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Image Quantification 

Radiomic Feature Extraction 

Conventional radiomics features include shape, histogram-based, gray level co-occurrence 

matrix  based, gray level run length matrix based, gray level size zone matrix based, gray 

level dependency matrix based, and neighboring gray-tone difference matrix based features, 

as standardized by the Imaging Biomarker Standardization Initiative were extracted using 

NovoUltrasound Kit (NUK, version 1.5.0, GE Healthcare Shanghai). Laplacian of Gaussian 

filter (σ = 0.1, 0.2, 0.3, 0.4, 0.5), wavelet transform, and two-dimensional local binary pattern 

transform (radius = 1) were applied to the original ultrasound images for extraction of 

higher-order features. A bin width of 2 was used for grayscale discretization.  

Deep Learning-based Radiomic Feature Extraction 

Deep Learning-Based Radiomics features were extracted from ResNet50  and Swin 

transformer pre-trained on the ImageNet dataset. The ResNET50 contains a convolutional 

layer, four ResNet blocks including 3, 4, 6, and 3 residual layers, respectively, an average 

pooling layer, and a fully connected layer. The four ResNet blocks stack in a hierarchical way, 

which extracts image features from the texture-related features to semantic features. The last 

average pooling and fully connected layers were removed for deep learning feature extraction. 

Four average pooling layers were used to convert feature maps to feature vectors in the four 

ResNet blocks. Then the ROI of the tumor area was resized and fed to the adjusted ResNet50. 

Finally, the four feature vectors were concatenated to form deep learning-based radiomics 

features. Workflow of DL-based features extraction was shown in Figure 2. 



 

Prognostic Model Construction and Validation 

Development of Deep Learning-based Radiomics Score 

Firstly, the univariate Cox proportional hazard regression analysis was constructed to select 

the significative radiomics and deep-learning features related to survival time and status, and 

the features with Harrell’s concordance index (C-index) , were used for further survival 

analysis. Then,  L1-penalized logistic regression Cox regression was applied to identify a 

subset of features with the best prognostic value and least inter-feature correlations. The 

penalty term α for  L1-penalized logistic regression Cox regression was tuned by five-fold 

internal cross-validation. The remained features were then fitted to a multivariate Cox model 

with stepwise selection. The survival hazard of each case was calculated based on the final 

model, denoted as the deep learning radiomics score.   

Prognostic Model Using Clinical variables and DL Radiomic Score 

To refine prognostic outcome predictions, prognostic values of clinical variables and DL 

radiomic score were evaluated. Candidate clinical variables are age, gender, HBsAg-positive, 

alpha-fetoprotein, carcinoembryonic antigen, carbohydrate antigen 125, carbohydrate antigen 

199, tumor long and shot axis length, echotexture, enhancement patterns of arterial phase, 

portal phase  and late phase, presence of enhancing capsules, presence of multiple lesions, 

presence of satellite nodules, unsmooth tumor margins and early reoccurrence defined by 

tumor progression within one year after surgery. The clinical and DL radiomic score 

combined model was constructed through multivariate Cox regression with backward 

stepwise selection. 

Validation of Prognostic Models 



Patients were stratified into high-risk and low-risk groups based on their corresponding 

survival hazards. The stratification threshold was determined by X-tile software in the 

training cohort. Kaplan-Meier curves were plotted for each risk group to observe patient 

survival behaviors. Harrell’s C-index was used to measure the prognostic performance of the 

DL radiomic score/prognostic model. A C-index closer to 1 indicates excellent performance. 

To quantify the relative improvement in prediction accuracy, Net Reclassification 

Improvement was calculated. The overall performance of these models is evaluated by 

prediction error curves and composite Brier scores. 

 

Construction and Validation of Model for Early Reoccurrence Prediction 

For prediction of early reoccurrences, conventional and deep learning-based radiomic 

features were examined with univariate logistic regression. Maximum relevance minimum 

redundancy algorithm was applied to the feature set consisting of significant features from 

univariate analysis to produce a smaller subset of features critical to early reoccurrence 

prediction. L1-penalized logistic regression  was then utilized to this feature subset for 

further feature selection and shrinkage. The final features were incorporated in a multivariate 

logistic regression with stepwise selection to produce the predictive model for early 

reoccurrence. The model’s output signifies probability of having tumor progression within 

one year after initial treatment, denoted as the DL radiomics reoccurrence score. Similar to 

the construction of the prognostic model, clinical variables were combined with DL 

reoccurrence score using a multivariate logistic regression with a backward approach.  

The model’s prediction performance was evaluated using the area under the receiver (AUC) 

operating characteristic curve (ROC), which indicates the sensitivity and false-positive rates 

with different probability thresholds. A decision curve analysis was constructed to assess the 



clinical benefit of the models. The decision probability threshold above which the patient 

would be considered to have an early reoccurrence was determined by maximizing Youden's 

index on the ROC curve. Accuracy, sensitivity, and specificity calculated at the decision 

probability threshold were used for diagnostic evaluation.  

We also assessed the ability of the DL radiomics model to improve the ability of 3 clinicians 

(11 years experience; 5 years experience; 2 years experience respectively) to predict ER, with 

or without the assistance of the DL radiomics model. To demonstrate the impact of the DL 

radiomics model on clinician-individualized assessment performance, 3 clinicians 

independently reassessed each patient's ER status on the same day after accounting for the 

DL radiomics model predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 1  Relevant factors for construction model of early recurrence  

 

DL Radiomics, Deep Learning based Radiomics. 

 

Supplementary Table 2  Relevant factors for construction model of overall survival 

 

CA199, Carbohydrate antigen199; DL Radiomics, Deep Learning based Radiomics. 
 

Reoccurrence Model Cox Regression Model 

OR [0.025 0.975] P 

Clinical Model 
    

Satellite Nodules 
216.134 9.180 5089.831 0.001 

Constant 
0.068 0.014 0.342 0.001 

Clinical + Radiomics 
    

DL Radiomics Reoccurrence 

Score 
132.847 33.818 521.652 <0.001 

Satellite Nodules 
340.495 10.247 11304.996 0.001 

Constant 
0.004 0.001 0.033 <0.001 

Survival Model Cox Regression Model 

OR [0.025 0.975] P 

Clinical Model     

Age 1.02 1.01 1.03 <0.005 

CA119 0.64 0.42 0.98 0.04 

Tumor Size y 1.13 1.04 1.22 <0.005 

Echogenicity 0.74 0.59 0.94 0.01 

Clinical + Radiomics     

Age 1.01 1 1.03 0.02 

CA119 0.6 0.38 0.92 0.02 

Tumor Size y 1.11 1.03 1.19 0.01 

Echogenicity 0.82 0.65 1.04 0.1 

DL Radiomics 4.33 3.45 5.45 <0.005 



Figure Legends 

 

SupplementaryFigure 1. Flow chart for patient selection. 



 

SupplementaryFigure  2. Development flow chart of the deep learning-based radiomics 

model. 

 


