World Journal of *Gastrointestinal Surgery*

World J Gastrointest Surg 2023 February 27; 15(2): 121-306

Contents

Monthly Volume 15 Number 2 February 27, 2023

EDITORIAL

121 Hot topics in pancreatic cancer management

Caputo D

REVIEW

- 127 Minimum platelet count threshold before invasive procedures in cirrhosis: Evolution of the guidelines Biolato M, Vitale F, Galasso T, Gasbarrini A, Grieco A
- 142 Comprehensive multimodal management of borderline resectable pancreatic cancer: Current status and progress

Wu HY, Li JW, Li JZ, Zhai QL, Ye JY, Zheng SY, Fang K

MINIREVIEWS

- 163 Impact of endoscopic ultrasound-guided radiofrequency ablation in managing pancreatic malignancy Lesmana CRA
- Current management of concomitant cholelithiasis and common bile duct stones 169

Pavlidis ET, Pavlidis TE

177 Surveillance strategies following curative resection and non-operative approach of rectal cancer: How and how long? Review of current recommendations

Lauretta A, Montori G, Guerrini GP

ORIGINAL ARTICLE

Retrospective Study

193 Causes of epigastric pain and vomiting after laparoscopic-assisted radical right hemicolectomy - superior mesenteric artery syndrome

Xie J, Bai J, Zheng T, Shu J, Liu ML

201 Analysis of the impact of ERAS-based respiratory function training on older patients' ability to prevent pulmonary complications after abdominal surgery

Gu YX, Wang XY, Xu MX, Qian JJ, Wang Y

Prognostic value of preoperative immune-nutritional scoring systems in remnant gastric cancer patients 211 undergoing surgery

Zhang Y, Wang LJ, Li QY, Yuan Z, Zhang DC, Xu H, Yang L, Gu XH, Xu ZK

222 Efficacy and safety of preoperative immunotherapy in patients with mismatch repair-deficient or microsatellite instability-high gastrointestinal malignancies

Li YJ, Liu XZ, Yao YF, Chen N, Li ZW, Zhang XY, Lin XF, Wu AW

Contents

Monthly Volume 15 Number 2 February 27, 2023

Observational Study

234 Hepatobiliary manifestations following two-stages elective laparoscopic restorative proctocolectomy for patients with ulcerative colitis: A prospective observational study

Habeeb TAAM, Hussain A, Podda M, Cianci P, Ramshaw B, Safwat K, Amr WM, Wasefy T, Fiad AA, Mansour MI, Moursi AM, Osman G, Qasem A, Fawzy M, Alsaad MIA, Kalmoush AE, Nassar MS, Mustafa FM, Badawy MHM, Hamdy A, Elbelkasi H, Mousa B, Metwalli AEM, Mawla WA, Elaidy MM, Baghdadi MA, Raafat A

SYSTEMATIC REVIEWS

249 Hypophosphatemia as a prognostic tool for post-hepatectomy liver failure: A systematic review

Riauka R, Ignatavicius P, Barauskas G

META-ANALYSIS

258 Network meta-analysis of the prognosis of curative treatment strategies for recurrent hepatocellular carcinoma after hepatectomy

Chen JL, Chen YS, Ker CG

273 Does size matter for resection of giant versus non-giant hepatocellular carcinoma? A meta-analysis

Lee AJ, Wu AG, Yew KC, Shelat VG

CASE REPORT

Primary malignant melanoma of the esophagus combined with squamous cell carcinoma: A case report 287 Zhu ML, Wang LY, Bai XQ, Wu C, Liu XY

294 Mesh erosion into the colon following repair of parastomal hernia: A case report

Zhang Y, Lin H, Liu JM, Wang X, Cui YF, Lu ZY

LETTER TO THE EDITOR

303 Fecal microbiota transplantation as potential first-line treatment for patients with Clostridioides difficile infection and prior appendectomy

Zhao JW, Chang B, Sang LX

Contents

Monthly Volume 15 Number 2 February 27, 2023

ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Surgery, Dirk Uhlmann, FACS, MD, PhD, Chief Doctor, Professor, Department of Visceral, Thoracic and Vascular Surgery, Klinikum Döbeln, Döbeln 04720, Germany. dirk.uhlmann@klinikum-doebeln.de

AIMS AND SCOPE

The primary aim of World Journal of Gastrointestinal Surgery (WJGS, World J Gastrointest Surg) is to provide scholars and readers from various fields of gastrointestinal surgery with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGS mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal surgery and covering a wide range of topics including biliary tract surgical procedures, biliopancreatic diversion, colectomy, esophagectomy, esophagostomy, pancreas transplantation, and pancreatectomy, etc.

INDEXING/ABSTRACTING

The WJGS is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, PubMed Central, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJGS as 2.505; IF without journal self cites: 2.473; 5-year IF: 3.099; Journal Citation Indicator: 0.49; Ranking: 104 among 211 journals in surgery; Quartile category: Q2; Ranking: 81 among 93 journals in gastroenterology and hepatology; and Quartile category: Q4.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Rui-Rui Wu; Production Department Director: Xiang Li; Editorial Office Director: Jia-Ru Fan.

NAME OF JOURNAL

World Journal of Gastrointestinal Surgery

ISSN

ISSN 1948-9366 (online)

LAUNCH DATE

November 30, 2009

FREQUENCY

Monthly

EDITORS-IN-CHIEF

Peter Schemmer

EDITORIAL BOARD MEMBERS

https://www.wignet.com/1948-9366/editorialboard.htm

PUBLICATION DATE

February 27, 2023

COPYRIGHT

© 2023 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION

https://www.f6publishing.com

© 2023 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

Ш

Raishidena® WJGS https://www.wjgnet.com

Submit a Manuscript: https://www.f6publishing.com

World J Gastrointest Surg 2023 February 27; 15(2): 121-126

ISSN 1948-9366 (online) DOI: 10.4240/wjgs.v15.i2.121

EDITORIAL

Hot topics in pancreatic cancer management

Damiano Caputo

Specialty type: Gastroenterology and hepatology

Provenance and peer review:

Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C, C, C Grade D (Fair): D, D Grade E (Poor): 0

P-Reviewer: Hamaya Y, Japan; Kim SC, South Korea; Kitamura K, Japan; Song B, China

Received: August 27, 2022 Peer-review started: August 27, 2022

First decision: October 21, 2022 Revised: October 27, 2022 Accepted: January 17, 2023 Article in press: January 17, 2023 Published online: February 27, 2023

Damiano Caputo, Department of General Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome 00128, Italy

Damiano Caputo, General Surgery Research Unit, University Campus Bio-Medico di Roma, Rome 00128, Italy

Corresponding author: Damiano Caputo, FACS, MD, Associate Professor, Department of General Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, Rome 00128, Italy. d.caputo@policlinicocampus.it

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a sneaky and lethal disease burdened by poor prognosis. PDAC is often detected too late to be successfully cured, and it has been estimated that it will be a leading cause of cancer-related deaths in the near future. During the last decade, multimodal treatments involving surgery, chemotherapy and radiotherapy have contributed to improving the prognosis of this disease; however, long-term results are still not satisfactory. Postoperative morbidity and mortality rates remain high, and systemic treatments are burdened by toxicity in both neoadjuvant and adjuvant settings. Advancements in technologies, targeted therapies, immunotherapy and PDAC microenvironment modulation strategies may represent useful potential weapons in the future. Nevertheless, in the fight against this dreadful disease, there is an urgent need for new, cheap and user-friendly tools for early detection. In this field, promising results have been found in nanotechnologies and "omics" analyses that search for new biomarkers to be used in primary and secondary prevention. However, there are many issues that need to be solved before considering these tools in daily clinical practice. This editorial reported the state of the art of pancreatic cancer management.

Key Words: Pancreatic cancer; Pancreatic ductal adenocarcinoma; Nanotechnology; Neoadjuvant therapy; Adjuvant therapy; Omics

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The purpose of this editorial was to provide an up-to-date summary of pancreatic cancer management. The current state of multimodal therapies and the increasingly urgent need for development of tools for early diagnosis were summarized. The editorial also presented the high quality papers in the fields of basic, clinical, preventive and translational medicine that will help further investigations focused on this topic.

Citation: Caputo D. Hot topics in pancreatic cancer management. World J Gastrointest Surg 2023; 15(2): 121-126

URL: https://www.wjgnet.com/1948-9366/full/v15/i2/121.htm

DOI: https://dx.doi.org/10.4240/wjgs.v15.i2.121

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC), one of the biggest killers among solid tumors, is set to become the second leading cause of cancer-related deaths in the near future[1]. In recent years, a lot has been done in order to improve the prognosis of PDAC. However, multimodal treatments combining surgery, still considered the gold standard of care, with chemotherapy and radiotherapy in neoadjuvant or adjuvant settings have allowed only a little progress towards better outcomes. Therefore, according to Torphy $et\ al[2]$, pancreatic cancer management still has a long way to go.

Because of the very aggressive biology of PDAC and its indolent behavior in the early stage, the battle against this dreadful disease will be fought on the fields of prevention and early detection and improving the molecular understanding of PDAC[2]. Nevertheless, the assessment of more effective systemic treatments and strategies to improve surgical outcomes will represent an important step forward in the management of pancreatic cancer. Furthermore, much is expected from developments in targeted therapies and modulation of tumor microenvironment to improve the efficacy of immunotherapies[3].

The purpose of this editorial was to provide an up-to-date summary on pancreatic cancer management. The current state of multimodal therapies and the increasingly urgent need for development of tools for early diagnosis were also summarized.

Early detection and advances in clinical diagnosis

Given that risk factors (*e.g.*, cigarette smoking, obesity, diabetes) and genetic predisposition contribute to the development of pancreatic cancer[4], it is clear that the control of the above-mentioned risk factors represents the first, although insufficient, step to prevent PDAC. PDAC is preceded by pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm and mucinous cystic neoplasm, and follow-up guidelines of these conditions have been widely reported. On the other hand, subjects at higher risk for familial PDAC can be successfully screened by endoscopic ultrasound and magnetic resonance cholangiopancreatography[5]. One of the main issues to be solved is the identification of individuals who are at risk of the disease even in absence of positive familiar history[6].

Clearly, invasive and expensive diagnostic investigations cannot be applied indiscriminately on a large scale for asymptomatic adults[7]. On this basis, there is still an urgent need for tools for early diagnosis of pancreatic cancer that fulfill the criteria of reliability, reproducibility and cost control required by the World Health Organization[8].

Recent technological advances have led to the revision of the so called Affordable-Sensitive-Specific-User Friendly-Rapid-Equipment Free and Delivered criteria proposed in the early 2000s to the Real Time Connectivity-Ease of specimen collection-Affordable-Sensitive-Specific-User Friendly-Rapid-Equipment Free and Delivered criteria[9]. On this basis, it is clear that the development of new tools to be used for early detection of PDAC must consider the ease of collection of biological samples such as blood, saliva, urine, *etc*.

In this scenario, our group together with the researchers of the Department of Molecular Medicine of Sapienza University of Rome were among the first to exploit the potential of nanotechnologies to assist the early diagnosis of pancreatic cancer[10]. When nanoparticles interact with human fluids (e.g., plasma), a shield of molecules, mostly proteins, cover them and form the so-called biomolecular corona or protein corona. Protein corona-based technologies proved their efficacy in distinguishing pancreatic cancer patients from controls with a high rate of sensitivity (up to 85%) and specificity (up to 100%)[11].

More recently, in an attempt to make nanoparticle-based diagnostic technology even more streamlined and reproducible, approaches based on the use of magnetic levitation of nanoparticles coated by personalized protein corona have been proposed. Magnetic levitation (MagLev) may overcome protein corona analysis limitations (*e.g.*, isolation of plasma proteins from nanoparticles), boosting reproducibility and clinical translation of these technologies[12].

In the attempt to search for new biomarkers to be used in the early detection of pancreatic cancer, other remarkable results have been provided by different "omics" technologies (e.g., genomics,

epigenomics, non-coding RNA, metabolomics, liquid biopsy, etc). Studies in these fields identified many biomarkers that proved their utility alone or in panels with different combinations. Unfortunately, their application in daily clinical practice is still a long way off as large-scale validation studies are lacking, and these technologies require expensive and complex equipment [13].

As mutations in KRAS, GNAS, CDKN2A, TP53 and SMAD4 have been shown in different staged PDAC and precancerous lesions and due to "omics" analysis advancements, the opportunity of DNAbased molecular approaches for early PDAC detection is also gaining momentum. These approaches have the advantages of being based on the assessment of genetic mutations on easily obtainable samples (e.g., blood, plasma)[14].

Treatment guidelines: Standards and challenges

Surgery: Surgical resection still represents the cornerstone of pancreatic cancer treatment. However, despite recent technological improvements and the increasing diffusion of the minimally invasive approaches, morbidity and mortality rates remain significant even in high-volume centers[15].

Neoadjuvant treatments: The growing number of studies supporting vascular resections, when indicated, together with the promising results obtained with neoadjuvant therapies have undoubtedly increased the rate of PDACs that are eligible for surgical treatment. Although vascular resection, mainly when arteries are involved, should be reserved in selected cases and performed in high-volume hospitals[16], neoadjuvant treatments are gaining consensus in both the scientific community and

In borderline resectable PDACs, higher rates of R0 resections and longer disease-free and overall survival rates have been reported when FOLFIRINOX-based neoadjuvant treatments are used [17]. Recently, a prospective multicenter phase 2 trial demonstrated promising results when gemcitabine plus nab-paclitaxel chemotherapy were administered before surgery [18]. Even though the data supporting the use of neoadjuvant therapies in resectable PDACs are more limited, this strategy is proposed in patients with "biological" borderline resectable tumors (e.g., radiological resectable PDACs with elevated levels of Ca-199)[19].

In this field, a randomized phase 2 clinical trial showed the efficacy of perioperative regimens of gemcitabine plus nab-paclitaxel in terms of disease-free survival [20]. Nonetheless, for both resectable and borderline resectable PDACs, the Dutch Randomized Phase III PREOPANC Trial showed the efficacy of neoadjuvant treatments in terms of R0 resections and disease-free survival in the absence of significant improvement of overall survival rates [21]. The other side of the coin is that patients undergo significant surgical procedures for more advanced disease after chemotherapy and radiotherapy treatments contributing to high toxicity[22].

Reduction of complications, prevention and mitigation of the effects of postoperative pancreatic fistula, optimization of neoadjuvant therapies with careful selection of patients who will actually benefit from these treatments and identification of drugs and therapeutic regimens with a more favorable balance between efficacy and toxicity will represent a turning point in the management of pancreatic cancer[23,24].

Adjuvant treatments and metastatic disease: Adjuvant chemotherapy plays an important role in the treatment of pancreatic cancer. In 2013, results of the Conko-001 trial confirmed the usefulness of adjuvant chemotherapy in improving the disease-free survival rates of surgically removed PDAC[25].

Later, gemcitabine alone proved to offer the same oncological outcomes with lower toxicity when compared to 5-fluorouracil[26]. More recently, FOLFIRINOX-based regimens have led to significant improvement in overall survival, but because of their toxicity they can be administered to only very fit patients after surgery[27]. Based on the recent data reported by Choi et al[28], 5-fluoruracil regimens should be considered the optimal adjuvant treatment in patients with borderline resectable and locally advanced PDAC who already received neoadjuvant FOLFIRINOX. The PRODIGE 24/Canadian Cancer Trials Group PA6 just demonstrated that in resected PDACs, adjuvant FOLFIRINOX allows significantly longer survival when compared with gemcitabine[29].

Furthermore, there is increasing evidence in favor of the use of FOLFIRINOX for patients with unresectable metastatic disease[3]. On this basis, it is clear that advances have been made in the field of adjuvant therapy, but more investigations are needed. Improvement of oncological outcomes and significant reduction of toxicity are expected from targeted therapies and immunotherapy[30].

DISCUSSION

Torphy et al[2] has stated that much has been done but the way to win the battle against this cancer is still long. Early detection and novel therapeutic strategies represent the most urgent issues that need to be tackled. Hence, it is necessary to develop patient models and identify cheap, user-friendly and reproducible biomarkers that can be applied in daily clinical practice to assess the most effective treatment for each patient with PDAC.

Table 1 Most relevant topics in pancreatic ductal adenocarcinoma management with their current challenges and potential further perspectives

Topic	Challenges	Potential further perspectives
Prevention and early detection	Identification of high risk subjects	Nanotechnology
	Identification of novel biomarkers and signatures that satisfy the WHO REASSURED criteria	Omics technologies
Surgical treatment	Reduction of morbidity and mortality rates	Optimization of vascular resection in high skilled hospitals
Neoadjuvant treatments	Reduction of toxicity	Careful selection of fit patients
		Identification of therapeutic regimens with favorable balance between efficacy and toxicity
Adjuvant treatments	Improvement of oncological outcomes	Targeted therapies
	Significant reduction of toxicity	Immunotherapy
Biology and behavior	Lack of patient models of the tumor in order to improve translational medicine	Organoid ex vivo models

REASSURED: Real Time Connectivity-Ease of specimen collection-Affordable-Sensitive-Specific-User Friendly-Rapid-Equipment Free and Delivered; WHO: World Health Organization.

> In this scenario, translational research is rapidly gaining ground; organoid ex vivo models of PDAC can be achieved from small biopsies and may represent a turning point for precision medicine approaches in cases of resectable, locally advanced and metastatic PDAC[31]. In other words, the time seems ripe to collect all the knowledge acquired in the preclinical field over the last few decades and to recommend models of PDAC in different stages that can be used to improve our diagnostic and therapeutic strategies[32].

CONCLUSION

In the very near future we will be increasingly called upon to fight the battle against PDAC. Improvements of surgical outcomes, careful selection of patients for neoadjuvant treatments and vascular resections and reduction of the toxicity of adjuvant therapies are unquestionably needed. However, in order to increase the odds of winning the battle against this lethal disease, the real gap to be filled is the assessment of cheap and easily reproducible strategies for the screening and early detection of PDAC. Indeed, the aim of this special issue was to collect quality studies in the fields of basic, clinical, preventive and translational medicine that will further help investigations focus on these topics (Table 1).

FOOTNOTES

Author contributions: Caputo D finished the concept, writing and critical analysis of this manuscript.

Conflict-of-interest statement: The author declares that he has no conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non $commercial. \ See: https://creative commons.org/Licenses/by-nc/4.0/creative commons.$

Country/Territory of origin: Italy

ORCID number: Damiano Caputo 0000-0001-7058-1945.

S-Editor: Wang JJ L-Editor: Filipodia **P-Editor:** Wang JJ

REFERENCES

- 1 Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol 2018; 15: 333-348 [PMID: 29717230 DOI: 10.1038/s41575-018-0005-x]
- Torphy RJ, Fujiwara Y, Schulick RD. Pancreatic cancer treatment: better, but a long way to go. Surg Today 2020; 50: 1117-1125 [PMID: 32474642 DOI: 10.1007/s00595-020-02028-0]
- Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet 2020; 395: 2008-2020 [PMID: 32593337 DOI: 10.1016/S0140-6736(20)30974-0]
- Antwi SO, Oberg AL, Shivappa N, Bamlet WR, Chaffee KG, Steck SE, Hébert JR, Petersen GM. Pancreatic cancer: associations of inflammatory potential of diet, cigarette smoking and long-standing diabetes. Carcinogenesis 2016; 37: 481-490 [PMID: 26905587 DOI: 10.1093/carcin/bgw022]
- Goggins M, Overbeek KA, Brand R, Syngal S, Del Chiaro M, Bartsch DK, Bassi C, Carrato A, Farrell J, Fishman EK, Fockens P, Gress TM, van Hooft JE, Hruban RH, Kastrinos F, Klein A, Lennon AM, Lucas A, Park W, Rustgi A, Simeone D, Stoffel E, Vasen HFA, Cahen DL, Canto MI, Bruno M; International Cancer of the Pancreas Screening (CAPS) consortium. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2020; 69: 7-17 [PMID: 31672839 DOI: 10.1136/gutinl-2019-3193521
- McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 2018; 24: 4846-4861 [PMID: 30487695 DOI: 10.3748/wjg.v24.i43.4846]
- Pereira SP, Oldfield L, Ney A, Hart PA, Keane MG, Pandol SJ, Li D, Greenhalf W, Jeon CY, Koay EJ, Almario CV, Halloran C, Lennon AM, Costello E. Early detection of pancreatic cancer. Lancet Gastroenterol Hepatol 2020; 5: 698-710 [PMID: 32135127 DOI: 10.1016/S2468-1253(19)30416-9]
- 8 Land KJ, Boeras DI, Chen XS, Ramsay AR, Peeling RW. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat Microbiol 2019; 4: 46-54 [PMID: 30546093 DOI: 10.1038/s41564-018-0295-3]
- Bernabé-Ortiz A, Zafra-Tanaka JH, Moscoso-Porras M, Sampath R, Vetter B, Miranda JJ, Beran D. Diagnostics and monitoring tools for noncommunicable diseases: a missing component in the global response. Global Health 2021; 17: 26 [PMID: 33750391 DOI: 10.1186/s12992-021-00676-6]
- Caputo D, Caracciolo G. Nanoparticle-enabled blood tests for early detection of pancreatic ductal adenocarcinoma. Cancer Lett 2020; 470: 191-196 [PMID: 31783084 DOI: 10.1016/j.canlet.2019.11.030]
- Caputo D, Pozzi D, Farolfi T, Passa R, Coppola R, Caracciolo G. Nanotechnology and pancreatic cancer management: State of the art and further perspectives. World J Gastrointest Oncol 2021; 13: 231-237 [PMID: 33889275 DOI: 10.4251/wjgo.v13.i4.231]
- Digiacomo L, Quagliarini E, La Vaccara V, Coppola A, Coppola R, Caputo D, Amenitsch H, Sartori B, Caracciolo G, Pozzi D. Detection of Pancreatic Ductal Adenocarcinoma by Ex Vivo Magnetic Levitation of Plasma Protein-Coated Nanoparticles. Cancers (Basel) 2021; 13 [PMID: 34680304 DOI: 10.3390/cancers13205155]
- Zhou B, Xu JW, Cheng YG, Gao JY, Hu SY, Wang L, Zhan HX. Early detection of pancreatic cancer: Where are we now and where are we going? Int J Cancer 2017; 141: 231-241 [PMID: 28240774 DOI: 10.1002/ijc.30670]
- Singhi AD, Wood LD. Early detection of pancreatic cancer using DNA-based molecular approaches. Nat Rev Gastroenterol Hepatol 2021; 18: 457-468 [PMID: 34099908 DOI: 10.1038/s41575-021-00470-0]
- Miyasaka Y, Ohtsuka T, Nakamura M. Minimally invasive surgery for pancreatic cancer. Surg Today 2021; 51: 194-203 [PMID: 32857251 DOI: 10.1007/s00595-020-02120-5]
- Malczak P, Sierżęga M, Stefura T, Kacprzyk A, Droś J, Skomarovska O, Krzysztofik M, Major P, Pędziwiatr M. Arterial resections in pancreatic cancer - Systematic review and meta-analysis. HPB (Oxford) 2020; 22: 961-968 [PMID: 32360186 DOI: 10.1016/j.hpb.2020.04.005]
- Gorbudhun R, Patel PH, Hopping E, Doyle J, Geropoulos G, Mavroeidis VK, Kumar S, Bhogal RH. Neoadjuvant Chemotherapy-Chemoradiation for Borderline-Resectable Pancreatic Adenocarcinoma: A UK Tertiary Surgical Oncology Centre Series. Cancers (Basel) 2022; 14 [PMID: 36230600 DOI: 10.3390/cancers14194678]
- Ikenaga N, Miyasaka Y, Ohtsuka T, Nakata K, Adachi T, Eguchi S, Nishihara K, Inomata M, Kurahara H, Hisaka T, Baba H, Nagano H, Ueki T, Noshiro H, Tokunaga S, Ishigami K, Nakamura M; Kyushu Study Group of Treatment for Pancreatobiliary Cancer. A Prospective Multicenter Phase II Trial of Neoadjuvant Chemotherapy with Gemcitabine Plus Nab-Paclitaxel for Borderline Resectable Pancreatic Cancer with Arterial Involvement. Ann Surg Oncol 2023; 30: 193-202 [PMID: 36207481 DOI: 10.1245/s10434-022-12566-1]
- Coppola A, La Vaccara V, Farolfi T, Fiore M, Cammarata R, Ramella S, Coppola R, Caputo D. Role of CA 19.9 in the Management of Resectable Pancreatic Cancer: State of the Art and Future Perspectives. Biomedicines 2022; 10 [PMID: 36140192 DOI: 10.3390/biomedicines10092091]
- Seufferlein T, Uhl W, Kornmann M, Algül H, Friess H, König A, Ghadimi M, Gallmeier E, Bartsch DK, Lutz MP, Metzger R, Wille K, Gerdes B, Schimanski CC, Graupe F, Kunzmann V, Klein I, Geissler M, Staib L, Waldschmidt D, Bruns C, Wittel U, Fichtner-Feigl S, Daum S, Hinke A, Blome L, Tannapfel A, Kleger A, Berger AW, Kestler AMR, Schuhbaur JS, Perkhofer L, Tempero M, Reinacher-Schick AC, Ettrich TJ. Perioperative or only adjuvant gemcitabine plus nab-paclitaxel for resectable pancreatic cancer (NEONAX) - a randomized phase II trial of the AIO pancreatic cancer group. Ann Oncol 2023; 34: 91-100 [PMID: 36209981 DOI: 10.1016/j.annonc.2022.09.161]
- Versteijne E, Suker M, Groothuis K, Akkermans-Vogelaar JM, Besselink MG, Bonsing BA, Buijsen J, Busch OR, Creemers GM, van Dam RM, Eskens FALM, Festen S, de Groot JWB, Groot Koerkamp B, de Hingh IH, Homs MYV, van Hooft JE, Kerver ED, Luelmo SAC, Neelis KJ, Nuyttens J, Paardekooper GMRM, Patijn GA, van der Sangen MJC, de Vos-Geelen J, Wilmink JW, Zwinderman AH, Punt CJ, van Eijck CH, van Tienhoven G; Dutch Pancreatic Cancer Group. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer:

125

- Results of the Dutch Randomized Phase III PREOPANC Trial. J Clin Oncol 2020; 38: 1763-1773 [PMID: 32105518 DOI: 10.1200/JCO.19.02274]
- Karunakaran M, Barreto SG. Surgery for pancreatic cancer: current controversies and challenges. Future Oncol 2021; 17: 5135-5162 [PMID: 34747183 DOI: 10.2217/fon-2021-0533]
- Cheng Y, Briarava M, Lai M, Wang X, Tu B, Cheng N, Gong J, Yuan Y, Pilati P, Mocellin S. Pancreaticojejunostomy versus pancreaticogastrostomy reconstruction for the prevention of postoperative pancreatic fistula following pancreaticoduodenectomy. Cochrane Database Syst Rev 2017; 9: CD012257 [PMID: 28898386 DOI: 10.1002/14651858.CD012257.pub2]
- Fiore M, Ramella S, Valeri S, Caputo D, Floreno B, Trecca P, Trodella LE, Trodella L, D'Angelillo RM, Coppola R. Phase II study of induction chemotherapy followed by chemoradiotherapy in patients with borderline resectable and unresectable locally advanced pancreatic cancer. Sci Rep 2017; 7: 45845 [PMID: 28378800 DOI: 10.1038/srep45845]
- Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, Niedergethmann M, Zülke C, Fahlke J, Arning MB, Sinn M, Hinke A, Riess H. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 2013; 310: 1473-1481 [PMID: 24104372 DOI: 10.1001/jama.2013.279201]
- Neoptolemos JP, Palmer DH, Ghaneh P, Psarelli EE, Valle JW, Halloran CM, Faluyi O, O'Reilly DA, Cunningham D, Wadsley J, Darby S, Meyer T, Gillmore R, Anthoney A, Lind P, Glimelius B, Falk S, Izbicki JR, Middleton GW, Cummins S, Ross PJ, Wasan H, McDonald A, Crosby T, Ma YT, Patel K, Sherriff D, Soomal R, Borg D, Sothi S, Hammel P, Hackert T, Jackson R, Büchler MW; European Study Group for Pancreatic Cancer. Comparison of adjuvant gemeitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, openlabel, randomized, phase 3 trial. Lancet 2017; 389: 1011-1024 [PMID: 28129987 DOI: 10.1016/S0140-6736(16)32409-6]
- Ghosn M, Kourie HR, El Rassy E, Haddad FG, Hanna C, El Karak F, Nasr D. Where does chemotherapy stands in the treatment of ampullary carcinoma? World J Gastrointest Oncol 2016; 8: 745-750 [PMID: 27795814 DOI: 10.4251/wjgo.v8.i10.745]
- Choi JH, Kim MK, Lee SH, Park JW, Park N, Cho IR, Ryu JK, Kim YT, Jang JY, Kwon W, Kim H, Paik WH. Proper adjuvant therapy in patients with borderline resectable and locally advanced pancreatic cancer who had received neoadjuvant FOLFIRINOX. Front Oncol 2022; 12: 945829 [PMID: 36226066 DOI: 10.3389/fonc.2022.945829]
- Conroy T, Castan F, Lopez A, Turpin A, Ben Abdelghani M, Wei AC, Mitry E, Biagi JJ, Evesque L, Artru P, Lecomte T, Assenat E, Bauguion L, Ychou M, Bouché O, Monard L, Lambert A, Hammel P; Canadian Cancer Trials Group and the Unicancer-GI-PRODIGE Group. Five-Year Outcomes of FOLFIRINOX vs Gemcitabine as Adjuvant Therapy for Pancreatic Cancer: A Randomized Clinical Trial. JAMA Oncol 2022; 8: 1571-1578 [PMID: 36048453 DOI: 10.1001/jamaoncol.2022.3829]
- 30 Liu X, Li Z, Wang Y. Advances in Targeted Therapy and Immunotherapy for Pancreatic Cancer. Adv Biol (Weinh) 2021; 5: e1900236 [PMID: 33729700 DOI: 10.1002/adbi.201900236]
- Tiriac H, Plenker D, Baker LA, Tuveson DA. Organoid models for translational pancreatic cancer research. Curr Opin Genet Dev 2019; 54: 7-11 [PMID: 30844513 DOI: 10.1016/j.gde.2019.02.003]
- Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer 2022; 22: 131-142 [PMID: 34789870 DOI: 10.1038/s41568-021-00418-1]

Published by Baishideng Publishing Group Inc

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

Telephone: +1-925-3991568

E-mail: bpgoffice@wjgnet.com

Help Desk: https://www.f6publishing.com/helpdesk

https://www.wjgnet.com

