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Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of 
dopaminergic neurons in the substantia nigra, resulting in clinical symptoms, 
including bradykinesia, resting tremor, rigidity, and postural instability. The 
pathophysiological changes in PD are inextricably linked to the subcortical 
structures. Shape analysis is a method for quantifying the volume or surface 
morphology of structures using magnetic resonance imaging. In this review, we 
discuss the recent advances in morphological analysis techniques for studying the 
subcortical structures in PD in vivo. This approach includes available pipelines for 
volume and shape analysis, focusing on the morphological features of volume 
and surface area.

Key Words: Parkinson's disease; Dopaminergic neurons; Magnetic resonance imaging; 
Substantia nigra; Morphological
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Core Tip: Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic 
neurons in the substantia nigra, resulting in clinical symptoms, including bradykinesia, resting tremor, 
rigidity, and postural instability. The pathophysiological changes in PD are inextricably linked to the 
subcortical structures. Shape analysis is a method for quantifying the volume or surface morphology of 
structures using magnetic resonance imaging. In this review, we discuss the recent advances in morpho-
logical analysis techniques for studying the subcortical structures in PD in vivo. This approach includes 
available pipelines for volume and shape analysis, focusing on the morphological features of volume and 
surface area.

Citation: Deng JH, Zhang HW, Liu XL, Deng HZ, Lin F. Morphological changes in Parkinson's disease based on 
magnetic resonance imaging: A mini-review of subcortical structures segmentation and shape analysis. World J 
Psychiatry 2022; 12(12): 1356-1366
URL: https://www.wjgnet.com/2220-3206/full/v12/i12/1356.htm
DOI: https://dx.doi.org/10.5498/wjp.v12.i12.1356

INTRODUCTION
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer's 
disease. It is primarily caused by the loss of dopaminergic neurons in the substantia nigra. The classical 
clinical symptoms of PD include movement symptoms such as bradykinesia, resting tremor, rigidity, 
and postural instability. Recent studies have shown that symptoms of PD extend beyond motricity and 
include cognitive and neuropsychiatric symptoms. Non-motor symptoms can be identified at all stages, 
even before the appearance of motor symptoms[1]. In addition to clinical markers, PD biomarkers 
include neuroimaging, genetic, and biochemical markers[2]. This review focuses primarily on the use of 
neuroimaging in PD.

The main pathological features of PD are the degeneration of dopaminergic neurons in the substantia 
nigra and deposition of Lewy bodies, leading to pathophysiological changes in the downstream basal 
ganglia circuits. The basal ganglia system includes the striatum, globus pallidus, and structures with 
functional connections to the striatum, including the subthalamic nucleus, substantia nigra, and red 
nucleus.

Magnetic resonance imaging (MRI) is one of the most useful noninvasive techniques for examining 
intracranial structures, showing macroscopic alterations of the subcortical structures, and can visualize 
their volume and surface morphology. Therefore, MRI-based morphological analysis of the subcortical 
structures has the potential to be a prominent diagnostic neuroimaging marker for PD. This review 
focuses on the shape analysis of the striatum, thalamus, and hippocampus, which has been mostly 
discussed in previous studies.

METHODS
A literature search was conducted for relevant studies using four databases: PubMed, Web of Science, 
Google Scholar, and Scopus. The key search terms in the different combinations were “Parkinson’s 
disease, shape analysis, subcortical structures, striatum, thalamus, and hippocampus.” The final search 
was conducted on October 25, 2022.

The inclusion criteria were the studies that included: (1) A background or introduction on PD; (2) the 
clinical criteria of PD; (3) an introduction to methods of the subcortical structure segmentation; (4) shape 
analysis of the subcortical or cortical structures; and (5) data utilization of structural MRI sequences.

We excluded studies based on the following exclusion criteria: (1) Articles published in languages 
other than English; (2) animal model or theoretical articles; (3) studies with a sample size of < 10 
patients; (4) studies whose methodology did not involve volumetric or shape analysis; and (5) review or 
meta-analysis articles of shape analysis.

RESULTS
Figure 1 shows a flowchart of the study selection. This review included 69 references, of which 2 
provided a background/introduction on PD, 5 referred to the segmentation methods, and 62 to the 
morphology of the subcortical or cortical structures in PD. Subcortical structures mainly included the 
striatum, thalamus, and hippocampus. Further information on the structures and morphological 
changes is provided in Table 1.

https://www.wjgnet.com/2220-3206/full/v12/i12/1356.htm
https://dx.doi.org/10.5498/wjp.v12.i12.1356
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Table 1 Morphological studies in Parkinson’s disease

Subcortical 
structures Ref. Segmentation 

methods
Analysis 
type Results

Striatum

Geng et al[12], 2006; Pitcher et al[10], 2012; Owens-
Walton et al[11], 2018

Manual Volume Reduced volume of bilateral caudate and 
putamen nuclei

Sterling et al[13], 2013 Semi-automatic Volume Reduced volume of bilateral caudate and 
putamen nuclei

Geevarghese et al[15], 2015; Vasconcellos et al[17], 
2018; Tanner et al[16], 2017; Melzer et al[30], 2012

Automatic Volume Reduced volume of bilateral caudate nuclei

Oltra et al[35], 2022 Automatic Volume Reduced volume of bilateral caudate nuclei 
(with RBD)

Lee et al[14], 2014; Garg et al[20], 2015 Automatic Volume Reduced volume of bilateral putamen 
nuclei

Garg et al[20], 2015 Automatic Volume Reduced volume of right putamen nuclei

Kamps et al[33], 2019 Automatic Volume Reduced volume of right putamen nuclei 
(with RBD severity)

Kluger et al[34], 2019 Automatic Volume Reduced volume of dorsal striatum (with 
fatigue)

Messina et al[18], 2011; Menke et al[19], 2014; 
Nemmi et al[21], 2015; Khan et al[22], 2019; Gong et 
al[32], 2019

Automatic Volume No significant difference in bilateral 
striatum

Chung et al[31], 2017 Automatic Volume Locally reduction of right caudate nuclei

Devignes et al[28], 2021 Automatic Shape Locally reduction of left caudate nuclei 
(with cognition)

Garg et al[20], 2015 Automatic Shape Locally reduction of right putamen nuclei

Gong et al[32], 2019 Automatic Shape Locally reduction of bilateral caudate and 
right putamen nuclei (with RBD)

Tanner et al[16], 2017 Automatic Shape Locally reduction of the lateral and medial 
caudate nuclei

Sterling et al[13], 2013 Semi-Automatic Shape Locally reduction of the head and dorsal 
body of caudate nuclei

Nemmi et al[21], 2015 Automatic Shape Locally reduction of the medial surface of 
left caudate nuclei (with the right UPDRS)

Tanner et al[16], 2017 Automatic Shape Locally reduction of the medial surface of 
putamen nuclei

Sterling et al[13], 2013 Semi- Automatic Shape Locally reduction of the caudal and ventro-
lateral putamen nuclei

Sigirli et al[23], 2021 Automatic Shape Locally reduction of the middle-posterior of 
right putamen nuclei

Lee et al[14], 2014 Automatic Shape Locally reduction of the posterolateral and 
ventromedial putamen nuclei

Nemmi et al[21], 2015 Automatic Shape Locally reduction of the lateral and medial 
posterior putamen nuclei (with UPDRS)

Khan et al[22], 2019 Automatic Shape Locally reduction of the caudal-motor and 
rostral-motor sub-regions 

Thalamus

McKeown et al[43], 2008 Manual Volume No significant difference

Garg et al[20], 2015 Automatic Volume Significant difference

Vasconcellos et al[17], 2018; Mak et al[26], 2014; 
Sivaranjini et al[27], 2021; Foo et al[45], 2017

Automatic Volume Reduced volume of bilateral thalamus

Niccolini et al[46], 2019 Automatic Volume Reduced volume of bilateral thalamus (with 
non-motor symptom)



Deng JH et al. Morphological changes in PD based on MRI

WJP https://www.wjgnet.com 1359 December 19, 2022 Volume 12 Issue 12

Kamps et al[33], 2019 Automatic Volume Reduced volume of left thalamus (with 
RBD)

Chen et al[44], 2020 Automatic Volume Increased volume (20) of right subnuclei

Chen et al[44], 2020 Automatic Volume Increased volume (21), reduced volume (2) 
of left subnuclei

Kaya et al[40], 2019 Manual Shape Locally reduction of the dorsolateral of 
bilateral STN

Devignes et al[28], 2021 Automatic Shape Locally reduction of right thalamus (with 
cognition)

Chung et al[31], 2017 Automatic Shape Locally reduction of bilateral thalamus 
(with cognition)

McKeown et al[43], 2008 Automatic Shape Locally reduction of the dorsal surface of 
bilateral thalamus

Garg et al[20], 2015 Automatic Shape Net-inward and outward deformation of 
left thalamus

Hippocampus

Wang et al[55] , 2018 Automatic Volume Reduced volume of right hippocampus

Chen et al[56], 2016 Automatic Density Reduced density of left hippocampus

Geevarghese et al[15], 2015 Automatic Volume Reduced volume of left hippocampus (with 
cognition)

Lee et al[14], 2014; Tanner et al[16], 2017; Radziunas 
et al[53], 2018; Melzer et al[30], 2012

Automatic Volume Reduced volume of bilateral hippocampus

Vasconcellos et al[17], 2018 Automatic Volume Reduced volume of bilateral hippocampus 
(with disease duration)

Camlidag et al[68], 2014; Xu et al[59], 2020 Automatic Volume Reduced volume of bilateral hippocampus 
(with cognition)

van Mierlo et al[64], 2015 Automatic Volume Reduced volume of bilateral hippocampus 
(with depression)

Rahayel[63], 2019 Automatic Volume Reduced volume of bilateral hippocampus 
(with REM-RBD)

Wilson et al[54], 2019 Automatic Volume Reduced volume of bilateral hippocampus 
(with cognition, motor and disease 
duration)

Luo et al[60], 2021 Automatic Volume Reduced volume of subfields (with 
cognition)

Uribe et al[61], 2018 Automatic Volume Reduced volume of subfields, especially 
CA1

Becker et al[62], 2021 Automatic Volume Reduced volume of CA1 (with cognition)

Xu et al[59], 2020 Automatic Volume Reduced volume of subiculum, CA2/3, 
CA4, ML and right GC-DG

Park et al[57], 2019 Automatic Volume Volume asymmetry, especially in CA4-DG 
and CA2-3

Tanner et al[16], 2017 Automatic Shape Locally reduction in the head and CA1 
bilaterally

Devignes et al[28], 2021 Automatic Shape Locally reduction of right hippocampus 
(with cognition)

REM: Rapid eye movement; RBD: Sleep behavior disorder; STN: Subthalamic nucleus; CA: Cornu ammonis (subfields of hippocampus); ML: Molecular 
layer subfields; GC-DG: Granule cell layer of the dentate gyrus.

Parkinson’s disease
The Movement Disorders Society (MDS) has proposed the main diagnostic criteria for PD in clinical 
settings[3]. The recent version of the MDS diagnostic criteria considers three stages in the progression of 
PD: Preclinical, prodromal, and clinical. Clinical PD can be diagnosed when typical motor symptoms 
occur. Neurodegeneration may occur in patients with PD before they reach the clinical stage[3]. 
Previous studies have been mostly conducted based on clinical diagnosis; therefore, this review focuses 
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Figure 1 A flowchart of the study selection.

on PD in the clinical stage. The striatum is one of the most affected structures in the nigrostriatal 
pathway because of the degeneration of dopaminergic neurons. In addition to the striatum, neurons in 
the substantia nigra project to other basal nuclei, such as the pallidum, substantia nigra, and thalamic 
nucleus basalis. A decrease in dopamine levels may cause the structural and morphological changes 
observed in PD.

MRI allows noninvasive observation of morphological changes in the subcortical structures in 
patients with PD to find changes in neuroimaging characteristics. Hence, it may help in clinical 
intervention, especially in the preclinical or prodromal stages of the disease. However, the naked eye 
cannot identify subtle changes in structures; hence, quantitative analysis using a computer may help 
determine the presence or absence of morphological changes in these structures. Segmentation of 
subcortical structures based on the images is the prerequisite to performing an accurate analysis. The 
following sections describe the common segmentation methods and the results of morphological 
analyses of the subcortical structures obtained from previous studies.

Methods of segmentation
Both manual and automatic segmentation have been used in recent studies. Manual segmentation, 
usually the gold-standard approach for automatic segmentation, is a tedious and time-consuming task 
that depends on the subjectivity of the physician. Therefore, many investigators have used publicly 
available automated segmentation software for efficiency and objectivity. Automatic segmentation 
methods include voxel-based morphometry (VBM) and surface-based morphometry (SBM). The tools 
used for segmentation in most studies include FSL and FreeSurfer, among others. The FIRST software, 
distributed with the FSL package, is a tool that employs manually labeled image data to offer 
anatomical training information for 15 different subcortical regions using 336 manually labeled T1-
weighted MRI images[4]. FreeSurfer is a suite of tools for extensive automated analysis of key features 
in the human brain that can be used in most MRI sequences and provides an accurate geometric surface 
model[5]. By minimizing the difference between the original image and the converted target image, 
large deformation diffeomorphic metric mapping (LDDMM) creates a differential homogenous 
transformation that has its own inherent smoothness and simulated displacement size. It is often 
applied in the object-matching segment of medical imaging data processing[6]. This review focuses on 
the morphological analysis of subcortical structures in PD using the techniques mentioned above in 
recent years.

Several scholars have compared the effects of manual and automatic segmentation. For the 
hippocampus and amygdala, segmentation using VBM and FreeSurfer is performed at a level 
comparable to manual segmentation[7]. In another study, automated segmentation revealed different 
degrees of variability in the subcortical structures compared to manual segmentation, with particularly 
pronounced differences found in the FreeSurfer and FSL pipelines for the pallidum and thalamus[8]. 
From these studies, it can be seen that the efficiency of automatic segmentation is comparable to that of 
manual segmentation. Automatic methods save more time and display better segmentation results, 
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which could be used in the shape analysis of the subcortical structures in patients with PD.

Shape analysis of the striatum
The striatum is a critical component of the brain that controls the motor, reward, and executive 
functions, and dopamine serves as an important mediator[9]. Decreased dopamine levels have the 
greatest impact on striatal structures in patients with PD. Several studies have segmented the striatum 
by manual segmentation of T1-weighted MRI images for its morphology, showing that the volume of 
the caudate nucleus or putamen was smaller in patients than in normal controls[10,11]. In addition, 
studies using automatic segmentation showed the same results as those using manual segmentation of 
the volume of the caudate nucleus and putamen[12-17]. However, some studies have found no 
significant difference in striatum volume between patients with PD and normal controls[18-21]. Studies 
that performed further surface morphometric analyses under automated shape analyses showed: (1) A 
regional contraction of the posterolateral and ventromedial putamen bilaterally in patients with PD[14]; 
(2) areas of local atrophy in the lateral and medial posterior parts of the bilateral putamen; (3) atrophy 
locally on the medial surface of the left caudate nucleus[21]; and (4) a reduction in the volume and an 
inward displacement of the surface of the caudal motor striatum[22]. Studies using other machine 
learning methods have also found local atrophy in the caudate and putamen nuclei, including the 
caudal portion of the putamen or the middle-posterior putamen and the head of the caudate[13,23]. A 
study attempted to distinguish different stages of PD based solely on the shape analysis of the bilateral 
caudate nucleus and putamen through an automated process, with balanced accuracies in the range of 
59%-85%[24].

Dysfunction of the basal ganglia plays a key role in developing motor and non-motor symptoms in 
PD[25]. When exploring the relationship between volume and symptoms, several studies have shown 
that greater atrophy of the caudate and putamen in PD is usually associated with more severe motor 
symptoms and cognitive impairment[11,17,26-28]. Additionally, some correlation analyses did not find 
a significant correlation between striatal volume and cognitive or motor symptoms[10].

Local morphological analyses provided more details; local atrophy in the left putamen and thalamus 
correlated with the right Unified Parkinson Disease Rating Scale (UPDRS) motor scale score, which is 
the most widely used scale for the clinical studies of PD[21,29]. A previous study identified PD with 
mild cognitive impairment (PD-MCI) with limited atrophy of the right putamen[30]. When PD-MCI 
converted to dementia, smaller local shape volumes were found in the right caudate nucleus of the 
patients compared to that of patients with PD-MCI who did not convert[31]. In addition, logistic 
regression analysis indicated that the local shape volumes in the right caudate nucleus were significant 
independent predictors of conversion to dementia in patients with PD-MCI. Distinct structural changes 
in the caudate and/or putamen are associated with performance in the attention or working memory 
domain, fatigue, the severity of rapid eye movement (REM) sleep behavior disorder (RBD), and 
excessive daytime sleepiness[26,32-35].

Specifically, volume atrophy of the left caudate nucleus or right putamen was found to be more 
pronounced in the patient cohort[11,23], which may be due to disease lateralization. Previous studies 
have shown that the decrease in dopamine capacity in the striatum is more pronounced in the 
contralateral hemisphere on the side with more severe clinical symptoms of PD[36]. It has been 
suggested that the onset of motor symptoms may always occur in one limb, and morphological analysis 
has revealed a greater degree of striatal atrophy on the contralateral side of the limb where motor 
symptoms occur[16]. Local deformation of the posterior side of the putamen has been reported in 
several articles. According to the literature, the posterior putamen is directly related to the sensorimotor 
cortex and is preferentially affected; dopamine depletion is mainly located in this region of the basal 
ganglia[10,23,37,38]. Therefore, we can also infer that the morphological changes in PD can be detected 
using MRI. Furthermore, we may be able to assess the severity of some symptoms, such as cognitive 
function in patients with PD, and provide timely interventions for clinical treatment.

Shape analysis of the thalamus
The thalamus is composed of several nuclei that regulate various motor and sensory functions and is 
usually divided into seven nuclei: The anterior, lateral, ventral, intralaminar, medial, and posterior 
nuclear groups and the reticular nucleus. Among the nuclei of the thalamus, the ventral thalamus, also 
known as the subthalamic nucleus (STN), plays an important role in extrinsic inputs reaching the basal 
ganglia circuitry[39]. A study calculated the morphological changes in the STN and found statistically 
significant differences in the shape of bilateral STN between the PD and control groups, with the largest 
deformation site located in the dorsolateral parts of bilateral STNs[40]. Patriat et al[41] showed that the 
volume of STN was smaller in PD patients compared to healthy controls, which was further validated in 
the field of 7T MRI. Although thalamic degeneration may represent a site of dopaminergic degeneration 
in PD, the thalamus is also influenced by hyperactivity in glutamatergic signaling, which may be caused 
by the loss of dopaminergic neurons in the substantia nigra and striatum[42]. Thus, various morpho-
logical changes occur in the thalamus of patients with PD. Furthermore, several studies on structural 
and functional imaging have identified morphological or functional changes in the thalamus in patients 
with PD. Using manual segmentation, scholars found no significant difference in the thalamus volume 
between patients with PD and healthy controls[43]. They used spherical harmonic-based representation 
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methods and detected significant differences in shape[43]. A previous study subdivided the left and 
right thalamus into 25 subnuclei using automatic methods. It was detected that 21 of the left and 20 of 
the right thalamic subnuclei had increased volume, accompanied by atrophy in two left subnuclei[44].

More studies have been conducted to correlate thalamic shape changes with clinical symptoms. 
Nemmi et al[21] found a significant correlation between local atrophy of the right thalamus and the 
UPDRS using FSL scripts. However, one study found that surface morphological changes in the 
thalamus were not associated with disease severity in UPDRS using FreeSurfer segmentation with 
LDDMM alignment[20]. This may be due to differences in segmentation methods and cohort sizes, and 
the influence of glutamatergic neurons on thalamic morphology requires further investigation.

Moreover, most studies have concluded that altered thalamic morphology is associated with non-
motor symptoms. Several studies have found a relationship between reduced thalamic volume and poor 
cognitive function in patients with PD[17,26-28,45]. A more detailed correlation analysis showed that 
the local shape volume of the bilateral thalamus was a significant independent predictor of the 
conversion of MCI to dementia. However, the local shape volume of the thalamus was associated with 
semantic fluency and attentional composite scores[31]. In addition, some scholars have found that the 
severity of other non-motor symptoms in patients with PD is associated with more pronounced 
thalamic atrophy. Furthermore, they found that such non-motor symptoms include sleep, fatigue, 
gastrointestinal dysfunction, and REM-RBD[32,46].

The thalamus, one of the output nuclei of the basal ganglia, is markedly affected by dopaminergic 
and glutamatergic neuronal degeneration. For living subjects, imaging is potentially one of the most 
practical tools to detect changes in the thalamus. Precise shape analysis shows that the thalamus in PD 
undergoes major or minor changes. Compared to manual measurements, accurate automated 
measurements reflect more pronounced variation and more detailed results. Because of the varying 
progression of neuronal degeneration, thalamus shape analysis in patients with PD presents differently. 
Hence, future studies using the same methods and similar cohort sizes may show better consistency. 
Moreover, several studies have demonstrated the relevance of shape alterations and symptoms, 
especially non-motor symptoms, probably because the thalamic subnuclei play an important role in the 
transmission of dopaminergic neuronal pathways. However, the sequence in which the onset of 
symptoms and the changes within the thalamus occur is still unclear. In addition, abnormal STN 
activity may be associated with motor dysfunction in PD; however, further studies are needed to 
confirm the relationship between STN shape changes and motor symptoms.

Shape analysis of the hippocampus
As a subcortical structure, the hippocampus is an important brain region that carries the body's 
cognitive functions and is closely related to learning ability, memory, and emotion regulation. Cognitive 
impairment is frequently seen in PD; thus, the hippocampus may be an imaging marker of cognitive 
impairment[47]. Scholars have found a reduction in hippocampal gray matter density or thickness 
through automatic methods in the elderly or patients with cognitive impairment, especially in the CA1, 
which is one of the four hippocampal subfields called the cornu ammonis[48-52]. Several studies on 
hippocampal morphology have been conducted in patients with PD and normal controls. Using 
automatic shape analysis, some studies have shown smaller hippocampal volumes in patients with PD 
than in controls[16,17,30,53-55]. There were also reduced local volumes of the hippocampus in patients 
with cognitive impairment compared with those without cognitive impairment, including the subfields 
CA1-4[28,30,31,54-62]. Studies have shown that the development of REM-RBD and depression may be 
associated with a smaller hippocampal volume[33,63,64]. This suggests a close relationship between 
hippocampal atrophy and cognitive function, in which the CA1 may be one of the most notable 
subfields.

The hippocampus is the main source of cholinergic input to the cerebral cortex, and most studies 
have shown that the hippocampal volume shrinks in patients with PD. Hippocampal shape analysis has 
focused on non-motor symptoms in PD, primarily the cognitive function, which matches the function of 
the hippocampus. The relationship between hippocampal atrophy and cognitive decline has been 
confirmed in patients with PD in the majority of studies. However, recent studies mostly showed 
volume results; thus, the surface morphological analysis may be able to link hippocampal subregions to 
specific symptoms of cognitive impairment further. The relationship between morphological changes 
and other symptoms, such as REM-RBD and depression, warrants further investigation.

Furthermore, a large number of studies are also using these automated pipelines to analyze cortical 
structures in PD. Cerebral cortices are key to human activity and may be altered as a result of unusual 
activity in PD, such as thinning. Most studies have found atrophy in various parts of the cortex in 
patients with cognitive impairment. In a longitudinal study, Garcia-Diaz et al[65] confirmed the thinning 
of cortical thickness in PD patients with cognitive impairment vs those without. Among some symptoms 
related to the cerebral cortex, Vignando et al[66] reported a general reduction in occipital, parietal, 
temporal, frontal, and limbic cortical thickness in patients experiencing hallucinations. Changes in 
visuospatial and visual supraperceptual impairment also correlated with cortical thinning in occipital, 
parietal, and temporal regions in the study by Garcia-Diaz et al[65]. As for motor symptoms, through 
the calculation of surface area in a study of PD gait disorders, Wei et al[67] found that the larger the 
surface areas of the left lateral temporal cortex and right inferior parietal cortex, the worse the gait 
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performance.
This review focuses on the results of patients on 3T instruments, and participants were scanned using 

a 1.5T MRI instrument and used manual planar measurements, revealing that the normalized STN and 
red nuclei volumes were larger in patients with PD than in controls[68]. Similarly, 7TMRI imaging 
revealed atrophy of the overall prefrontal cortex and hippocampus, as well as a reduction in STN 
volume, for patients with PD[41,69]. Although current studies on 7TMRI have focused only on 
volumetric rather than morphological changes, higher resolution instruments can help us to detect finer 
structural changes and conduct more structural studies.

CONCLUSION
Methods for the shape analysis of subcortical structures based on MRI data are becoming increasingly 
diverse and refined, allowing even minor changes to be detected. This study has reviewed previous 
research on the application of these techniques in PD. In contrast to manual measurements, most studies 
employ computational methods to maintain objectivity. Volume atrophy can be found in most 
structures, including the subcortical and cortical areas. Surface-based morphometry detects structural 
changes that can be associated with clinical symptoms. We found that pathophysiological changes in PD 
are closely associated with changes in the subcortical structures and that different sub-structural 
alterations are consistent with specific clinical phenotypes. Therefore, the shape analysis of the 
subcortical structures can be used as an imaging biological indicator of PD, helping to explain associated 
clinical symptoms.
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