
on the importance of gangliosides in neural stem cells (NSCs) found that when the cellular histone 
deacetylase activity was inhibited by fatty acids, the levels of acetylated histone H3 and H4 on the 
GM2/GD2 synthase gene increased, promoting neuronal differentiation of NSCs[18]. Ardah et al[19] and 
Boddeke et al[20] also showed that the increased level of saturated fatty acids promoted NSC differen-
tiation into neurons. Murray et al[21] reported that butyrate promoted myogenic differentiation of 
satellite cells.

Cornacchia et al[22] showed that the level of H3K27Ac, H3K9Ac and H4K8Ac was elevated by 
activation of histone acetylation in human pluripotent stem cells, while histone deacetylases (HDAC), 
sirtuin 1 (SIRT1) and HDAC1were limited. Similar evidence has also been reported in animal studies[23,
24]. The level of H3K27ac decreased in the presence of low fatty acid metabolism in the gonads, leading 
to male differentiation-specific signal inhibition[25]. Acetyl-CoA production can be regulated by acetyl-
CoA carboxylase , a rate-limiting enzyme whose activation limits the production of acetyl-CoA, thus 
promoting stem cell pluripotency. This is a traditional pathway in human as well as mouse embryonic 
stem cells (ESCs)[26,27]. These results show that lipid metabolism affects stem cell differentiation 
through histone acetylation modification.

AMINO ACID METABOLISM
Amino acids are one of the most fundamental substrates in cells, and are essential for metabolism of 
proteins, lipids and nucleotides. Previous reports have demonstrated that amino acid metabolism 
affected maintenance of stem cell pluripotency. In this review, we highlight the amino acids that 
influence stem cells critically.

Glutamine
Glutamine is the most abundant amino acid in metabolism, and is especially active in synthesis of 
nucleotides and fatty acids[28,29]. Glutamine changes α-ketoglutarate (α-KG) through deamination[30], 
which is a critical substrate for modification of proteins and DNA by demethylases. The mechanism is 
that α-KG acts as a substrate for Jumonji-C and ten-eleven translocation (TET), which regulate 
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Figure 2 Schematic diagram of epigenetic metabolism. SAM: S-adenosylmethionine; SIRT: Sirtuin; α-KG: α-ketoglutarate; NAM: Nicotinamide; SAH: S-
adenosylhomocysteine; HAT: Histone acetyltransferases; HMT: Histone methylases; JHDM: Jumonji-domain histone demethylase; LSD: Lysine-specific demethylase; 
DNMT: DNA methyltransferases; TET: Ten-eleven translocation.

demethylase interaction with histone and DNA, respectively. Demethylases are essential for stem cell 
pluripotency acquisition and maintenance. Many studies have highlighted the role of glutamine 
metabolism in the maintenance and differentiation of stem cells.

DNA methylation correlates with the repression of expression. α-KG positively regulates 
demethylation of DNA and promotes stem cell differentiation[31,32], and is key to the determination of 
stem cells fate as an appropriate balance between H3K9me2 acquisition and H3K27me3 depletion. 
Tischler et al[33], Xing et al[34] and Zylicz et al[35] came to similar conclusions in experiment on mouse 
primordial germ cell–like cells (PGCLCs). Okabe et al[36] have reported that histone H3K9me3 
demethylation induced by an increase in α-KG activates transcription, leading to steatoblast cellular 
differentiation. Glutamine also regulates fetal oocyte differentiation through DNA demethylation 
enzyme TET1[37].

As DNA demethylation can lead to higher levels of 5-hydroxymethylcytosine, several recent studies 
have reported that α-KG fluctuations influence ESC differentiation[38]. The self-renewal of ESCs 
decreases with deficiency of glutamine, but can recover with α-KG supplementation[39]. Hepatic stellate 
cell (HSC) and effector T cell differentiation is also promoted by α-KG. A surprising finding is that α-KG 
can suppress tumor initiation and influence progression. These effects are inhibited by succinate and 
fumarate, providing a possible therapy for cancer[40].

Singh et al[41] have suggested that α-KG induced cell death, with degradation of hypoxia-inducible 
facor-1α and suppression of histone H3 (Lys 27) acetylation. The exact mechanism of histone acetylation 
regulated by α-KG still needs to be explored. Morris et al[42] has shown that α-KG was an effector of p53
-mediated tumor suppression, whose accumulation in p53-deficient tumors can drive tumor cell differ-
entiation and inhibit malignant progression. Ascorbate has a positive effect on HSC differentiation and 
suppresses leukemogenesis[43].

All these studies above highlight the importance of glutamine in cell fate determination.

Methionine
Methionine is an essential amino acid that plays an irreplaceable role in the synthesis of SAM. 
Methionine in the normal diet promotes production of SAM, which serves as a methyl donor for 
methyltransferases of histones and DNA[44]. The fluctuation of methionine and SAM levels regulates 
H3K4me3 formation and maintains the undifferentiated state of human ESCs/induced pluripotent stem 
cells (iPSCs)[45]. Kosti et al[46] have reported that limited methionine level was associated with 
neuronal differentiation, along with reduction of H3K27me3. Tang et al[47] have also provided evidence 
that reduced conversion of methionine to SAM lead to reduced ESC pluripotency. Zhang et al[48] have 
also found similar evidence that SAM played an important role in the differentiation of B cells into 
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plasmablasts, and SAM deficiency was accompanied by induction of H3K27me3. The theory may be an 
attractive option for improving therapeutic effectiveness in patients with systemic lupus erythematosus.

Fluctuation in the methionine cycle is related to cancer epigenetics. The increase in H3K4me3 and 
H3K27me3 level in cells treated with methionine in cancer stem cells parallels the increase in SAM to 
some extent[49,50]. This may provide a new therapy for cancer[51].

Taken together, these findings show that methionine has an important influence on stem cell fates.

Proline
Proline is a nonessential amino acid derived from glutamine metabolism. Pyrroline-5-carboxylate (P5C) 
is an intermediate product of both proline biosynthesis and catabolism. P5C is converted to proline by 
P5C reductase (Pycr1). Emerging evidence indicates that L-proline influences the epigenetic landscape 
of stem cells by regulating histones and DNA methylation[52,53]. L-Proline regulates H3K9 methylation 
and activates reprogramming of stem cells. Supplementation with L-proline increases DNA 5-methyl-
cytosine and reduces of 5-hydroxy-methylcytosine, which promotes DNA methylation. It has recently 
emerged that hypermethylation lead to α-KG depletion, limiting the activity of TETs and Jumonji, and 
resulting in increased DNA and histone methylation .A study on mouse embryonic stem cell has shown 
that L-proline influenced the balance between self-renewal and differentiation[54]. Proline availability 
increases DNA and histone methylation, and is an essential procedure in embryonic-stem-to-
mesenchymal like transition[55].

Proline is one of the most important amino acids in stem cell fate determination because of its 
epigenetic effects.

Glycine
Glycine takes part in one-carbon metabolism as a methyl group provider through the glycine cleavage 
system[56]. The glycine cleavage system is a multienzyme complex consisting of four individual 
components: glycine decarboxylase, amino methyltransferase, glycine cleavage system protein H, and 
dihydrolipoamide dehydrogenase[57]. It has been revealed that glycine influenced stem cell 
pluripotency by controlling the synthesis of SAM, thus promoting H3K4me3 modification, and open 
euchromatin[58]. This process is present in human and mouse PSCs[59].

NUCLEOTIDE METABOLISM
Noncoding RNA (ncRNA) is RNA that does not encode a protein. ncRNA is transcribed from the 
genome and exerts its effects at the RNA level. Global ncRNA abundance influences cell fate determ-
ination and differentiation, and is important in embryonic development and its dysregulation causes 
cancer[60-62].

There are reports suggesting that long noncoding RNA (lncRNA) lnc13728 positively regulates 
expression of zinc finger BED-type containing 3 to promote the adipo-genic differentiation of human 
adipose-derived mesenchymal stem cells[63]. lncRNA has effects on hematopoietic cells in 
hematopoiesis regulation and the early stage of cell fate determination. Wu et al[64] have reported that, 
in hematopoietic stem cells and in differentiated lineage progenitors, lncRNA expression is given 
priority.

Griffiths and his colleagues have demonstrated that miRNA181a inhibition activated the early latent 
neurogenic gene to restore CA1 neurons, providing a positive clinical outcome in survivors of forebrain 
ischemia[65]. Zhang et al[66] have shown that miR-124 inhibited pancreatic progenitor cell proliferation 
to maintain a quiescent state, thus determining the fate of pancreatic progenitor cells. In cancer cells, 
miRNA might be a preferential pathway in cell reprograming. It has been reported that glucose 
transporter type 1 (GLUT1), GLUT3 and GLUT4 were overexpressed in most cancers. miR-122 regulates 
lipid levels in liver. miR-185 and miR-342 inhibit migration and invasion of prostate cancer cells, which 
could be a therapeutic option for prostate cancer[63]. He et al[67] have shown that miR-146a from 
exosomes had an effect on β-cell dedifferentiation, which provide a new therapy for type 2 diabetes[68]. 
High expression of miR-130a can increase osteogenic differentiation of bone marrow mesenchymal stem 
cells, which could be a potential therapy for age-related bone loss[69,70]. Huang et al[71] have reported 
that miR-330-5p negatively regulated differentiation of mesenchymal stem cells.

In summary, ncRNA plays an essential role in stem cell fate determination and could act as a 
breakthrough point in disease therapy. However, we still have a long way to go to understand the 
whole regulatory network of ncRNA.

GLUCOSE METABOLISM
Glucose and oxygen are important regulatory elements that help direct stem cell fate. In the undifferen-
tiated state, stem cells, and their artificially reprogrammed equivalent iPSCs, are characterized by 
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limited oxidative capacity and active anaerobic glycolysis. The importance of optimizing glucose 
metabolism during nuclear reprogramming by epigenetic regulation has been demonstrated in several 
studies.

Glycolysis
Glycolysis is defined as a cytosolic redox reaction that transform a single glucose molecule into two 
pyruvate molecules accompanied by generation of two net ATP and two reduced NADH molecules. 
Although glycolysis is not as energetically efficient as complete oxidation, this pathway can occur in the 
absence of oxygen and enables a fast rate of ATP production, which may also be the reason why some 
highly proliferating cell types typically utilize glycolysis.

High glycolytic flux could be frequently observed in various stem cell populations and is critical for 
the acquisition and maintenance of cell pluripotency[72]. Li et al[73] have shown that GLIS family zinc 
finger 1 could directly bind to and open chromatin structure at glycolysis-related genes to promote 
glycolysis. Higher glycolytic flux subsequently upregulates cellular acetyl-CoA and lactate levels, 
leading to increased acetylation of H3K27 and pluripotency gene loci.

Glycolytic flux can be influenced by several factors, including epigenetic regulators and environ-
mental conditions. For example, NAD-dependent histone deacetylase SIRT6 has been proved to act as a 
key regulator of glucose homeostasis, and its absence favors the metabolic profile of anaerobic 
glycolysis, which may activate gene reprogramming and pluripotency maintenance[74]. The epigenetic 
modifications are essential for the cell fate decisions in NSCs as well. High glucose levels increase 
H3K14 acetylation level, which can lead to premature neurogenetic differentiation of NSCs, providing a 
promising target for intervention in fetal neurodevelopment deficits[75]. Protein glycosylation is one of 
the most diverse and complicated co- and post-translational modifications, regulating self-renewal, 
pluripotency, and differentiation of stem cells through epigenetic mechanisms by histone modification 
and DNA methylation[76]. Glycolytic flux can also be regulated by oxygen. Glycolysis increases at 5% 
oxygen and acetylation of H3K9 and H3K27 is elevated, while H3K27 trimethylation is downregulated, 
leading to a more open chromatin structure and altered fate of human PSCs[77,78].

In summary, glycolysis is the dominant metabolic phenotype that controls stem cell fate.

Glucose oxidative phosphorylation
Glucose oxidative phosphorylation is another critical pathway for maintaining bioenergetic homeostasis 
as a bridge between the tricarboxylic acid (TCA) cycle and ATP synthesis. Oxidative phosphorylation is 
a more efficient pathway for ATP production compared to glycolysis, producing 36 ATP molecules per 
glucose. Oxidative phosphorylation promotes stem cell differentiation. Uittenbogaard et al[79] have 
provided evidence that enhancing oxidative phosphorylation can trigger neuronal differentiation by 
generating H3K27ac. Oxidative phosphorylation also mediates hematopoiesis stem cell differentiation 
toward definitive hematopoiesis through actyl-CoA metabolism[80].

Several TCA-cycle-related metabolic intermediates like NADH, FADH, fumarate and succinate are 
reported to contribute to epigenetic regulation of transcription and be connected with stem cell fate.

NADH: NAD+ is a coenzyme that serves as a co-substrate for sirtuins, an HDAC family, and catalyzes 
deacetylation of histone lysine; a crucial protein post-translational modification[81-83].

NAD/NADH ratio can dictate the fate and function of different cell types. Increased NAD+ 

production is required for cell differentiation[84]. Bmal1 regulates primary myoblast proliferation and 
differentiation through increasing cytosolic NAD+. Reduced NAD+ level prevents the differentiation of 
preadipocytes[85]. Okabe et al[36] have confirmed that high NAD+ levels upregulated the TCA cycle, 
increasing α-KG and contributing to histone H3K9 demethylation and transcriptional activation. Zhu et 
al[85] have demonstrated that increasing cytosolic NAD levels could restore hypoxic cell proliferation 
and myofiber formation in Bmal1-deficient myoblasts, influencing oxygen-dependent myoblast cell fate. 
The effect of NAD/NADH ratio on stem cell fate is caused by generation of L-2-hydroxyglutaric acid, 
an analog of α-KG that regulates histone and DNA methylation by competitive inhibition of Jumonji-
domain histone demethylase (JHDM) and TETs. There are reports revealing that increased NAD+ levels 
delay aging-related phenotypes, which may provide new therapeutic option for type 2 diabetes and 
heart failure[86,87]. Besides, NAD+ is a cosubstrate of Sirtuins, potentially regulating T cells, and could 
provide a therapeutic option for immune-related diseases[88].

In summary, NAD+ plays a key role in a diverse array of biological processes.

FADH: FAD, the oxidized form of FADH2, is a cofactor of human lysine-specific demethylase-1 (LSD1), 
and plays a pivotal role during early embryonic development and differentiation of ESCs and cancer 
stem cells[89-92]. LSD1 catalyzes the demethylation of mono- and dimethylated K4 or K9 on histone H3 
via the FAD-dependent enzymatic oxidation[93]. Recent studies have found that LSD1 inhibition can 
enhance death in rhabdomyosarcoma cells[94]. Decreased expression of LSD1 is involved in the 
programmed oocyte death by autophagy in perinatal mice through promotion of H3K4me2 expression
[95]. FAD also regulates NSC proliferation through modulation of histone methylation by affecting the 
action of LSD1. In addition, LSD1 is highly expressed in a few aggressive cancer types and is closely 
related with differentiation, proliferation, migration and invasion of cancer cells and poor prognosis.
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Succinate: Succinate accumulation can decrease α-KG/succinate ratio, leading to inhibition of TET and 
JHDM enzymes and delayed differentiation of primed human PSCs. This effect can be reversed when 
the α-KG/succinate ratio increases[32,86]. Accumulation of succinate, resulting in genetic and epigenetic 
changes like histone hypermethylation, may lead to transformation of normal cells to cancerous cells[96,
97] . Wong et al’s study in colorectal cancer cells showed that promoting accumulation of succinate 
upregulated DNA methylation and stem cell features[98]. AA6 is a novel compound succinic acid, 
identified as an inhibitor of α-KG dehydrogenase, which can increase the α-KG level in diabetic human 
cardiac mesenchymal cells and in the heart of high-fat diet, leading to DNA demethylation, and has 
beneficial effects of cardiac mesenchymal stem cells protection in diabetes[99].

Fumarate: Fumarate is reported to inhibit α-KG-dependent dioxygenases involved in DNA and histone 
demethylation. Laukka et al[100] have shown that fumarate downregulates global 5-hydroxymethyl-
cytosine level in neuroblastoma cells via TET inhibition. Furthermore, Sharda et al[101] have reported 
that fumarate promotes monomer-to-dimer transition of malic enzyme 2 to enhance mitobiogenesis, 
linking metabolism to mitobiogenesis. Aberrant accumulation of fumarate may mediate epigenetic 
reprogramming. Some studies have reported the link between fumarate accumulation, epigenetic 
changes, and tumorigenesis. Accumulation of fumarate, inhibiting Tet-mediated demethylation, induces 
epithelial-to-mesenchymal transition; a phenotypic switch associated with cancer initiation, invasion 
and metastasis[102]. This implies that fumarate accumulation contributes to the aggressive features 
tumors[103].

Pentose phosphate pathway
The pentose phosphate pathway (PPP) is another glucose metabolism pathway, divided into oxidative 
and nonoxidative arms, producing NADH and ribose-5-phosphate and/or xylulose-5-phosphate that 
influence the regulation of transcription[104]. NADPH production in the pathway is involved in folate 
metabolism[105]. Previous studies have reported that regulation of the PPP resulted in iPSC 
reprogramming[106]. The PPP actively provides energy and metabolic intermediates for proliferation 
and pluripotency in cancer cells, ESCs and iPSCs[107,108]. Intracellular pH increase selectively activates 
catalysis, enhancing PPP flux, leading to nucleotide upregulation, increased NADPH/NADP+ ratio, and 
cell proliferation[109].

It remains to be elucidated whether PPP is linked to stem cell epigenetic remodeling.

OTHER POTENTIAL INFLUENTIAL FACTORS
Structure
The structure of scaffolds can affect stem cell metabolism. Three-dimensional graphene foam has better 
properties than two-dimensional foam for NSC differentiation. However, the possible mechanism needs 
to be explored[110].

Micronutrients
Vitamin C: Vitamin C is a crucial micronutrient that may be involved in stem cell pluripotency by 
activating H3K36 and H3K9 demethylases through Jumonji-C function[111]. A study using human 
PGCLCs also indicated the pathway[112,113]. Micronutrients influence stem cells specification.

Folic acid: Folic acid is first metabolized to dihydrofolate and then to tetrahydrofolate, taking part in 
DNA synthesis, influencing DNA and histone methylation[105]. Several studies have elucidated the role 
of folate metabolism in regulating of the epigenetic landscape of stem cells[114,115]. Li et al[116] have 
shown that folic acid deficiency in NSCs decreased cell proliferative capacity but increased apoptosis. 
Kasulanati et al[117] in a study of ESCs have provided more evidence for the effect of folic acid on PSC 
pluripotency. Pei et al[118] in a study of mouse ESCs have demonstrated that under folate deficiency 
conditions, H2AK119ub1 increases, and expression of neural tube closure-associated genes decreases. 
This suggests a possible mechanism for neural tube defects. Xie et al[119] have shown that folate 
inhibition can activate histone modification of monomethylation at lysine 4 of histone H3 transcription, 
suggesting that epigenetic regulation varies for different histone modifications.

Crosslinking: Horitani et al[120] have reported that glucose along with triglyceride increased metabolic 
stress spikes in mice, resulting in demethylation of H3K27me3, and expression of senescence-like 
phenotypes in bone marrow stem/progenitor cells. This could provide a therapeutic method for 
patients with cardiovascular disease and type 2 diabetes.
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CONCLUSION
This review summarizes the recent studies about the metabolic–epigenetic nexus and provides 
compelling evidence that metabolism regulates stem cell fate determination through epigenetic 
mechanisms, such as histone acetylation, histone methylation and DNA methylation, in a variety of 
physical and pathological phenomena. The latest studies have also suggested that potential manipu-
lation of metabolites held great promise in developing novel preventive, diagnostic and therapeutic 
strategies for a variety of diseases, which still requires further study prior to application in clinic 
settings.

There are still some essential questions. For example, what is the outcome of the regulation of 
metabolism on the epigenetic and transcriptional procedures of stem cells. The interplay of metabolism 
and epigenetics also brings out the complexity in environmental exposures studies, as the method of cell 
metabolism and potential transgenerational inheritance has been changed[15,121].

Furthermore, there were still some limitations. Most studies have attached importance to the level of 
enzymatic activity in cells, and we must accept that there is a difference between the measured and 
actual values[15]. All researches were conducted under experimental and not physiological conditions, 
and it is not hard to conclude that there might be some variation.

In summary, when it comes to the mechanism of stem cell fate determination, there is indeed 
interplay between metabolism and epigenetics. We need more accurate data acquisition and more 
realistic simulation as well as more specific mechanisms. The development of new technologies makes it 
easier to measure cellular metabolic status, and the accumulation of past studies supports our further 
exploration in this field.
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