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Abstract
Among the most common cancers, hepatocellular carcinoma (HCC) has a high 
rate of tumor recurrence, tumor dormancy, and drug resistance after initial 
successful chemotherapy or radiotherapy. A small subset of cancer cells, cancer 
stem cells (CSCs), exhibit stem cell characteristics and are present in various 
cancers, including HCC. The dysregulation of microRNAs (miRNAs) often acc-
ompanies the occurrence and development of HCC. miRNAs can influence 
tumorigenesis, progression, recurrence, and drug resistance by regulating CSCs 
properties, which supports their clinical utility in managing and treating HCC. 
This review summarizes the regulatory effects of miRNAs on CSCs in HCC with a 
special focus on their impact on HCC recurrence.

Key Words: Hepatocellular carcinoma; Cancer stem cells; MicroRNAs; Recurrence.
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Core Tip: The liver cancer stem cells (LCSCs) play a crucial role in the development of 
hepatocellular carcinomas (HCCs) and play a significant role in the development of 
drug resistance and cancer recurrence. LCSCs are regulated by many factors, of which 
microRNAs (miRNAs) are an important part. miRNAs can influence the development 
of HCC by regulating the stem cell properties of LCSCs.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in the liver, accounting for about 
75% of all liver cancers, with a poor clinical prognosis, resulting in 500000-600000 deaths each year[1-4]. 
In recent years, there has been substantial progress in the diagnosis and treatment of HCC, but the high 
recurrence and metastasis rates of HCC still pose a headache for doctors and patients. The proposal of 
cancer stem cell (CSC) theory provides us with a direction. CSCs are considered one of the very small 
cell types in tumor cells with unlimited proliferative potential, which can drive tumorigenesis, and 
development. They can confer unique drug resistance, recurrence, and metastasis capabilities to tumors
[5-8]. Conventional cancer treatments only kill common cancer cells, but CSCs remain. When in the right 
microenvironment, CSCs begin to proliferate and differentiate, leading to cancer recurrence. In recent 
years, many studies have focused on liver cancer stem cells (LCSCs) and achieved satisfactory results. 
Therefore, targeting CSCs is considered a more promising approach to improving the outcomes of 
conventional treatments (Figure 1).

An example of a microRNA (miRNA) is a small, non-coding RNA that is produced by endogenous 
cells and can be used to regulate gene expression by binding to the 3' untranslated region (UTR) of 
genes to inhibit their translation[9,10]. It has been shown that miRNAs can regulate tumorigenesis, 
progression, invasion, and even tumor recurrence in HCC by acting as tumor promoters or suppressors
[11,12]. Another important finding is that miRNAs can modulate the stemness profile of LCSCs to 
combat conventional therapy further. Pollutri et al[13] reported that miR-494 induces sorafenib 
resistance in HCC and is associated with stem cell phenotypes. Further research has demonstrated that 
miR-181 family members play a critical role in maintaining the stem cell characteristics of HCC cells in a 
study by Ai et al[14]. Therefore, we believe miRNAs play a key role in LCSCs, and understanding this 
information will help our further research and development of HCC therapies. This review summarizes 
recent years' research findings and reports, outlines the role of miRNAs in LCSCs, and discusses 
potential therapeutic strategies for HCC recurrence, intending to provide clinical practitioners with 
information about how to treat HCC patients effectively.

SURFACE MARKERS OF LCSCS AND THEIR ROLE IN HCC
A number of characteristics of LCSCs are similar to those of normal stem cells, including their ability to 
self-renew and differentiate. LCSCs are more prevalent in vivo than other tumor cell types. They can 
promote the growth of primary cancer cells and facilitate the metastasis of transplanted secondary 
tumors, and they are crucial in the recurrence of HCC. In order to identify and isolate CSCs effectively, 
it is mostly necessary to take advantage of surface markers. Common LCSCs are CD133, CD90, CD44, 
CD13, CD47, etc. During the past few decades, a growing body of evidence has been generated 
concerning the properties of specific surface markers on LCSCs, which has provided opportunities for 
investigating potential biological functions, signaling pathways, and therapeutic approaches for HCC 
(Figure 2). Table 1 summarizes the major surface molecular markers of LCSCs and their potential roles 
in HCC.

CD133
In 1997, CD133 was discovered as the first protein on the surface of neuroepithelial stem cells[15]. A 
transmembrane glycoprotein consisting of five transmembrane domains, two extracellular glycosylation 
chains, and three transmembrane domains is an important surface glycoprotein that serves as a cell 
surface marker. CD133 is expressed in embryonic epithelial stem cells, colon cancer, prostate cancer, 
pancreatic cancer, brain tumor, HCC, hematopoietic stem cells, and the like. CD133 was identified as a 
liver CSC marker in 2007[16-18]. According to studies conducted by our laboratory, the expression of 
CD133 in HCC cells is negatively related to the overall survival rate of patients with HCC and the rate 
of recurrence[19]. HCC patients with higher CD133 expression levels in the primary lesion tend to live 
shorter and have a higher recurrence rate postoperatively than those with lower CD133 expression 
levels[20]. HCC patients with higher CD133 expression levels also responded poorly to the conventional 
chemotherapy drug sorafenib. Several molecular mechanisms have been involved in the action of 
CD133 on tumors, including angiogenesis, self-renewal, growth, invasion, and chemoresistance. CD133+ 
cells in HCC contribute to chemoresistance by preferentially activating the Akt/PKB and Bcl-2 cell 
survival receptors during the chemoresistance response[21]. As a result of the interaction between 

https://www.wjgnet.com/1948-5182/full/v14/i12/1985.htm
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Table 1 Hepatic cancer stem cell markers and their roles in hepatocellular carcinoma recurrence

Markers Biological functions in LCSCs Signaling pathways Recurrence Ref.

CD133 Tumor angiogenesis, growth, self-renewal, invasion, and 
chemoresistance

AKT/PKB, IL-8/CXCL1, Notch High recurrence [16-
23]

CD90 Preferably in poorly differentiated HCC, inflammation, 
circulation, drug resistance, and lipid metabolism

TGF-β/Smad A shorter time to recurrence [25-
28]

CD44 Extensive proliferation, self-renewal, invasion, and tunori-
genicity

TGF-β, AKT/GSK-3β/β-catenin, 
AKT/ERK/CXCR4

The significant risk factors of 
recurrence

[30-
36]

CD24 Cell surface glycoprotein, drives CSC genesis Stat3/Notch A prognostic predictor for 
recurrence-free survival

[37-
41]

CD13 Tumorigenicity, cell proliferation, cell cycle, self-renewal, and 
chemoresistance

ERK1/2 Early recurrence [42-
44]

CD47 Tumor initiation, self-renewal, and metastasis CTSS/PAR2, NF-κB, IL-6 Shorter recurrence-free survival [45-
47]

OV6 Invasive and metastatic potential, form tumors, invasiveness, 
metastasis, substantial chemoresistance

Wnt/β-catenin, CXCL12/CXCR4/β
-catenin

[48,
49]

EpCAM An early biomarker for HCC, self-renewal, differentiation, 
chemoresistance, highly invasion and tumorigenisis

Wnt/β-catenin High recurrence [50-
54]

HCC: Hepatocellular carcinoma; CSC: Cancer stem cell; LCSCs: Liver cancer stem cells.

Figure 1 Combination therapy for hepatocellular carcinoma. Top: Conventional treatment may lead to tumour recurrence due to cancer stem cell 
reactivation. Bottom: Combination therapy leads to increased efficacy of tumour eradication. Adapted from Dzobo et al[8]. HCC: Hepatocellular carcinoma; CSC: 
Cancer stem cell.

neurotensin and interleukin-8 and CXCL1 signals in the liver, CD133 controls tumorigenesis, growth, 
and self-renewal of liver tumor-initiating cells[22]. The expression of iNOS in CD24+CD133+ LCSCs, but 
not CD24-CD133- LCSCs, enhanced Notch1 signaling, and accelerated HCC initiation in the mouse 
xenograft tumor model[23].

CD90
CD90+ cells from HCC Cell Lines were reported to have higher tumorigenic and metastatic potential 
than CD90− cells in 2008, suggesting that CD90+ cells can be used as a marker of metastatic HCC[24,25]. 
Consistent with these findings, CD90 expression is positively correlated with HCC progression and 
poor prognosis[26-28]. CD90 is involved in varies molecular mechanisms, including inflammation, 
circulation, drug resistance, and lipid metabolism. In HCC 97H cells, the cyclin D1-mediated activation 
of Smad2/3 and Smad4 is an important regulatory mechanism in enhancing single sphere formation, 
enhancing the CD90+ population, increasing stemness gene expression, and increasing chemoresistance
[29]. Therefore, CD90 may also be a surface marker for poor prognosis of HCC and a potential 
therapeutic target.
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Figure 2 Liver cancer stem cells markers and their potential related functional pathways in hepatocellular carcinoma. HCC: Hepatocellular 
carcinoma; LCSCs: Liver cancer stem cells.

CD44
A transmembrane glycoprotein named CD44 has been found to be expressed on numerous cells, 
including hepatocytes, endothelial cells, lymphocytes, and mesenchymal stem cells. It plays a role in 
extensive proliferation, self-renewal, invasion, and tumorigenicity[30]. It is possible to isolate cancer 
cells with stem cell markers by using CD44 alone or in combination with other markers. CD44v6, a 
variant of CD44, participates in the proliferation of HCC cells by stimulating the Ras/MAPK signaling 
cascade through interaction with c-Met[31]. Several studies have indicated that CD44s are associated 
with poor prognoses in hepatocellular carcinoma patients and regulate the TGF-β-mediated 
mesenchymal phenotype[32]. TGF-β1 and CD44 are synergistic in that they contribute to epithelial 
mesenchymal transition (EMT) induction and the development of CSC properties in tumor cells by 
interacting via the AKT/GSK-3β/β-catenin pathway in HCC cells[33]. In addition, CD44 is known to 
enhance HCC migration and local metastases by triggering the AKT/ERK pathway via the CXCR4 
receptor[34]. Therefore, CD44 may be a potential treatment target for HCC and a marker of poor 
prognosis for HCC[35,36].

CD24
It is known that CD24 is a glycoprotein that is expressed on the surface of stem cells, mature 
granulocytes, and B cells, as well as in malignant tumors, such as HCC, breast cancer, colon cancer, and 
small cell lung carcinoma[37,38]. As well as driving CSC development, CD24 is involved in the differen-
tiation of progenitor and stem cells in the liver and in metastatic development, self-renewal, and 
chemotherapy resistance of HCC cells[39]. CD24+ liver tumor-initiating cells are driven to self-renew 
and initiate tumors via STAT3-mediated NANOG signaling[40]. An IL-6/STAT3 axis regulates CD24 
and epithelial cell adhesion molecule (EpCAM) expression in liver cancer stem cells through long non-
coding RNA DILC[41].

CD13
A membranous glycoprotein called CD13 is associated with the progression of cancer and drug 
resistance. Cell cycle, self-renewal, and tumorigenicity are all regulated by CD13, which is involved in 
tumorigenesis, cell proliferation, and chemoresistance[42]. The combination of CD13 with other surface 
markers could lead to prostate cancer tumorigenesis. The CD13 gene is expressed in LCSCs that are 
slow-growing or semi-quiescent, which contributes to the formation of HCC tumors[43]. Quiescent 
CD13+ CSCs accumulate after chemotherapy in HCCs, serving as a source of recurrence[44].

CD47
CD47 is a transmembrane member of immunoglobulin associated with immune evasion, tumor 
apoptosis, metastasis, tumor-initiating ability, chemoresistance, and proliferation in various cancers. In 
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addition to tumor initiation and self-renewal, CD47 also plays an important role in metastasis in HCC. 
HCC growth can be inhibited by suppression of CD47, which inhibits CTSS/PAR2 signaling in vivo and 
causes chemosensitization[45]. There is a positive correlation between CD47 and NF-κB expression in 
HCC samples from clinical trials[46]. Patients with HCC with upregulated CD47 expression had poor 
overall survival and recurrence-free survival, and IL-6 derived from macrophages infiltrating the tumor 
was shown to activate STAT3 and upregulate CD47 expression on hepatoma cells[47].

OV6
OV6, a monoclonal antibody raised against hepatic progenitor cells isolated from rat livers treated with 
carcinogens, was shown to be a marker for such cells. An HCC cell line expressing OV6+ tumor-
initiating cells has a greater potential for invasiveness and metastatic spread, both in vitro and in vivo, 
which promotes the metastasis and progression of HCC[48]. There was an association between higher 
levels of OV6+ tumor cells, aggressive clinicopathologic features, and a poor prognosis. Inhibition of β-
catenin signaling leads to a decrease in the proportion of OV6+ cells in HCC cell lines and primary HCC 
tissues, which indicates the role of Wnt/β-catenin signaling in OV6+ HCC cells[49].

EpCAM
As another transmembrane glycoprotein found in most epithelial tissues, the EpCAM plays a role in 
signal transduction, cell adhesion, migration, proliferation, and differentiation[50-54]. EpCAM was 
discovered as a biomarker early in the diagnosis of HCC. A strong correlation was found between 
EpCAM expression in LCSCs and differentiation, chemoresistance, high invasion, and tumorigenesis in 
HCC. EpCAM is a target gene for Wnt-beta-catenin signaling that may help improve HCC prognosis.

MIRNAS IN HEPATOCELLULAR CARCINOMA
Dysregulated miRNAs contribute to many critical processes in HCC, ranging from growth, prolif-
eration, apoptosis, and differentiation to migration, invasion, and progress. Moreover, miRNAs are 
important in tumor recurrence and metastasis. Understanding miRNAs' biological roles and specific 
targets will help further research and development of HCC therapies. Table 2 summarizes the major 
miRNAs in HCC and their potential roles in HCC.

The upregulated miRNAs in HCC
Cells from HCC cell lines and patients express high levels of miR-21. There is a positive correlation 
between miR-21 expression and HCC migration and invasion. As a result of silencing miR-21, the 
protein levels of PTEN, RECK, PDCD4, and KLF5, as well as the protein and mRNA levels of KLF5, 
increase, leading to a reduction in HCC cell migration and invasion[55,56]. Hepatocellular carcinoma 
growth is promoted by exosomal miR-21 regulation of the TETs/PTENp1/PTEN pathway, and three 
novels predicted miR-21 targets (CAMSAP1, DDX1, and MARCKSL1) correlate with HCC patient 
survival[57,58]. There is an association between miR-130b-3p up-regulation in HCC and a poor 
prognosis[59]. Patients who undergo HCC resection are at an increased risk of recurrence if their miR-
135a expression is high[60]. A direct target of TP53INP1 is MiR-155, which regulates the migration and 
invasion of liver cancer cells, EMT, and CSC acquisition (which is positively correlated with CD90 and 
CD133)[61,62]. Patients with HCC who express MiR-182-5p in tumor tissues are more likely to 
experience poor prognosis and recurrence of the disease at an earlier stage. miR-182-5p activates 
AKT/FOXO3a pathway and Wnt/β-catenin signaling by targeting FOXO3a, enhancing HCC prolif-
eration, motility, and invasion both in vitro and in vivo[63]. As miR-221 targets PTEN and TIMP3 tumor 
suppressors through activation of the AKT pathway, liver cancer cells express high levels of miR-221
[64]. Upon Fas-induced fulminant liver failure, miR-221 is upregulated, which regulates liver expression 
of the p53 upregulated modulator of apoptosis[65].

The downregulated miRNAs in HCC
Several miRNAs like miR-9-3p, miR-26, miR-30a, miR-122, miR-125b, miR-142, miR-142-3p, miR-199b-
5p, miR-200a, miR-203, miR-449a, and miR-541 showed lower levels in HCC than in healthy donors. 
HBGF-5 expression is significantly downregulated by miR-9-3p overexpression, HCC viability and 
proliferation are reduced, and ERK1/2 is strongly downregulated[66]. Apoptosis is promoted by MiR-
26 by targeting ULK1, EphA2, TAK1, and TAB3, which enhance chemosensitivity and radiosensitivity 
in HCC cells[67-69]. MiR-30a inhibits HCC cell proliferation by targeting FOXA1 via the Ras/ 
Raf/MEK/ERK signaling pathway, suppressing autophagy-mediated resistance and metastasis[70-72]. 
It facilitates tumor cell invasion, migration, and EMT when miR-30a is downregulated[73]. By downreg-
ulating miR-122, HCC cells proliferate, colonize, migrate, invade, metastasize, and activate IGF-1R and 
RAS/RAF/ERK pathways[74-77]. When miR-122 expression levels are elevated in HCC cells, it inhibits 
the EMT process by upregulating the expression of E-cadherin and downregulating ZEB1/2, Snail1/2, 
N-cadherin, and Vimentin[78]. miR-125b is correlated with cell proliferation, differentiation, metastasis, 
apoptosis migration, and EMT[79-81]. miR-125b overexpression attenuates EMT-associated chemores-
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Table 2 The regulatory roles of miRNAs in hepatocellular carcinoma

miRNA Target genes/pathways Effects Expression Clinical relevance Ref.

miR-9-
3p 

HBGF5, lncRNA SAMMSON, ERK1/2 pathway Cell proliferation, 
migration, and invasion

Down Lower levels in HCC than in healthy 
donors

[66]

miR-21 KLF5, CAMSAP1, DDX1, MARCKSL1, PTEN, AKT, 
D24 RECK, PDCD4, TETs/PTENp1/PTEN 
pathway, TGF-β1/smad3 pathway

Cell proliferation, 
migration, invasion, and 
metastasis

Up Higher in HCC than in CHB and in 
healthy volunteers, early diagnosis

[55-
58]

miR-26 ULK1, EphA2, TAK1, TAB3, NF-κB pathway Apoptosis Down Poor survival [67-
69]

miR-30a Beclin1, Atg5, Snail1, FOXA1, ADAMTS14, 
Ras/Raf/MEK/ERK pathway

Proliferation, apoptosis, 
metastasis, migration, 
invasion, and EMT

Down Prevention of HCC recurrence [70-
73]

miR-122 ADAM10, ADAM17, IGF1R, SRF, SNAI1, SNAI2, 
WNT1, CREB1, BCL9, Cyclin G1, NMPDK4, LDHA, 
and CD133, Wnt/β-catenin pathway, IGF-1R 
pathway

Cell growth, proliferation, 
differentiation, metabolism, 
invasion, and EMT

Down More sensitive to chemotherapeutic 
agents and improves the anti-tumor 
effect of sorafenib on HCC in vivo

[74-
78]

miR-
125b 

MCL1, BCLw, IL-6R, SIRT7, SMAD2, SMAD4 Proliferation, metastasis, 
migration, and apoptosis

Down A significantly longer time to 
recurrence and longer overall 
survival time

[79-
82]

miR-
130b-3p

HOXA5 Up Poor prognosis, higher in patients 
with recurrence

[59]

miR-142 TGFβ, THBS4, LDHA, CD-133, HMGB1 Cell growth, metastasis, 
migration, and invasion

Down [83-
85]

miR-155 ZHX2, TP53INP1, TGF-β1 pathway Cell proliferation, 
migration, invasion, and 
EMT

Up Diagnostic biomarkers for HCC [62, 
62]

miR-182-
5p

FOXO3, AKT, Wnt/β-catenin Proliferation, motility, 
invasion, and metastasis

Up Poor prognosis and early recurrence [63]

miR-
199b-5p 

TGFβ, MAP4K3, DDR1 Metastasis, migration, 
invasion, and EMT

Down [86, 
87]

miR-
200a 

GAB1, FOXA2 Proliferation, invasion, 
migration, and EMT

Down Biomarkers for early-stage HCC [87, 
89]

miR-203 Ki67, CAPNS1 Proliferation, invasion, 
migration, and metastasis

Down Tumor recurrence and poor survival 
of patients with early-stage HCC

[90, 
91]

miR-221 p53, PUMA, NF-kB, STAT3, AAV8, PTEN, TIMP3, 
TRAIL, RAS/RAF/ERK, AKT

Apoptosis, and prolif-
eration

Up [64, 
65]

miR-
449a

Notch1, FOS, Met, Calpain6, POU2F1, Notch 
pathway

Metastasis, apoptosis, 
proliferation, migration, 
invasion, and EMT

Down Short-term recurrence [92-
94]

miR-541 ATG2A, RAB1B Inhibited the growth, 
metastasis, and autophagy

Down Associated with malignant 
clinicopathologic phenotypes, 
recurrence and survival

[95]

HCC: Hepatocellular carcinoma; EMT: Epithelial mesenchymal transition.

istance, migration, and stemness and negatively correlated with CSC marker, EpCAM and CD13 
expressions in HCC specimens by targeting SMAD2 and SMAD4[82]. Increasing the amount of miR-142 
in the cells results in a decrease in vitality, proliferation, and EMT outcomes, as well as an increase in 
THBS4 which is overexpressed by cancer cells, resulting in more rapid migration and vascular invasion
[83,84]. As a result of miR-142-3p inhibiting self-renewal, initiating tumor growth, invasion, migration, 
inducing angiogenesis and resisting chemotherapy in HCC cells, miR-142-3p is directly targeting CD133 
to control the ability to confer cancer and stem cell-like characteristics[85]. It was found that overex-
pression of miR-19b-5p increases cell aggregation, suppresses migration and invasion in HCC cells, and 
inhibits the metastasis of xenograft tumors in nude mice. Akt phosphorylation is inhibited by miR-199b-
5p overexpression, and N-cadherin and DDR1 are directly targeted and inhibited by miR-199b-5p 
overexpression[86,87]. In HCC, microRNA-200a directly targets GAB1 and FOXA2 to suppress cell 
invasion, migration, and metastasis[88,89]. MiR-203 expression is significantly associated with tumor 
recurrence and poor survival in HCC patients with early-stage tumors. In contrast, miR-203 overex-
pression suppresses Ki67 and CAPNS1 expression to inhibit proliferation, invasion, and metastasis of 
hepatic residual HCC[90,91]. Activating EMT via the Notch pathway promotes invasiveness in vitro by 
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downregulating Calpain 6 and POU2F1; mir-449a induces apoptosis in liver cancer cells by downregu-
lating Calpain 6 and POU2F1, it inhibits Met signaling and Snail accumulation in cells by targeting its 3'-
UTR, and miR-449a contributes to short-term HCC recurrence[92-94]. HCC cells in vitro and in vivo are 
inhibited by miR-541 by inhibiting growth, metastasis, and autophagy, and the target genes are ATG2A 
and RAB1B[95].

Therapeutic potential of miRNAs targeting CSC
It has been demonstrated that miRNAs could be therapeutic targets for HCC, but miRNA-based 
therapies have not been well developed for clinical applications. CSC therapies targeting miRNA are 
considered to be one of the most promising cancer treatments. In this way, miRNAs can regulate 
multiple genes at once, contributing to the regulation of CSC-related pathways. For example, miR-365 
can regulate LCSCs through the RAC1 pathway[96]; miR-520f-3p is involved in altering the sensitivity 
of HCC cells to sorafenib treatment under hypoxic conditions by increasing stem cell phenotype[97]; 
miR-4320 inhibited epithelial-mesenchymal transition and reduced stemness characteristics in HCC cells 
by targeting FOXQ1 expression[98]; miR-206 inhibited LCSCs expansion by regulating EGFR expression
[99]; Li et al[100] found that miR-613 inhibits LCSC proliferation and differentiation through regulation 
of SOX9; therapeutic delivery of miR-125b in a mouse model reduces the expression of CSC markers 
and inhibits HCC metastasis[82]. The findings of these studies suggest that miRNA therapy combined 
with targeting CSCs can treat HCC. However, the development of miRNA therapy remains challenging. 
The development of miRNA delivery systems in vivo has always been an area of interest for clinical 
treatment research. A specific, stable, low toxicity and durable delivery system is our hope, but 
currently, in the clinical treatment of HCC, there is still no very suitable in vivo delivery system. 
Furthermore, CSCs have great heterogeneity between patients, and how to accurately target CSCs is 
also a problem that needs to be addressed further.

CONCLUSION
In recent years, although research focusing on CSC has entered a trend of rapid growth, there are still 
many problems to be solved in clinical translation and practical application, especially in HCC patients. 
Targeting CSCs is considered as a potential therapeutic approach that can overcome the shortcomings of 
traditional treatments and significantly inhibit tumor recurrence. miRNAs play key roles in the post-
transcriptional regulation of genes, and miRNAs are involved in various biological processes, including 
tumorigenesis. miRNA therapy has been used in some tumors and has entered the clinical stage, such as 
miR-34a has been used in a phase 1 study in patients with advanced solid tumors[101]. In clinical 
treatment, miRNAs can enhance the sensitivity of LCSCs to treatment, and targeting the deregulated 
key miRNAs in LCSCs can effectively reduce the role of LCSCs in metastasis and recurrence[102-104]. 
El-Mahdy et al[105] summarized the key signaling pathways associated with miRNAs (such as TP53, 
PI3k/AKT/mTOR, JAK/STAT, Wnt/β-catenin, and MAPK pathways), through which miRNAs can 
further affect the cellular processes and responses of HCC to clinical treatment. Therefore, investigating 
the role of miRNAs in LCSCs can help improve the prognosis of HCC patients and inform the 
development of new therapies.
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