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Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with complex 
causes. The main pathological changes were intestinal mucosal injury. Leucine-
rich repeat-containing G protein coupled receptor 5 (LGR5)-labeled small intestine 
stem cells (ISCs) were located at the bottom of the small intestine recess and inlaid 
among Paneth cells. LGR5+ small ISCs are active proliferative adult stem cells, 
and their self-renewal, proliferation and differentiation disorders are closely 
related to the occurrence of intestinal inflammatory diseases. The Notch signaling 
pathway and Wnt/β-catenin signaling pathway are important regulators of 
LGR5-positive ISCs and together maintain the function of LGR5-positive ISCs. 
More importantly, the surviving stem cells after intestinal mucosal injury 
accelerate division, restore the number of stem cells, multiply and differentiate 
into mature intestinal epithelial cells, and repair the damaged intestinal mucosa. 
Therefore, in-depth study of multiple pathways and transplantation of LGR5-
positive ISCs may become a new target for the treatment of UC.

Key Words: Molecular regulation; Mucosal injury; Regeneration; Ulcerative colitis
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Core Tip: Intestinal mucosal injury is an important pathological change in ulcerative 
colitis (UC), and Leucine-rich repeat-containing G protein coupled receptor 5 (LGR5)-
positive intestinal stem cells play an important role in the repair of intestinal mucosal 
injury. Through in-depth study of multiple signals, LGR5-positive intestine stem cell 
transplantation therapy may become an important means to treat UC.
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INTRODUCTION
Ulcerative colitis (UC) is a chronic, relapsing inflammatory disease of the intestinal tract[1]. The course 
of the disease is prolonged and often brings heavy physiological, psychological and economic burdens 
to patients. Clinical remission based on symptom improvement does not alter the natural course of UC, 
and mucosal healing has been the primary therapeutic target of UC in recent years[2]. However, studies 
have shown that up to 40% of patients who achieve clinical and endoscopic remission still have 
persistent histological inflammation, which is associated with a higher risk of clinical recurrence of UC, 
receiving colectomy, and dysplasia[3].

Intestinal stem cells (ISCs) are important adult stem cells that drive the daily renewal of the intestinal 
epithelium through constant self-renewal, proliferation, and differentiation. ISCs are mainly located in 
intestinal recesses and play an important role in the repair of damaged intestinal mucosa[4]. In 
mammals, the gut consists of small villi that extend into the gut cavity and small intestine crypts that 
sink deep into the lining of the intestine. Leucine-rich repeat-containing G protein coupled receptor 5 
(LGR5) is an important marker of ISCs[5]. Under the action of multiple signaling pathways in the body, 
LGR5-positive ISCs repair damaged intestinal mucosa and maintain intestinal homeostasis through self-
renewal and differentiation potential. However, the internal mechanism of how multiple different 
signaling pathways interact with each other to synergistically regulate LGR5 cells with differentiation 
potential in UC remains unclear[6]. In this paper, the concept, location, quantity and cycle of ISCs, the 
repair mechanism of intestinal mucosa by ISCs, the renewal of colon epithelial cells and the regulation 
of nutritional molecules in damage repair were reviewed to further provide evidence-based medical 
evidence for the treatment objectives of UC.

CONCEPT, LOCATION, NUMBER AND CYCLE OF ISCS
Stem cells have the capacity for lifelong self-renewal. They are cells that can produce a variety of highly 
differentiated progeny and can respond differently to changes in their internal environment[7]. 
Morphologically, the cells at the bottom were counted as "one" in the longitudinal section of the lacunae. 
The ISCs were approximately located at the fourth layer of cells but fluctuated between the second layer 
and the seventh layer[8]. Stem cells have three levels of structure, each with different properties and 
functions. Stem cells have a long cycle. In general, stem cells undergo asymmetric division, but during 
development or after injury, they undergo symmetrical division and divide into two progeny stem cells 
to increase the number of stem cells. Normally, the excess stem cells produced by symmetrical division 
are eliminated by apoptosis or rapid differentiation[9]. After some lacunae die after toxic injury, such as 
radiation or chemotherapy, the remaining potential stem cells begin to exercise their stem cell potential 
and undergo symmetrical division to regenerate lacunae[10]. The lacunae also divide to produce more 
lacunae until the intestinal mucosa returns to normal.

ROLE OF ISCS IN INTESTINAL MUCOSA
Intestinal epithelial tissue is one of the most active self-renewing tissues in adult mammals. Intestinal 
epithelial cells renew every 5 d, and this process mainly depends on the continuous division and replen-
ishment of ISCs. ISCs are a type of adult stem cell that are mainly distributed in the recesses of the 
intestine in mammals[11]. ISCs have asymmetric division, self-renewal, and pluripotency; that is, they 
proliferate and differentiate into a variety of cell types, including absorbent cells, goblet cells, intestinal 
endocrine cells, and Pan's cells. Each crypt of the intestinal mucosa contains 4 to 6 independent ISCs
[12]. Morphologically, the count begins with cells at the base of the crypt, and the ISCs are located in the 
fourth layer of the crypt, where the stem cells have a very active cell cycle. ISCs first differentiate into 
transient extender cells, which are daughter cells with limited ability to divide and circulate[13]. The 
transient expansion cells settled at the base of the crypt for approximately 48 to 72 h, then gradually 
migrated upward, underwent approximately 6 rounds of cell division, and finally differentiated into 
terminal cells[14]. Studies have shown that small intestine recess stem cells can rapidly differentiate and 
repair damage in a small intestine radiation injury model under the action of insulin-like growth factor 
and hepatocyte growth factor[15]. Some scholars studied Drosophila intestinal mucosal damage 
induced by sodium glucan sulfate and found that the damaged intestine could secrete signaling proteins 

https://www.wjgnet.com/1007-9327/full/v29/i16/2380.htm
https://dx.doi.org/10.3748/wjg.v29.i16.2380
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to accelerate the division of ISCs to promote mucosal repair[16].

REPAIR MECHANISM OF ISCS ON INTESTINAL MUCOSA
Markers of ISCs
Each gut stem cell is coated with special protein receptors that selectively bind to or adhere to other 
"signaling" molecules. These cell surface receptors are known as stem cell markers. Currently, Musasi-1, 
telomerase reverse transcriptase (TERT) and ID14 are the main markers found in ISCs[17]. Musas-1 is a 
neural RNA-binding protein but has been shown to be a selective marker of ISCs in addition to the 
nervous system[18]. Some studies found that Musashi-1-positive cells were found in the small intestine 
of mice, and Musashi-1 was significantly increased in intestinal specimens of mice after reflex injury
[19]. TERT is a ribonuclear protease complex. Studies have shown that immunohistochemical TERT-
positive cells are mainly distributed in the base of the small intestine crypt, 4-7 cells away from the 
bottom of the crypt, and some cells are distributed in the interstitium surrounding the crypt[20]. ID14, a 
new gene found in Xenopus laevis, encodes a protein containing 315 amino acids[21]. Adult ID14 is 
mostly found in the intestine but is only weakly expressed in the stomach, lung and testis. Its expression 
in the intestine does not begin until the metamorphosis stage, which is closely related to the differen-
tiation of adult intestinal epithelial cells[22].

Asymmetric division of ISCs
ISCs continuously increase the number of stem cells through asymmetric division to promote the self-
renewal and repair of damaged intestinal tissues to maintain the dynamic balance of the intestinal 
mucosa[23]. Stem cells divide asymmetrically to form a daughter cell identical to the mother cell and a 
daughter cell capable of differentiation[24]. During this process of division, the stem cell DNA double 
strand tends to enter daughter cells that are identical to the mother cell so that the daughter cells that 
maintain the characteristics of the stem cell retain the mother strand DNA, thus maintaining the stability 
of the gene[25].

Neuroregulation of ISCs
Intestinal activity is innervated by the sympathetic, parasympathetic, and enteric nervous systems. The 
sympathetic and parasympathetic plexuses can promote the proliferation and regeneration of intestinal 
mucosal epithelial cells and accelerate the division of crypt cells through growth factors and inflam-
matory mediators[26]. The enteric nervous system consists of the intermuscular plexus and submucosal 
plexus, and most of its neurons are located in the intestinal wall[27]. It has been observed that chemical 
resection of the intestinal intermuscular nerve plexus can accelerate the proliferation of ISCs, indicating 
that the intermuscular nerve plexus has an inhibitory effect on intestinal mucosal cell renewal[28].

SELF-RENEWAL OF SMALL ISCS AND SMALL INTESTINAL EPITHELIUM
The intestinal epithelium is a single layer of cell epithelium covering the intestinal lining. As an 
important organ in mammals, the intestinal epithelium is responsible for digestion, absorption and 
resistance to intestinal pathogenic microorganisms[29]. Structurally, the epithelium of the small 
intestine is composed of a large number of repeating units called crypt villi[30]. The intestinal villi are 
composed of multiple differentiated cells that penetrate into the intestinal cavity to perform digestive 
and absorption functions, and the base of each villus encloses multiple intestinal recesses, each 
containing proliferative ISCs[31]. To avoid cytopathies caused by constant contact with external stimuli 
in the intestinal cavity, the small intestine epithelium is constantly renewing itself, and most cells renew 
themselves every 4-5 d on average. In line with this physiological function, small ISCs located in crypts 
have the ability of lifelong self-renewal, making the small intestinal epithelium an important model for 
adult stem cell research[32].

In the small intestine recess, small ISCs divide every 24 h on average, generating transient amplifying 
cells (TA cells) while renewing themselves[33]. Fast proliferating cells have a cell division cycle of 
approximately 12 h, migrating up the recess while performing several fast divisions[34]. In the process 
of upward migration, the descendant cells gradually differentiated into two types of cells, namely, the 
secretory lineage and the absorptive lineage. Secretory cells mainly include Paneth cells, goblet cells, 
and enteroendocrine cells, while absorptive cells mainly refer to intestinal epithelial cells. In contrast to 
the goblets, intestinal secretory cells and intestinal epithelial cells, which continue to migrate upward 
into the villi to perform their functions and reach the apex of the villi and undergo apoptosis within 3 to 
5 d, Paneth cells migrate downward to the base of the crypt and survive for 3 to 6 wk[35].

Small ISCs and intestinal epithelial lesions
LGR5-labeled small ISCs not only mediate the normal self-renewal of the small intestine epithelium but 
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also act as the initiation cells of inflammatory cells in the case of mutation, seriously affecting life and 
health[36]. Since the self-renewal and repair rate of the small intestine epithelium is very fast, the 
imbalance of its renewal regulation easily leads to epithelial damage. LGR5-labeled small ISCs mediate 
the daily renewal of the small intestine epithelium, so the relationship between LGR5+ small ISCs and 
inflammation has received extensive attention[37].

Studies have shown that overactivation of the Wnt signaling pathway induces the release of inflam-
matory cytokines. Consistent with this, the vast majority of patients with UC carry the inactivated 
adenomatosis polyposis coli (APC) gene mutation. Using a mouse model, specific knockout of the APC 
gene in LGR5-labeled small ISCs resulted in a massive release of inflammatory cytokines in the short 
term[38]. Further studies showed that LGR5-positive cells in UC patients consistently produced all other 
cell types throughout the tumor tissue while self-renewing, demonstrating the tumor stem cell 
properties of LGR5-labeled cells[39].

Trophic molecular regulation of colon epithelial cell renewal and damage repair
The microenvironment refers to the surrounding environment where stem cells are located under 
physiological conditions and is usually composed of stem cells themselves, surrounding cells and the 
extracellular matrix[40]. Cell-to-cell contact in the microenvironment and the existence of various 
growth factors in the microenvironment coregulate the self-renewal and differentiation of stem cells
[41]. LGR5+ small ISCs live in a specific environment, namely, at the bottom of the small intestine 
recess, mosaic among Pan's cells[42]. Paneth cells, TA cells, and peripheral mesenchymal cells together 
constitute a unique microenvironment for small ISCs, in which a variety of cell pathways, including the 
Wnt, Notch, epidermal growth factor (EGF), and bone morphogenetic protein (BMP) signaling 
pathways, cooperate to regulate the proliferation and differentiation of intestinal epithelial cells and 
repair after injury[43].

Wnt signaling pathway
The Wnt signaling pathway is a highly conserved signaling pathway that regulates cell proliferation, 
cell fate determination and cell differentiation and plays a crucial role in embryonic development and 
adult stem cell maintenance[44]. Mutations in the Wnt signaling pathway are closely related to the 
occurrence of many diseases, especially colorectal cancer.

The Wnt signaling pathway plays a key role in the dry maintenance of small ISCs[45]. The first event 
that prompted the link of Wnt signaling to small ISCs was the discovery of a large number of APC gene 
mutations in colorectal cancer. As an important inhibitory factor of Wnt signaling, APC plays an 
important role in regulating Wnt signal strength. Mutation of the APC gene leads to overactivation of 
Wnt signaling[46]. Therefore, the overactivation of Wnt signaling may be closely related to the 
occurrence of colorectal cancer. In mouse models, APC gene mutation or deletion leads to the 
development of colorectal cancer. Both T cell factor 4 (TCF4) gene knockout and beta-catenin gene 
knockout will result in rapid loss of proliferative stem cell regions in the crypt[47]. All of this evidence 
suggests that activation of Wnt signaling promotes the dryness of small ISCs[48]. In line with this, Wnt 
signaling activity in the small intestinal epithelium decreased in a gradient along the crypt-villus axis, 
with the highest Wnt signaling activity at the base of the crypt[49]. The Wnt ligand is mainly secreted by 
Panzzled cells and peripheral mesenchymal cells at the base of the crypt. LGR5-labeled small ISCs 
actively express Frizzled receptors to transmit Wnt signals[50]. A series of target genes downstream of 
Wnt signaling mediate its physiological function. A large part of the abovementioned small ISC stem 
cells are direct target genes of Wnt signaling, including LGR5, achaete-scute family bHLH transcription 
factor 2, and Musashi-1. Other target genes of Wnt signaling, including Myc, play an important role in 
the occurrence of colorectal cancer[51] (Figure 1).

Notch signaling pathway
Notch signaling is a functionally conserved signaling family that exists widely in multicellular animals 
(metazoans). Notch signaling is mainly transmitted through cell-cell contact and plays an important role 
in physiological processes such as cell proliferation, stem cell maintenance, cell fate determination, 
differentiation and apoptosis[52].

Unlike most cellular pathway transduction processes, Notch signaling does not rely on a second 
messenger (secondary messengers). Posttranslational Notch protein is localized to the cell membrane as 
an active receptor after O-Fut-mediated glycosylation and PC5-mediated protease cleavage[53]. When 
ligands located near the cell membrane, such as Dll1, Dll4 and jagged1, bind to the Notch receptor, the 
Notch receptor is sequentially cleaved by ADAM and gamma-secretase-mediated protease[54]. The 
Notch receptor NICD (Noch intracellular domain) is released. Gamma-secretase-mediated protease 
cleavage may occur at the cell membrane or at the surface of endosome membranes containing NICDs, 
but NICDs produced by the latter usually enter the proteasome degradation pathway[55]. The released 
NICD is transferred into the nucleus, where it interacts with the DNA binding protein CSL (an acronym 
for C BF-1/RBPJ-κ in Homo sapiens / Mus musculus respectively, S uppressor of Hairless in Drosophila 
melanogaster, L ag-1 in Caenorhabditis elegans) and recruits a transcriptional coactivator to activate the 
expression of downstream target genes[56].
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Figure 1 Wnt signaling pathway. LRP5/6: LDL-receptor-related protein 5/6; Dvl: Dishevelled; APC: Adenomatosis polyposis coli; GSK-3β: Glycogen synthase 
kinase-3β; CK1: Casein kinase 1.

The Notch receptor is a single transmembrane protein that mainly includes Notch1, Notch2, Notch3 
and Notch4 members in mammals. The Notch receptor extracellular end contains 29 to 36 EGF-like 
repeats, which may mediate Notch receptor and ligand interactions[57]. In mammals, Notch signaling 
ligands also contain multiple members, including Jagged1, Jagged2, Dll1, Dll3 and Dll4. The interaction 
of multiple ligands with multiple receptors increases the complexity of the Notch signaling pathway[58] 
(Figure 2).

BMP signaling pathway
BMP is a transforming growth factor (TGF-β). TGF-β is an important member of the TGF-β superfamily
[59]. By regulating the activity of downstream genes, they play an important role in mesoderm 
formation, nervous system differentiation, bone development and cancer occurrence. BMP signal 
transmission occurs mainly through the specific binding of BMP protein to the BMP receptor (BMPR) on 
the cell membrane. Meanwhile, regulated Smads (R-SMAD) are regulated by activated type I receptors 
(BMPR1), which detach Smad molecules from cell membrane receptors[60]. After binding Smad4 
[Common-mediator Smad (Co-SMAD)] in the cytoplasm, it enters the nucleus and coregulates the 
transcription of target genes with the participation of other DNA-binding proteins[61].

In contrast to Wnt signaling activity, BMP signaling activity increased gradually along the crypt-
villus axis. In the small intestine, BMP ligands, including BMP2 and BMP4, are mainly secreted by 
mesenchymal cells around the crypt and inside the villi, while the BMP receptor Bmpr1a is expressed 
throughout the small intestine epithelium. Because peripheral mesenchymal cells also secrete BMP 
ligand inhibitors, including Noggin and Gremlin1, the BMP signal intensity in the crypt is low[62].

Hedgehog signaling pathway
The Hedgehog (Hh) signaling pathway is essential for embryonic development and cell growth and 
differentiation after embryogenesis[63]. Among mammals are three Hh family members: Sonic Hh, 
Indian Hh (Ihh), and Desert Hh. Ihh is the main Hh protein expressed in the intestine. It acts on 
mesenchymal cells through paracrine signaling by differentiated epithelial cells and negatively 
regulates the proliferation of crypt columnar cells by increasing BMP signals[64]. In addition, Ihh 
inhibits the lamina propria immune response. Without causing any damage to the upper cortex, Ihh 
knockout activates an immune response similar to the wage-healing response, epithelial remodeling, 
and recruitment of fibroblasts and macrophages[65]. Therefore, the decreased expression of Ihh caused 
by the injury or dysfunction of the upper cortex, thus triggering the damage repair of the interstitial 
cells, may be one of the main mechanisms of the wound healing response[66].

Hippo-YAP signaling pathway
The Hippo signaling pathway is a newly discovered cell signal transduction pathway whose main part 
is a kinase chain. Among them, kinase MST1/2 (mammalian Sterile 20-like kinases 1/2) can 
phosphorylate and activate LATS1/2 (large tumor suppressor 1/2)[67]. LATS1/2 phosphorylates and 
inhibits the key kinase Yes-associated protein (YAP)/Tafazzin (TAZ). YAP/TAZ are two homologous 
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Figure 2 Notch signaling pathway.

transcription cofactors that mediate most of the physiological and pathological functions of Hippo 
signaling pathways[68]. YAP is expressed in both the small intestine and large intestine, with low 
expression in the small intestine but high expression in the colon, especially in the terminal colon. At the 
cellular level, YAP was localized in the cytoplasm in intestinal villi and upper crypt cells and in the 
nucleus in LGR5+ ISCs at the bottom of crypts and was expressed at low levels in Pan's cells, indicating 
that YAP activity was negatively correlated with the degree of differentiation of intestinal epithelial cells
[69].

The Hippo signaling pathway plays an important role in regulating the differentiation of ISCs. The 
proliferative ability of mouse intestinal epithelial-specific YAP transgenic stem cells increased, while the 
differentiation ability decreased[70]. Consistently, MST1/2 knockout in the mouse gut promoted stem 
cell proliferation, accompanied by abnormal crypt cell differentiation and reduced goblet cells[71]. Some 
studies have found that LATS1/2 double knockout in the intestine promotes the proliferation of crypt 
cells, an increase in ISCs, and the differentiation of goblet cells[72]. Further study showed that YAP/
TAZ could cooperate with Klf4 to promote the differentiation of crypt cells into goblet cells. Regarding 
the effect of Hippo signaling pathway inhibition on goblet cell differentiation, the results of the above 
two experiments were different. Some scholars believe that this is because the intestine-specific gene 
transfer method they used can mildly express YAP exogenically or inhibit MST1/2 and LATS1/2, so 
that YAP can not only promote ISC proliferation but also cause differences in the activity of goblet cell 
differentiation. These results indicate that the regulatory effect of YAP on ISCs is closely related to its 
activity level[73] (Figure 3).

UC INTESTINAL INFLAMMATORY RESPONSE PROCESS
Intestinal mucosal mucus secretion decreased
The intestinal mucosa is covered with a thick layer of mucous substances containing a variety of antimi-
crobial molecules, which can play a protective role in the intestinal mucosa. It can lubricate the intestine 
and resist the invasion of microorganisms, pathogens and other harmful substances, acting as a 
chemical barrier and mechanical barrier protection[74]. One possible reason for the aggravation of UC is 
that the number of goblet cells in the intestinal mucosa is reduced, and the function of intestinal mucus 
secretion is impaired. Colon mucosal epithelial cells are mainly composed of goblet cells (GCs), 
secretory cells that secrete a large number of mucoproteins (MUCs) and intestinal trefoil factors (ITFs) 
and human intestinal resistin-like molecule β (resistin-like molecule β, RELM-β)[75].

The main component of the mucin layer is mucin, which is a high molecular weight glycoylated 
protein secreted by GCs. It is an important bioactive peptide that can coat bacteria and prevent direct 
contact between bacteria and epithelial cells[76]. Therefore, mice with insufficient mucus secretion easily 
develop UC, and studies have shown that MUC2-deficient mice or MUC2 gene mistranslation mice can 
spontaneously develop UC[77].

Studies have shown that the synthesis of MUC2 in the colon during MUC activity is 40% less than 
that in the normal colon, indicating that the decrease in mucin in the colon mucosa is one of the reasons 
for the weakening of intestinal mucosal barrier function and the pathogenesis of UC[78]. The Notch 
signaling pathway is one of the important ways to maintain the proliferation and differentiation of 
colon epithelial cells. Overactivation of Notch leads to increased expression of the transcription factor 
HE-1 in human colon cell lines, inhibits Hath-1 expression, and subsequently inhibits the differentiation 
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Figure 3 Hippo signaling pathway. MST: Mammalian sterile; LATS: Large tumor suppressor; YAP: Yes-associated protein; TAZ: Tafazzin.

of intestinal epithelial cells into goathous cells, resulting in a decrease in secretory cells and formation of 
the intestinal mucosal layer[79].

Intestinal mucosal oxidative stress response
Chronic intestinal inflammation can cause a large number of white blood cells to infiltrate the intestinal 
mucosa, including neutrophils and macrophages, which can produce inflammatory factors and 
excessive reactive oxygen species (ROS) and reactive nitrogen species (RNS), causing an intestinal 
mucosal oxidative stress response and intestinal mucosal damage together with an inflammatory 
response[80]. ROS content was positively correlated with the occurrence and development of UC. ROS 
consist of a variety of components, including peroxide, hydroxyl and a large amount of hydrogen 
peroxide. RNS include nitric oxide, nitrogen dioxide and peroxynitrite[81].

When UC occurs, colon mucosa produces a large number of inflammatory molecules and activates a 
large number of inflammatory response pathways, which jointly promote the production of a large 
number of peroxides and accumulate in the intestine, self-sustaining and amplifying intestinal oxidative 
stress, forming a vicious cycle[82]. A large number of ROS can destroy the structure of intestinal 
endothelial cytoskeleton proteins and cause intestinal mucosal barrier dysfunction. Finally, the structure 
and function of the intestinal mucosal barrier are damaged, which affects the protective effect of the 
intestinal tract[83]. ROS can also increase the permeability of the cell membrane. On the one hand, ROS 
can cause the inflow of extracellular Ca2+ into the cell to promote the apoptosis of intestinal cells; on the 
other hand, ROS can cause a peroxidation reaction with the cell membrane to damage the normal 
structure and function of intestinal mucosal cells and further lead to the impairment of intestinal 
mucosal function[84].

Intestinal mucosal barrier damage
The intestinal mucosal barrier has selective permeability. When the intestinal mucosal barrier is 
destroyed, mucosal inflammation can cause necrosis and shedding of epithelial cells, which increases 
intestinal mucosal permeability[85]. Structural damage to epithelial cells leads to changes in the tight 
connective structure and loss of protective effects so that various pathogenic substances in the intestinal 
cavity are absorbed into the body[86]. The intestinal immune system is repeatedly stimulated and 
misidentified with these harmful substances, which continuously activates intestinal macrophages and 
tissue lymphocytes and further stimulates or aggravates the release of inflammatory factors in the 
intestine, thus continuously initiating an excessive intestinal immune inflammatory response and 
ultimately damaging the intestinal mucosal barrier, resulting in the loss of protective function of the 
intestinal mucosal barrier and damage to intestinal tissues[87]. A large number of studies have shown 
that a large number of epithelial cells in the inflammatory site of the intestinal mucosa in UC patients 
suffer from apoptosis, and the resulting tight connection injury is considered to be an important cause of 
UC[88].

It was found that the goblet cells and mucus secreted by intestinal mucosa in patients with UC were 
reduced. Tight junctions are occlusive links formed by the binding of the outer layer of the adjacent 
intestinal epithelial cell membrane by specific transmembrane proteins[89]. Tight junctions are mainly 
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composed of tight junction proteins, including Occludin, the claudin family, Zonula occludens (ZO), the 
ZO family and junctional adhesion molecule (JAM), which are important structures of epithelial barrier 
function and play a decisive role in intestinal mucosal permeability by JAM[90]. As a transmembrane 
tight junction protein, Occludin can form the paracellular tight junction structure and is an important 
structural and functional protein involved in signal regulation of tight junction formation. Studies have 
shown that the silencing of occludin genes can increase the cell bypass permeability of intestinal 
epithelial cells, resulting in an increase in macromolecules and harmful substances in the intestine[91]. 
Several studies have shown that occludin gene expression in the colon mucosa of UC patients decreases, 
resulting in a decrease in occludin protein synthesis[92]. Claudins are one of the transmembrane 
proteins of intestinal epithelial cells. The extracellular part of Claudins acts as a ligand and interacts 
with transmembrane lectin receptors of adjacent epithelial cells to bind, thus filling the cellular gap and 
maintaining the tight connection function of the intestinal mucosa[93]. ZOs act as an "assembly 
platform" for tight junctions that link transmembrane proteins and the cytoskeleton to recognize and 
transmit signals[94]. The decreased expression of ZOs in intestinal mucosal epithelial cells indicated 
increased intestinal permeability and damage to the intestinal mucosal barrier[95]. Tight junctions are 
regulated mainly by protein phosphorylation. When the intestinal mucosa is stimulated by inflam-
mation or oxidative stress, Occludin and ZO-1 phosphorylation are deactivated, and reallocation of the 
Occludin-Zo-1 complex affects the normal structure of tight junctions of intestinal epithelial cells, 
resulting in increased intestinal permeability and damage[96].

LGR5-labeled small ISCs
LGR5-labeled small ISCs are the most recognized small ISCs. The LGR5-labeled cells are located at the 
bottom of the crypt base columnar cell (CBC), which is also called the crypt base CBC because of its 
small size and elongated shape[97]. As early as 1974, the CBC stem cell model was proposed. According 
to the theory, CBC cells are small ISCs that live in a microenvironment formed by Paneth cells[98]. Once 
their offspring leave this microenvironment, they begin to differentiate into a variety of differentiated 
cells[99]. It was not until 2007, when the CBC cell-specific marker LGR5 was identified, that the theory 
was experimentally confirmed[100]. In the LGR5-enhanced green fluorescent protein (EGFP)-IRES-Cre 
ERT2 gene knockout mouse model, CBC cells were labeled with EGFP fluorescent protein. Lineage 
tracing experiments subsequently demonstrated that the progeny of CBC cells could differentiate into 
any kind of cell in the small intestinal epithelium, and such lineage markers could persist in the small 
intestinal epithelium, demonstrating the small ISCs property of CBC cells. EGFP fluorescent protein-
labeled CBC cells were isolated using flow cytometry and were encapsulated in Matrigel for in vitro 
stem cell culture in the presence of three growth factors (EGF, Noggin, and R-spondin). Individual 
LGR5+ cells can grow into organoids, which closely resemble the structure and cellular composition of 
the intestinal epithelium in vivo. LGR5+ small ISCs can both self-renew and generate all progeny differ-
entiated cells. This evidence suggests that LGR5-labeled cells represent small ISCs[101].

LGR5-labeled small ISCs are actively dividing stem cells that divide every 24 h on average. LGR5+ 
cells produce transient multiplication cells while generating new small ISCs[102]. TA cells migrate 
upward and differentiate gradually during subsequent rapid division. The present study suggests that 
self-renewal of LGR5+ small ISCs follows a "neutral competition" model. LGR5+ small ISCs can 
maintain their dry properties only when they are located in a microenvironment composed of Pan cells
[103]. Because LGR5+ small ISCs divide symmetrically, the progeny cells forced out of the microenvir-
onment due to space crowding will differentiate into TA cells, while the progeny cells left in the 
microenvironment will retain their stem cell properties[104].

The "+ 4 stem cell" model is another theory about the localization of small ISCs. The + 4 cells refer to 
the cells placed fourth from Paneth cells at the bottom of the crypt and are considered small ISCs 
because of their label retention ability[105]. Marker retention means that after marking the DNA of +4 
cells, these markers remain in + 4 cells for a long time afterward and do not disappear with cell division
[106]. This marker retention property is often thought to be unique to stem cells. At present, markers of 
+ 4 stem cells have been identified, including Bmi and Lrig1, Hopx and Tert, etc. However, the 
specificity of these markers has been under great controversy. Studies have shown that cells at the 
bottom of the small intestine recess all express these genes; that is, the expression of these genes is not 
substantively specific[107].

The role of LGR5 and BMP pathways in UC mucosal injury
Significant expansion of LGR5+ small ISCs was detected under normal physiological conditions after 
BMP signaling was blocked by directly inducing the small intestinal epithelial receptor Bmpr1a, which 
specifically knocked out BMP signaling[108]. Specific knockout of the Bmpr1a receptor in LGR5+ small 
ISCs also led to rapid expansion of stem cell groups. In vitro culture and in vivo lineage tracing 
experiments showed that the self-renewal and proliferation abilities of LGR5+ small ISCs were 
significantly enhanced after BMP signaling inactivation[109]. In the case of long-term BMP signal 
inactivation, continuous and unrestricted expansion of LGR5+ small ISCs will lead to malignant prolif-
eration of the small intestinal epithelium and the appearance of small intestinal polyps[110]. These 
phenotypes are very similar to the symptoms of human juvenile intestinal polyps. Finally, the radiation 
damage model also verified the upregulation of stem cell function after BMP signal inactivation[111]. 
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That is, after BMP signal inactivation, a certain dose of radiation damage can only lead to the apoptosis 
of some LGR5+ small ISCs, while the remaining LGR5+ small ISCs actively participate in the process of 
damage repair, thus greatly accelerating the process of radiation damage repair[112].

The relationship between BMP signaling inactivation and self-renewal disturbances in the small 
intestine epithelium has long been noted. This is because inactivated mutations in the BMP signaling 
pathway, including the BMPR1A and SMAD4 genes, are found in most human genetic juvenile polyps
[113]. In the small intestine, the BMP ligands BMP2 and BMP4 are mainly secreted by mesenchymal 
cells in the intestinal villi and mesenchymal cells around the small intestine recess. The BMP inhibitors 
Noggin and Gremlin1 are mainly secreted by mesenchymal cells around the crypts of the small intestine
[114]. This secretion pattern results in higher BMP signaling activity in the villi and lower BMP 
signaling in the crypts of the small intestine. Similarly, however, cells in the mesenchyme responding to 
BMP stimulation should also be in a state of BMP signaling activation due to the abundance of BMP 
ligands in the mesenchyme[115]. In juvenile intestinal polyps, BMP signaling inactivation means that all 
cells no longer respond to BMP signaling, and malignant proliferative intestinal polyps appear[116]. 
Therefore, it is not clear whether BMP signaling in epithelial cells or in mesenchymal cells plays an 
important role in inhibiting the appearance and growth of small intestinal polyps. Earlier studies using 
a Noggin transgenic overexpression mouse model and a systemic Bmpr1a knockout mouse model failed 
to solve this problem[117].

The Wnt/β-catenin signaling pathway promotes ISC proliferation and maintains intestinal epithelial 
homeostasis
In the small intestine, the Wnt/β-catenin signaling pathway is thought to be critical for maintaining ISCs 
self-renewal and proliferation. Wnt was highly expressed in the stem cell area and around proliferating 
cells in the small intestine, and it decreased gradientally upward with the intensity of differentiation. 
Genes expressed in intestinal epithelial stem/progenitor cells, such as those that label ISCs LGR5 and 
Olfm4, are regulated by Wnt signals[118]. There are 19 different Wnt genes expressed in the small 
intestine. The main cell source of classical Wnt, such as Wnt3, Wnt6 and Wnt9b, is epithelial cells, not 
classical Wnt[119]. For example, Wnts2b, Wnt4, Wnt5a, Wnt5b, and Wnt antagonists [secreted frizzled 
related protein (SFRP)-1, SFRP-2, Dickkopf (DKK)2, and DKK-3] are derived from mesenchymal cells. 
Wnt secreted by epithelial or stromal cells first binds to the coreceptors LRP5/6 and Frizzled on the cell 
membrane in crypt cells, causing increased expression of β-catenin. Activated beta-catenin further binds 
to the nuclear transcription factor TCF4 to drive gene expression that supports stem cell maintenance, 
proliferation, and differentiation[120]. Blocking the Wnt/β-catenin signaling pathway leads to the 
stagnation of intestinal epithelial cell proliferation. Previous studies have demonstrated that knockout of 
TCF, DKK1 (Wnt antagonist), Ctnnb1 (β-catenin gene), or c-Myc (Wnt target gene) can significantly 
affect the proliferation of intestinal epithelial cells in mice. TCF4 knockout in embryonic intestinal 
epithelial cells resulted in no proliferation in the intervillus region of the small intestine in neonatal 
mice, while induced knockout of TCF4 and Ctnnb1 blocked crypt proliferation in adult mice[121]. In 
contrast, the addition of the Wnt agonist R-spondin (roof plate-specific spondin) or the elimination of 
APC resulted in small intestine or colorectal hyperplasia. Meanwhile, the deletion of Wnt key mediators 
ring finger protein 43 and zinc and ring finger 3 will also cause intestinal proliferation. Therefore, Wnt 
signaling plays an important role in the dry maintenance, proliferation and differentiation of small ISCs
[122].

Although a large number of studies have confirmed that Wnt secreted by interstitial cells is essential 
in small intestine development, formation, and damage repair, the evidence that secreted Wnt regulates 
small intestine homeostasis in mice remains unclear[123]. Wnt3 derived from Pan's cells is necessary for 
the in vitro culture of LGR5-labeled ISCs organoids. Other studies have shown that Wnt generated from 
epithelial or mesenchymal cells supports intestinal epithelial growth in organoids in vitro[124]. Some 
scholars have demonstrated that purified stromal cells can support the formation of epithelial organoids 
that knock out Wnt3. However, mouse models with Paneth cells removed or Wnt3 knocked out in 
intestinal epithelial cells showed no obvious phenotype, and the types of interstitial cells secreting Wnt 
in the in vivo small ISCs microenvironment, as well as the mechanism of inducing secretion, remain 
unclear, so more in vivo evidence is needed to provide support[125] (Figure 4).

The Notch signaling pathway guides the differentiation of ISCs
Notch receptors and ligands are expressed only at the crypt site, and their signaling activity plays an 
important role in the self-renewal and differentiation of the small intestine epithelium[126]. First, Notch 
signaling regulates the differentiation process of small ISCs. In the process of upward migration, TA 
cells gradually differentiate into two types of cells, namely, secretory cells and absorptive cells. This 
differentiation process is mainly regulated by the Notch signaling pathway. Notch activation inhibited 
cell differentiation toward the secretory type and promoted cell differentiation toward the attractor 
type. Specific inhibition of Notch signaling in the small intestinal epithelium can rapidly transform all 
small intestinal crypt cells into secretase cell types by Notch receptor, ligand knockout, or gamma-
secretase inhibitor treatment[127]. Conversely, activation of Notch signaling in the small intestinal 
epithelium significantly inhibited secretory cell differentiation. Second, Notch signaling regulates the 
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Figure 4 The Wnt/β-catenin signaling pathway promotes intestinal stem cells proliferation and maintains intestinal epithelial 
homeostasis. ISCs: Intestinal stem cells.

self-renewal of small ISCs. In the small ISCs microenvironment, the ligands for Notch signaling are 
mainly provided by Paneth cells, and Notch receptors are actively expressed in small ISCs[128]. Using 
the mouse model, cells with high Notch signaling activity were specifically labeled. Using lineage 
tracing experiments, it was found that small ISCs belong to a type of cell with high Notch signaling, and 
these cells can form all cell types in the small intestine epithelium[129].

Interaction between the Wnt pathway and Notch pathway
The Wnt and Notch signaling pathways are two highly conserved signal transduction pathways that 
exist widely in multicellular animals. They regulate many life processes through different mechanisms 
and play an important role in cell proliferation, differentiation, and intestinal homeostasis[130]. 
However, the specific mechanism by which these two signaling pathways interact to regulate ISC 
activity and differentiation direction remains unclear. A large number of studies have reported crosstalk 
between Wnt and Notch signaling pathways[131]. The mechanisms are discussed as follows: (1) Wnt 
protein regulates downstream through binding to some Notch receptors, including Dfrizzled2, patched, 
shaggy, etc., hairy and patched genes are expressed, and Dfrizzled2 and patched genes can mediate the 
Wnt pathway itself[132]; (2) Dvl can antagonize the Notch pathway through its direct interaction with 
Notch intracellular domain (NIC)[133]; (3) NIC can increase the activation potential of lymphoid 
enhancer factor under the action of some promoters[134]; (4) GSK-3β phosphorylates NIC, prevents its 
degradation by the proteasome, and prolongs its half-life[135]; and (5) C promoter binding factor-1 can 
promote the expression of some genes encoding Fz[136]. In addition to the direct crossover between 
pathways, there are also many indirect (for example, some pathways in both pathways are involved in 
the regulation of cyclin D1 and p21 expression) and mechanistic associations[137] (Figure 5).

CONCLUSION
In conclusion, intestinal mucosal injury is an important pathological change in UC. ISCs proliferation 
and differentiation are the main cytological basis for intestinal mucosal renewal. ISCs participate in 
normal physiological processes and some pathological processes of the intestine. They are located at the 
base of the crypts of the intestinal mucosa, which is the cell bank of ISCs. All cells of the intestinal 
epithelium were derived from crypt stem cells. Meanwhile, LGR5-positive ISCs are significantly 
regulated by the Notch signaling pathway and Wnt/β-catenin signaling pathway, which jointly 
maintain the function of LGR5-positive ISCs. More importantly, the surviving stem cells after intestinal 
mucosal injury accelerate division, restore the number of stem cells, multiply and differentiate into 
mature intestinal epithelial cells, and repair the damaged intestinal mucosa. Therefore, in-depth study 
of multiple pathways and transplantation of LGR5-positive ISCs may become a new target for the 
treatment of UC.
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Figure 5 Interaction between the Wnt pathway and Notch pathway. EGF: Epidermal growth factor; BMP: Bone morphogenetic protein.
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