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Abstract
Gastrointestinal (GI) cancers are the major cause of cancer-related mortality 
globally. Medical imaging is an important auxiliary means for the diagnosis, 
assessment and prognostic prediction of GI cancers. Radiomics is an emerging 
and effective technology to decipher the encoded information within medical 
images, and traditional machine learning is the most commonly used tool. Recent 
advances in deep learning technology have further promoted the development of 
radiomics. In the field of GI cancer, although there are several surveys on 
radiomics, there is no specific review on the application of deep-learning-based 
radiomics (DLR). In this review, a search was conducted on Web of Science, 
PubMed, and Google Scholar with an emphasis on the application of DLR for GI 
cancers, including esophageal, gastric, liver, pancreatic, and colorectal cancers. 
Besides, the challenges and recommendations based on the findings of the review 
are comprehensively analyzed to advance DLR.
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Core Tip: Radiomics, especially deep-learning-based radiomics (DLR), has revolutionized the diagnosis, 
assessment and prognosis of gastrointestinal (GI) cancer. This review provides an analysis and status of 
DLR in GI cancer and identifies future challenges and recommendations.
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INTRODUCTION
Gastrointestinal (GI) cancers, mainly include colorectal, gastric, liver, esophageal, and pancreatic 
cancers, and are the leading cause of cancer-related mortality globally[1]. According to CANCER 
TOMORROW[2], a forecast of the global burden of cancer mortality and incidence, by 2040, new cases 
of GI cancer and deaths will increase significantly. In recent years, computed tomography (CT), 
magnetic resonance imaging (MRI), positron emission tomography (PET), ultrasound (US) and other 
medical imaging techniques have been widely used in GI cancer diagnosis and treatment[3,4]. It is 
foreseeable that with the increase in GI cancer, the amount of medical imaging data will continue to 
grow. However, manual reading cannot cope with this growth, and the disparity in expertise among 
radiologists causes a high rate of missed diagnosis and misdiagnosis. In addition, traditional CT, MRI, 
PET, US, and other imaging examinations cannot observe changes in tumor heterogeneity, which can 
provide a better understanding of the causes and progression of cancer[5]. The development of 
radiomics technology provides new opportunities and methods to solve these dilemmas.

Radiomics is an emerging method for quantitative analysis and prediction of tumor phenotypes using 
machine learning or statistical models, and was proposed by Lambin et al[6] in 2012. In recent years, 
radiomics has been widely used in GI cancer and showed notable outcomes in tumor characterization, 
therapy response assessment, and prediction of survival rate after surgery[7-11]. Compared with the 
conventional method of using only manual inspection, radiomics can extract high-dimensional features 
that are difficult to be quantitatively described by the doctors from massive radiological images, and to 
correlate them with clinical and pathological data of patients in order to improve diagnosis and 
prognostication[12]. The fundamental premise of radiomics is that the developed descriptive models 
may produce useful prognostic, predictive and diagnostic information. Radiomics can be divided into 
two main categories: conventional radiomics, also referred to handcrafted radiomics (HCR) and deep-
learning-based radiomics (DLR), also referred to as discovery radiomics[13]. Given the benefits of these 
two approaches, hybrid solutions that mix HCR and DLR also exist.

The HCR workflow is divided into multiple steps: (1) Image acquisition and reconstruction; (2) image 
segmentation and delineation of region of interest (automatic, semi-automatic, or manual delineation); 
(3) feature extraction and quantification. This is the core step of HCRs. The extracted features are mainly 
handcrafted features (also referred as pre-designed features), including shape, texture and intensity 
features. Some features may be highly correlated or redundant, so feature dimensionality reduction is 
an important step in feature analysis; and (4) Clinical target-oriented model building and validation. At 
this step, classic machine learning algorithms are usually used to develop high-precision and high-
efficiency prediction models, and the models are trained and validated with sufficient data. The 
workflow of HCR is depicted in Figure 1.

Although HCR has been widely adopted in GI cancer and has achieved significant results, it has some 
deficiencies, such as low degree of automation and standardization, cumbersome and time-consuming 
feature extraction steps, and insufficient robustness and accuracy. Recently, deep learning, a promising 
technique in characterization of medical images, has gained much attention[14-17]. Many researchers 
have adopted DLR to overcome the limitations of conventional radiomics[18-22]. DL refers to a broad 
class of algorithms rather than a specific model. As long as a deep neural network structure is used to 
represent features at a deeper level, it can be called DL model. One of the most popular DL models used 
in medical imaging is convolutional neural networks (CNNs), which can automatically learn repres-
entative features from medical images. The use of CNNs in radiomics makes it easy to build an end-to-
end feature extraction process, thereby avoiding the tedious and handcrafted feature extraction process. 
CNNs can also be used in image reconstruction and segmentation to improve the automation level of 

https://www.wjgnet.com/1007-9327/full/v28/i45/6363.htm
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Figure 1 Overview of steps in handcrafted radiomics workflow and steps that can be done with deep learning models. ROI: Region of 
interest.

HCR, and the accuracy and reliability of diagnosis and prediction (Figure 1).
DL techniques are revolutionizing radiomics. In the field of GI cancer diagnosis and treatment, while 

there are several surveys on HCR[9-11], there is no specific review on the application of DLR. To 
provide a comprehensive overview of DLR in GI cancer, the performance of DLR in gastroenterology is 
summarized in this review, with an emphasis on the diagnosis and treatment of GI cancers, including 
esophageal, gastric, liver, pancreatic, and colorectal cancers. The original contributions to knowledge of 
this review are: (1) A unique interdisciplinary viewpoint on radiomics by discussing state-of-the-art 
DLR solutions; and (2) the challenges and recommendations based on the findings of the review are 
thoroughly analyzed to advance the field.

DLR FOR ESOPHAGEAL CANCER
Esophageal cancer is the seventh most prevalent form of cancer and the sixth most lethal cancer globally
[1], and it is classified into esophageal squamous cell carcinoma (ESCC) or esophageal adenocarcinoma 
according to the type of cells. In consideration of the low overall 5-year survival rate of patients and the 
variation in responsiveness of patients to the current treatments such as neoadjuvant chemotherapy 
(NAC) and neoadjuvant chemoradiotherapy (NCRT) due to tumor heterogeneity, it is vital to have 
accurate diagnosis, pretreatment evaluation and survival rate prediction. The number of DLR studies 
regarding esophageal cancer has been growing, with most of the studies exploring treatment response, 
and the others investigating disease classification and survival rate prediction.
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An important preoperative topic of esophageal cancer is diagnosis, yet the number of relevant DLR 
studies for diagnosis is minimal. Takeuchi et al[23] fine-tuned VGG16 to develop a DLR model for the 
diagnosis of esophageal cancer from CT scans, and its performance was comparable to that of the 
radiologists during testing, with a higher accuracy of 84.2% and specificity of 90.0%.

Response to treatment, especially NAC and NCRT, is one of the most popular research interests in the 
field of esophageal cancer. Hu et al[24] designed a CT-based model to predict the pathological complete 
response to NCRT of patients with ESCC using DL features, in which the support vector machine (SVM) 
classifier executed the classification action. The DL features were extracted using pretrained models, 
and the optimal one used ResNet50 that achieved an area under the receiver operating characteristic 
curve (AUC) of 0.805 and accuracy of 77.1% for the testing cohort, which achieved better results than 
using handcrafted features. Ypsilantis et al[25] designed a 3S-CNN model that extracted DL features 
from PET scans and predicted whether the patient with esophageal cancer was non-responsive to NAC. 
This model was also compared with other competitive machine learning algorithms and results showed 
that it surpassed the other models with an average specificity, sensitivity and accuracy of 80.7%, 81.6%, 
and 73.4% respectively. Amyar et al[26] presented a novel 3D CNN model named 3D RPET-NET that 
predicted the response to CRT using esophageal cancer images of FDG-PET scans, and a comparative 
analysis with other approaches in the literature was also carried out. Three-dimensional RPET-NET 
obtained the best results with an accuracy of around 72% and even reached 75% when using tumor 
volume with an isotropic margin of 2 cm. Li et al[27] proposed a CT-based 3D DLR model (3D-DLRM), 
which was modified from ResNet34. Its aim was to predict whether patients with locally advanced 
thoracic ESCC had an objective or nonobjective response to concurrent CRT, achieving a validation 
AUC and positive predictive value of 0.833 and 100%, respectively. They also evaluated a model 
integrating the 3D-DLRM with clinical selected factors that even outperformed the individual 3D-
DLRM, reaching a validation AUC of 0.861.

Other research interests of esophageal cancer include patient survival rate prediction. Wang et al[28] 
compared the use of an HCR model, DLR model and DLR nomogram for the prediction of the survival 
rate of esophageal cancer patients after 3 years of CRT, in which DL features were extracted and selected 
by DenseNet-169 to build the DLR model. This DLR nomogram attained the highest validation AUC of 
0.942 and Harrell’s concordance index (C-index) of 0.784, surpassing the results produced by the sole 
use of HCR and DLR models. Yang et al[29] proposed a 3D-CNN model based on ResNet18 to predict 
esophageal cancer patient survival rate using PET scans. The model was initially pretrained to classify 
abnormal and healthy esophagus, and then trained to classify whether patients survived or expired 
within a year after diagnosis in the second stage, and the model obtained an AUC of 0.738. Gong et al
[30] developed a hybrid radiomics nomogram to predict local recurrence-free survival (LRFS) of locally 
advanced ESCC patients who received definitive CRT from contrast-enhanced CT (CECT) scans, and it 
was combined with radiomic features, features extracted by 3D-DenseNet and prognostic clinical risk 
factors. The final model achieved a C-index of 0.76 for its external validation set, indicating the effect-
iveness of the addition of DL features for better prediction performances.

Some studies also discuss the application of DLR to prediction of lymph node (LN)  metastasis, which 
is an effective prognosis factor of ESCC. Wu et al[31] built a model involving HCR, computer vision and 
DLR to predict the LN status of ESCC patients, and they also constructed two simpler models for 
efficacy comparison, and they exploited Convolution Neural Network-Fast (CNN-F) to extract DL 
features from CT images. The model with all signatures involved performed the best with C-statistic of 
0.875, 0.874, and 0.840 for training, internal validation, and external validation cohorts, and those 
demonstrate its satisfactory discriminative ability.

The studies about the application of DLR for esophageal cancer are summarized in Table 1.

DLR FOR GASTRIC CANCER
Gastric cancer (GC) is the fifth most prevalent form of cancer and the fourth most lethal cancer globally
[1]. To ameliorate the low survival rate of patients, early diagnosis of disease and systematic treatment 
methods are necessary. The application of DLR in GC has been a promising area for research with a 
rising number of relevant studies published every year, that aim to tackle or refine the existing concerns 
regarding GC.

Many studies focused on prediction of treatment response of patients. Cui et al[32] constructed a 
pretreatment venous-phase CT-based DLR nomogram that combined handcrafted features, DL features 
and remarkable clinicopathological factors to identify locally advanced GC patients with good response 
to NAC. The nomogram achieved better than the clinical model and the separate use of two features 
that were built for comparison, attaining C-index values of 0.829, 0.804, and 0.827 in its internal 
validation cohort and two external validation cohorts, respectively. Li et al[33] developed a combined 
artificial intelligence (AI) model that incorporated feature outputs from HCR and DLR models, which 
aimed to determine whether the patients had signet ring cell carcinoma (SRCC) of GC and predict 
survival and treatment response to postoperative chemotherapy from CECT images. They also 
compared its efficacy with the clinical, HCR and DLR models, and the AI model obtained the best 
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Table 1 Summary of studies using deep-learning-based radiomics for esophageal cancer

Ref. Imaging Study design Study aim DL model Dataset Outcomes

Takeuchi et al
[23], 2021

CT Retrospective Detection of esophageal cancer VGG16 1646 CT images (1500 
images for training 
and validation, 146 
for testing)

Accuracy: 84.2%; F value: 
74.2%; Sensitivity: 71.1%; 
Specificity: 90%) in test set

Hu et al[24], 
2021

CT Retrospective Evaluation of response to NCRT 
to ESCC

ResNet50 231 patients (161 in 
training cohort, 70 in 
testing cohort)

AUC: 0.805; C-index: 
0.805; Accuracy: 77.1%; 
Sensitivity: 83.9%; 
Specificity: 71.8%) for the 
testing cohort

Ypsilantis et al
[25], 2015

PET Retrospective Prediction of response to NAC 
in patients with esophageal 
cancer

3S-CNN 107 patients Sensitivity: 80.7%; 
Specificity: 81.6%; 
Accuracy: 73.4%

Amyar et al
[26], 2019

PET Retrospective Prediction of response to radio-
chemotherapy in patients with 
esophageal cancer

3D RPET-NET 97 patients Accuracy: 75.0%; 
Sensitivity: 76.0%; 
Specificity: 74.0%; AUC: 
0.74

Li et al[27], 
2021

CT Retrospective Prediction of treatment response 
to CCRT among patients with 
locally advanced TESCC

ResNet34 306 patients (203 in 
training cohort, 103 
in validation cohort)

AUC: 0.833; PPV: 100%

Wang et al[28], 
2022

CT Retrospective Prediction of survival rates for 
patients with esophageal cancer 
after 3 yr with chemoradio-
therapy

DenseNet- 169 154 patients (116 in 
training cohort, 38 in 
validation cohort)

AUC: 0.942; C-index: 
0.784

Yang et al[29], 
2019

PET Retrospective Identification of esophageal 
cancer patients with poor 
prognosis

3D-CNN based 
on ResNet18

1107 scans AUC: 0.738

Gong et al[30], 
2022

CECT Retrospective Prediction of LRFS in 
esophageal cancer patients after 
1 yr of definitive chemoradio-
therapy

3D-Densenet 397 patients C-index: 0.76

Wu et al[31], 
2019

CT Retrospective Prediction of LN status of 
patients with ESCC

CNN-F 411 patients C-index: 0.840

CT: Computed tomography; PET: Positron emission tomography; CECT: Contrast-enhanced computed tomography; NCRT: Neoadjuvant chemoradio-
therapy; NAC: Neoadjuvant chemotherapy; ESCC: Esophageal squamous cell carcinoma; CCRT: Concurrent chemo-radiation therapy; TESCC: Thoracic 
esophageal squamous cell carcinoma; LRFS: Local recurrence-free survival; LN: Lymph node; CNN-F: Convolutional neural network-fast; AUC: Area 
under the receiver operating characteristic curve; PPV: Positive predictive value; DLR: Deep-learning-based radiomics.

results with an AUC of 0.786 and accuracy of 71.6% for diagnosing SRCC for the test cohort. The AI 
model also evaluated that SRCC patients with higher risks had shorter median overall survival (OS) and 
insignificant improvements in median OS after receiving adjuvant chemotherapy than those of lower 
risk, indicating its good capability to predict survival and response to treatment. Tan et al[34] built a 
dual-energy CT delta radiomics model to predict the treatment response to chemotherapy of patients 
with far-advanced GC. They developed a V-Net segmentation model, and the application of this semi-
automatic segmentation model to the delta radiomics model shortened the diagnostic time and achieved 
better results in terms of mean AUC (0.728 vs 0.687 in the testing cohort, 0.828 vs 0.749 in the 
independent validation cohort) than using manual segmentation.

Survival rate prediction is also a popular topic for DLR of GC. Hao et al[35] combined clinical 
variables, radiomic features and DL features to build a CT-based prediction Cox proportional-hazard 
model, which served to predict the OS and progression-free survival (PFS) of patients with GC. The 
model acquired the highest C-index of 0.783 and 0.770 for OS and PFS when using postoperative clinical 
variables, and the most dominant variables for survival prediction were identified as important 
prognostic factors in the subsequent survival analysis. Some studies only made use of DL techniques to 
build predictive models for similar purposes. Zhang et al[36] proposed a multi-focus and multi-level 
fusion feature pyramid network (MMF-FPN) to predict OS risks of GC patients from CT images, and 
other models using existing methods in the literature were used for comparison. The experimental 
results showed that MMF-FPN was the finest model that attained the highest C-indexes (validation: 
0.74, testing: 0.76) and hazard ratios (validation: 3.50, testing: 9.46).

To do a preoperative prediction of early recurrence of patients with advanced GC from CT images, 
Zhang et al[37] designed a radiomics nomogram that utilized clinical characteristics and radiomics 
signature containing handcrafted and DL features as input. The radiomics nomogram reached an AUC 
and accuracy of 0.806 and 0.723, respectively, while having considerable k values of 0.932 for both intra- 



Wong PK et al. DPR for gastrointestinal cancer

WJG https://www.wjgnet.com 6368 December 7, 2022 Volume 28 Issue 45

and inter-reader agreement, exceeding the results obtained by the radiomics signature and clinical 
modal built for comparison.

Accurate prediction of LN status of GC, which is a remarkable prognostic factor, is of importance to 
determine the appropriate treatment. Guan et al[38] explored the efficacy of using different DL models 
to extract features and machine learning classifiers (i.e., SVM and random forest) to build a CT-based 
predictive model for the evaluation of LN status. Other models using radiomic features and integrated 
features were built for comparison, and the best model was ResNet50-RF with an AUC and accuracy of 
0.9803 and 98.10%, respectively. A nomogram based on DL feature scores and clinical risk factors was 
also developed and a higher AUC of 0.9914 was achieved in the testing cohort. Dong et al[39] proposed 
a similar DLR nomogram to evaluate the number of LN metastases of locally advanced GC patients 
before surgery, in which radiomics signatures that contained handcrafted and DL features and clinical 
characteristics were used. The performance of the model was evaluated with four validations sets; three 
of which were collected from China and one from Italy. The model showed its good discriminative 
capability to identify N-staging of GC with higher C-indexes of 0.797 in the validation sets from China 
and 0.822 in the set from Italy, and it outperformed other predictors such as clinical models and single 
signatures. To predict the LN status and prognosis of patients, the dual-energy CT-based DLR 
nomogram created by Li et al[40] incorporated CT-reported LN and two radiomics signatures for 
arterial-phase and venous-phase CT images, in which DL features were extracted via CNN. The 
nomogram performed better and gained a higher AUC of 0.82 than the clinical model built alongside for 
comparative analysis, and the associated prognosis prediction was satisfactory in terms of PFS (C-index: 
0.64) and OS (C-index: 0.67). Jin et al[41] developed a DLR model that adopted ResNet-18 to evaluate the 
LN status in nodal stations using CECT, and the high value of the median AUC of the 11 stations (0.876) 
proved the excellent prediction ability of the model. The authors attempted to build a nomogram 
combining the DL features with clinical features, but no significant improvements in the results were 
observed.

Other prognostic factors of GC have also been investigated in previous studies. Sun et al[42] exploited 
DL techniques to build a CT-based radiomics nomogram for evaluating the status of serosal invasion of 
advanced GC patients. Three radiomics signatures were generated based on the three phases of CT 
images with their DL features extracted using CNNs, and they were integrated with clinical character-
istics to form the nomogram. The final model outperformed other models, such as clinical and 
phenotypic models, and its AUC for test sets I and II was 0.87 and 0.90, respectively. Li et al[43] 
compared the use of DL features and radiomic features to create a CECT-based GC risk (GRISK) model 
using similar procedures for the prediction of the status of lymphovascular invasion in patients with 
localized GC. The team explored the use of deep transfer learning models to build a gastric imaging 
marker, in which five pretrained models and an auto-encoder were utilized for feature extraction and 
reduction, respectively. Then, it was integrated with patient clinical and radiological characteristics to 
construct its own GRISK model. The GRISK model with deep transfer learning gastric imaging marker 
obtained comparable AUC (0.722 vs 0.725) and accuracy (0.671 vs 0.710) with the other model with the 
radiomics gastric imaging marker but did not surpass the latter model.

The studies investigating the usage of DLR for GC are summarized in Table 2.

DLRs FOR LIVER CANCER
Primary liver cancer is the sixth most prevalent form of cancer and the third most lethal cancer globally, 
and some of its common phenotypes are hepatocellular carcinoma (HCC) and intrahepatic cholan-
giocarcinoma[1]. Taking the high mortality caused by this disease into account, the clinical application 
of early diagnosis, individualized evaluation and prognosis prediction are valued. The exploitation of 
DLR technology in liver cancer has been rapidly developing, and various solutions for the issues in 
different phases of diagnosis and treatment are emerging.

Computer-aided diagnosis does not only aid radiologists such as shortening the diagnosis time, but 
also allow them to evaluate appropriate treatments at earlier stages of liver cancer. Ding et al[44] 
constructed a CT-based DLR model that fused a radiomics signature and a DL model, to differentiate 
HCC into low or high grade. The DL model was an alteration of VGG19 and it performed better than 
the radiomics signature, with better AUC (0.7513 vs 0.7475) and accuracy (66.31% vs 65.78%). The fused 
DLR model was the optimal model with observable improvements in the results, achieving an AUC of 
0.8042 and accuracy of 72.73%.

Accurate prediction of patient response to different therapies is critical to realize personalized 
treatment at different stages of HCC. Peng et al[45] developed a multi-class DL model from ResNet50 to 
predict four treatment responses to transarterial chemoembolization (TACE) therapy of HCC patients 
using CECT scans. Its performance was assessed using confusion matrices and receiver operating 
characteristic curves, and the model attained an AUC over 0.90 for all four classes in both validation 
sets, and accuracies of 85.1% and 82.8% for validation sets 1 and 2, respectively. In the next year, they 
combined conventional radiomics and DL to build a new CECT-based DLR model that served to predict 
the initial treatment response to TACE of HCC patients preoperatively[46]. Different from their prior 
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Table 2 Summary of studies using deep-learning-based radiomics for gastric cancer

Ref. Imaging Study design Study aim DL model Dataset Outcomes

Cui et al
[32], 2022

CT Retrospective Prediction of response to 
NAC in patients with LAGC

DenseNet-121 719 patients C-index: 0.829

Li et al
[33], 2022

CT Retrospective Diagnosis and prediction of 
chemotherapy response to 
SRCC patients

Modified U-Net 855 patients (598 in 
training cohort; 257 
in testing cohort)

For diagnosis, AUC: 0.786; 
accuracy: 71.6%; sensitivity: 
77.3%; specificity: 69.2% for 
testing cohort

Tan et al
[34], 2020

CT Retrospective Prediction of response to 
chemotherapy in patients 
with gastric cancer

V-Net 116 patients Mean AUC: 0.728 (testing 
cohort); 0.828 (validation 
cohort) when using semi-
segmentation

Hao et al
[35], 2021

CT Retrospective Prediction of OS and PFS 
after gastrectomy; 
evaluation of effects of 
variables on survival 
prediction

Attention-guided 
VAE

1061 patients (743 
for training; 318 for 
testing)

C-index of OS: 0.783; C-index 
of PFS: 0.770 when only using 
postoperative variables

Zhang et 
al[36], 
2021

CT Retrospective Prediction of OS risks of 
patients with gastric cancer

MMF-FPN 640 patients (337 in 
training set; 181 in 
validation set; 122 
in test set)

C-index: 0.76; hazard ratio: 9.46 
in test set

Zhang et 
al[37], 
2020

CT Retrospective Prediction of early 
recurrence of patients with 
AGC

DCNNs 669 patients AUC: 0.806; accuracy: 0.723; 
sensitivity: 0.827; specificity: 
0.667

Guan et al
[38], 2022

CT Retrospective Prediction of preoperative 
status of LNM of gastric 
cancer patients

ResNet50-RF 347 patients (242 
for training; 105 for 
testing)

AUC: 0.9803; accuracy: 98.10%; 
sensitivity: 98.39%; specificity: 
0.9767% for testing of 
ResNet50-RF

Dong et al
[39], 2020

CT Retrospective Prediction of the number of 
LNM in LAGC

DenseNet-201 730 patients C-index: 0.822 in validation set

Li et al
[40], 2020

CT Retrospective Prediction of LNM and 
prognosis in gastric cancer 
patients

DCNNs 204 patients (136 in 
training set, 68 in 
test set)

AUC: 0.82 in test set; C-index 
of OS: 0.67; C-index of PFS: 
0.64

Jin et al
[41], 2021

CT Retrospective Prediction of LNM status in 
LN stations of gastric cancer 
patients

ResNet-18 1699 patients Median AUC: 0.876; median 
Sensitivity: 0.743; median 
Specificity: 0.936 in validation 
cohort

Sun et al
[42], 2020

CT Stage I: 
Retrospective; stage 
II: Validation

Prediction of serosa invasion 
of AGC patients

DCNNs 572 patients (252 in 
training set, 176 in 
test set I, 144 in test 
set II)

AUC: 0.87; accuracy: 80%; 
sensitivity: 0.73; specificity: 
0.85 in test set I. AUC: 0.90; 
accuracy: 85%; sensitivity: 0.75; 
specificity: 0.93 in test set II

Li et al
[43], 2022

CT Retrospective Evaluation of 
lymphovascular invasion of 
localized gastric cancer 
patients

SqueezeNet, 
ResNet50, Inception 
V3, VGG19, 
DeepLoc

1062 patients (728 
for training, 334 for 
testing)

AUC: 0.725; sensitivity: 73.2%; 
specificity: 60.3%; accuracy: 
71.0% for radiomics GRISK 
model (final model) in testing 
cohort

CT: Computed tomography; NAC: Neoadjuvant chemotherapy; LAGC: Locally advanced gastric cancer; SRCC: Signet ring cell carcinoma; OS: Overall 
survival; PFS: Progression-free survival; AGC: Advanced gastric cancer; LNM: Lymph node metastasis; LN: Lymph node; DCNNs: Deep convolutional 
neural networks; MMN-FPN: Multi-focus and multi-level fusion feature pyramid network; UC: Area under the receiver operating characteristic curve; C-
index: Harrell’s concordance index; GRISK: Gastric Risk; RF: Random forest; VAE: Variational auto-encoder; DLR: Deep-learning-based radiomics.

work, they designed their own CNN for feature extraction and prediction, and the DL model was 
integrated with five radiomics models built with different classic machine learning algorithms or tumor 
size feature to build integrated models for efficacy comparison. The DL model outperformed all 
individual radiomics models with an AUC of 0.972, while all integrated models yielded higher values of 
AUC than merely using DL model. The combination of DL with random forest classifier obtained the 
highest AUC of 0.994.

Survival prediction is also an important research area to facilitate individualized HCC treatment. To 
predict the OS of HCC patients who were treated with stereotactic body radiation therapy, Wei et al[47] 
established a CECT-based DL network model that comprised two variational-autoencoder-based 
survival models and one CNN-based model for extracting radiomic features, clinical features and CT 
features. The performance of the separate models and the integrated radiomics model using either DL 
network or Cox hazard model was compared by C-index, in which the integrated model produced the 
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highest C-index of 0.650 in repeated cross-validation among all models. Liu et al[48] developed two 
separate DLR models to differentiate HCC patients who received radiofrequency ablation (RFA) or 
surgical resection into high or low risks using CEUS images, and the corresponding radiomics 
signatures were built. Afterwards, two radiomics nomograms were constructed by combining the 
signatures with clinical variables to predict the 2-year PFS of patients and both models. Both DLR 
models achieved satisfactory values of C-index (0.726 for RFA, 0.741 for surgical resection). The good 
agreement of the survival predictions of the nomograms was demonstrated from the calibration curves.

Postoperative recurrence of cancer is one of the primary causes of death, which extends to the 
increase in recurrence risk assessment using DLR. To predict the early recurrence of HCC patients using 
multi-phase CECT scans, Wang et al[49] explored the predictive ability of various kinds of models, and 
they included a DLR model based on ResNet, a clinical model extracting features from clinical data and 
three combined CNN-based models of different structures. Experimental results demonstrated that the 
integration of DL features and clinical features improved the prediction accuracy, and one combined 
model obtained the highest AUC of 0.825. The team improved their study by comparing the DL model 
with a conventional radiomics model, and one more combined model of another structure was added to 
the comparative analysis of their previous work[50]. The DL model performed better than the radiomics 
model with an average AUC of 0.7233 and accuracy of 69.52%, while one of the combined models 
surpassed the rest in the comparative analysis and reached 0.8248 and 78.66% in its average AUC and 
accuracy, respectively. They also investigated the effect of attaching a joint loss function to the best 
model on the average AUC and accuracy, and the two metrics were improved to 0.8331 and 80.49%. He 
et al[51] presented an intelligent-augmented DL model for Risk Assessment of Post LIver 
Transplantation (i-RAPIT) model in their study, which was a multi-network model that estimated the 
recurrence risk of HCC patients after liver transplantation. The i-RAPIT model was composed of two 
deep CapsNet networks for feature extraction from MR and pathological images, and a natural-
language-processing-based radial basis function (NLP-based RBF) for extracting clinical features. Before 
the MR images were entered into the model, U-Net was also exploited for tumor and liver detection in 
the images. The model achieved a total accuracy of 82%, and AUC of 0.87 and F-1 score of 84% when 
comparing with other network combinations.

Early detection of microvascular and macrovascular invasion is another practical approach to select 
the proper therapy for HCC patients and reduce mortality. Jiang et al[52] adopted 3D-CNN to build a 
CT-based DL model for predicting the status of microvascular invasion of HCC patients, and three 
models based on radiomics features, radiologic features, and integration of the two kinds of features 
and clinical characteristics was also used for comparison. The results produced by the four models were 
excellent, with the DL model achieving better results for a few metrics such as AUC (0.906), and 
sensitivity (93.2%) in the validation set. Wang et al[53] devised a new DL model named MVI-Mind that 
consisted of a light-weight transformer for segmentation and a CNN for prediction of microvascular 
invasion, and several DL techniques were used to compare the proposed methods. The MVI-Mind 
attained highest mean intersection over union of 0.9006 and accuracy of 99.47% as compared with other 
DL segmentation algorithms, and it maintained its superiority in prediction and obtained AUC values 
of 0.9223, 0.8962, and 0.9100 for arterial phase, portal venous phase and delayed period CT images, 
respectively. For estimating the status of macrovascular invasion using CT scans, Fu et al[54] utilized the 
concept of multi-task DL neural network (MTnet) to build predictive models. Radiomic features from 
CT images, clinical and radiological factors were fused to construct the proposed model, and it was 
modified from U-Net that contained modules engaged in tumor segmentation, feature extraction and 
prediction. It exhibited the most outstanding performance with an AUC of 0.836 among all models built 
for comparison.

The studies investigating the implementation of DLR for liver cancer are summarized in Table 3.

DLR FOR PANCREATIC CANCER
Pancreatic cancer is the seventh most deadly cancer worldwide, in which pancreatic adenocarcinoma or 
pancreatic ductal adenocarcinoma (PDAC) are the most prevalent, accounting for the high mortality rate
[1]. The number of deaths caused by this disease is almost equivalent to the number of cases due to the 
overall poor prognosis, so the introduction of advanced AI technologies is essential and urgent to rectify 
the situation. In these few years, the field of DLR in pancreatic cancer has flourished and more critical 
issues such as disease differentiation and survival prediction have been discussed.

Achieving an accurate diagnosis of PDAC gives a great contribution to avoiding false predictions and 
improving the survival outcomes of patients. For distinguishing between PDAC and autoimmune 
pancreatitis using CT scans, Ziegelmayer et al[55] developed a DLR model that utilized VGG19 to 
extract DL features, and its efficacy was compared with a model trained on handcrafted radiomic 
features. The former model performed better with higher mean values in AUC, sensitivity, and 
specificity (0.90, 89% and 83%) over the cross-validation procedure. Liao et al[56] used a DL model based 
on the coarse-to-fine network architecture search (C2FNAS) to perform segmentation of CECT images 
for radiomic feature extraction, and they were used for training the machine learning model for 
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Table 3 Summary of studies using deep-learning-based radiomics for liver cancer

Ref. Imaging Study design Study aim DL model Dataset Outcomes

Ding et al
[44], 2021

CT Retrospective Evaluation of HCC differ-
entiation

VGG19 1234 patients (799 in training 
cohort, 248 in validation 
cohort; 187 in independent 
testing cohort)

AUC: 0.8042; accuracy: 
72.73%; sensitivity: 70.75%; 
specificity: 75.31% in testing 
cohort for the fused DLRs 
model

Peng et al
[45], 2020

CT Retrospective Prediction of different 
treatment responses to 
TACE in HCC patients

ResNet50 789 patients (562 in training 
cohort; 89 and 138 in 
validation cohorts 1 and 2)

Accuracy: 85.1% in validation 
cohort 1; accuracy: 82.8% in 
validation cohort 2

Peng et al
[46], 2021

CT Retrospective Prediction of initial 
response to TACE in HCC 
patients

CNN 310 patients (139 in training 
cohort; 171 in validation 
cohort)

AUC: 0.994

Wei et al
[47], 2021

CT Retrospective Prediction of OS of HCC 
patients treated with 
SBRT

CNN 167 patients C-index: 0.650 in cross 
validation

Liu et al
[48], 2020

US Retrospective Prediction of PFS of HCC 
patients treated with RFA 
or surgical resection

CNN 214 RFA patients (149 for 
training; 65 for validation), 
205 SR patients (144 for 
training; 61 for validation)

C-index of RFA: 0.726; C-
index of surgical resection: 
0.726

Wang et 
al[49], 
2019

CT Retrospective Prediction of early 
recurrence of HCC 
patients

ResNet 167 patients AUC of best model: 0.825

Wang et 
al[50], 
2020

CT Retrospective Prediction of early 
recurrence of HCC 
patients

ResNet 167 patients For the best model with joint 
loss function, AUC: 0.8331; 
accuracy: 80.49%

He et al
[51], 2021

MRI and 
pathological 
data

Retrospective Evaluation of HCC 
recurrence risk of liver 
transplantation recipients

U-net, 
CapsNet

109 patients (87 for training; 
22 for testing)

Total accuracy: 82%; recall: 
80%; precision: 89%; AUC: 
0.87; F-1 score: 84%

Jiang et al
[52], 2021

CT Retrospective Prediction of 
microvascular invasion 
status of HCC patients

3D-CNN 405 patients (324 in training 
set, 81 in validation set)

AUC: 0.906; sensitivity: 75.7%; 
specificity: 93.2%; accuracy: 
85.2%; F-1 score: 87.2% in 
validation set

Wang et 
al[53], 
2022

CT Retrospective Prediction of 
microvascular invasion 
status of HCC patients

Transformer, 
CNN

138 patients For arterial phase images in 
validation set, AUC: 0.9223; 
Average accuracy: 86.78%

Fu et al
[54], 2021

CT Retrospective Prediction of 
macrovascular invasion 
status in HCC patients

Modified U-
Net

366 patients (281 in training 
cohort, 85 in validation 
cohort)

AUC: 0.836 in validation 
cohort

CT: Computed tomography; MRI: Magnetic resonance imaging; US: Ultrasound; HCC: Hepatocellular carcinoma; TACE: Transarterial chemoembolization; 
PFS: Progression-free survival; RFA: Radiofrequency ablation; SBRT: Stereotactic body radiation therapy; CNN: Convolutional neural network; AUC: Area 
under the receiver operating characteristic curve; C-index: Harrell’s concordance index; DLR: Deep-learning-based radiomics.

prediction. The DL segmentation model obtained a mean Dice score of 0.773 for segmentation while the 
prediction model yielded an AUC of 0.960 when distinguishing between PDAC and the control group 
(non-cancerous diseases and normal pancreas). Tong et al[57] constructed a ResNet-50-based DLRs 
model to classify PDAC and chronic pancreatitis patients from CEUS images, and the outputs were the 
probability of being PDAC or chronic pancreatitis, and heatmaps with highlighted regions that 
displayed the detected lesions. A two-round reader study was conducted to test the effectiveness of the 
model. The model achieved an AUC of 0.967 and 0.953 in two validation sets and outperformed the 
radiologists in the first round, while radiologists could obtain higher accuracies in determining the 
disease with the aid of the model in the second round.

Prediction of treatment response is also a critical aspect in the field of DLR in pancreatic cancer. 
Watson et al[58] built a CNN model based on LeNet to classify, using CT scans, whether PDAC patients 
had a pathological response or no response to NAC. It was compared with two models: a hybrid DL 
model that had the same architecture as the pure DL model but captured both CT image features and 
one clinical feature [≥ to 10% decrease in carbohydrate antigen (CA)-19], and a CA-19 model only taking 
in the feature regarding CA-19 decrease. Both DL models could produce superior results than the CA-19 
model, and the hybrid DL model obtained a slightly higher AUC than the pure DL model (0.784 vs 
0.738).

Survival prediction is another vital feature of PDAC that occupies a substantial portion of the existing 
DLR studies. Muhammad et al[59] designed a CNN architecture modified from AlexNet to evaluate the 
survival risk of PDAC patients that received radiomic features extracted from CECT images, and the 
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model reached a C-index of 0.85, indicating itself as a good survival model. Zhang et al[60] also made 
use of a CNN that was pretrained with non-small cell lung cancer images to construct their CT-based 
survival model for patients with resectable PDAC, in which a modified loss function was used. The 
proposed model accomplished finer prognostic predictions than the conventional radiomic model with 
an index of prediction accuracy of 11.81% and C-index of 0.651. They released another paper in the same 
year and compared the efficacy of DL and radiomic features from CECT images by feeding them 
separately to a random forest classifier to build a DLR model for predicting OS[61]. Similar to their prior 
work, the DL features were extracted by a pretrained CNN model but with a different structure. The 
model that used DL features attained an AUC of 0.81, which was higher than the other model based on 
radiomic features and gained a hazard ratio of 1.38 when the respective risk scores (predicted probab-
ilities of deaths) were tested in survival analyses. Later, they further modified their previous DLR model 
to a risk score-based feature fusion model to predict 2-year OS[62]. Two small models based on DL and 
radiomic features separately were embodied in the framework to generate their corresponding risk 
scores, and these risk scores were used to train the main prediction model. The performance of the 
proposed model was later assessed with other models using different feature reduction techniques, and 
the risk score model achieved the highest AUC of 0.84. Yao et al[63] devised a new multi-task network 
model to perform both survival and tumor surgical margin prediction of resectable PDAC patients 
simultaneously using multi-phase CECT scans. Inside the model, a 3D-CNN model incorporated with a 
nnUNet for pancreas segmentation was exploited for the margin prediction part, while the combination 
of 3D-ResNet18 and Contrast-Enhanced 3D Convolutional Long Short-Term Memory (CE-ConvLSTM) 
network was responsible for survival prediction. The model achieved the results exceeding all other 
deep models in the comparative analysis, which yielded a C-index of 0.705 in predicting survival 
outcome and a balanced accuracy of 73.6% in determining the resection margin. They revised their 
preliminary work by incorporating pancreatic anatomical features into the model and switching to 
implement an automatically self-learning segmentation method that used 3D UNet as the network 
architecture and nnUNet as the backbone model for training[63]. The new model attained the highest 
survival C-index of 0.667 and balanced accuracy of 67.1% for resection margin prediction among all the 
models including their previous model and other DL and radiomics models.

LN metastasis also possesses a high prognostic value in pancreatic cancer and it is noteworthy to 
have an early and accurate prediction of its status. An et al[64] developed a DLR model with different 
radiomics signatures extracted from dual-energy CT scans for the prediction of LN metastasis by a 
pretrained ResNet-18 model. Experiments of adding key clinical features were conducted to compare 
the effectiveness of using different approaches. The combined model integrated DL features and key 
clinical features yielded the highest AUC of 0.92 and accuracy of 86%.

The expression of various genes is an influential factor for patient prognosis and preoperative 
prediction of these prognostic factors can assist the diagnosis and treatment evaluation process. To 
predict the status of HMGA2 and C-MYC gene expression of PDAC patients, Li et al[65] compared the 
use of radiomic features, DL features (extracted by pretrained CNN) and integration of both features in 
a CT-based model using an SVM classifier. Region of interest segmentation was conducted by two 
experienced radiologists individually, and the model was tested with different segmented images for 
improving the validity of the study. A model using DL features and all features achieved similar values 
in all evaluation metrics for both C-MYC and HMGA2 tests, while DL features selected by Doctor B 
obtained outstanding average AUC scores (C-MYC: 0.90, HMGA2: 0.91) and accuracies (C-MYC: 95%, 
HMGA2: 88%) in the two gene tests.

The studies investigating the application of DLR for pancreatic cancer are summarized in Table 4.

DLR FOR COLORECTAL CANCER
Colorectal cancer (CRC) is the third most common kind of cancer and the second leading cause of 
cancer-related fatalities worldwide[1]. It is crucial to carry out research on the diagnosis, treatment 
response prediction, and survival prediction of CRC, which can improve the prognosis of patients and 
significantly reduce the social and medical burden. In recent years, promising research results have 
emerged in the preoperative, intraoperative and postoperative stages of CRC using DLRs technology, 
covering the entire process of CRC diagnosis and treatment.

DLR is revolutionizing the treatment options for CRC. When making treatment decisions for CRC 
patients, identifying KRAS mutations, which may contribute to the continued proliferation of tumors, 
can help personalize treatment and care for CRC patients[66]. For preoperative prediction of KRAS 
mutations in patients with CRC, HCR and DLR were merged into a noninvasive model created by Wu et 
al[67]. The model, which mixed the handcrafted and DLR radiomics features, produced a C-index for 
the original cohort of 0.815 and the validation cohort of 0.832, which was higher than using HCR or DLR 
alone. For the individualized treatment decision-making in colorectal liver metastases (CRLM) 
management, the prediction of chemotherapeutic response is crucial. To predict the response to 
chemotherapy in CRLM, Wei et al[68] developed a ResNet10-based DLR model that used contrast-
enhanced multidetector CT images as inputs. They also developed an HCR model for comparison. The 
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Table 4 Summary of studies using deep-learning-based radiomics for pancreatic cancer

Ref. Imaging Study 
design Study aim DL 

model Dataset Outcomes

Ziegelmayer 
et al[55], 2020

CT Retrospective Identification of PDAC and 
AIP

VGG19 86 patients (44 AIP 
patients and 42 
PDAC patients)

Sensitivity: 89%; specificity: 83%; AUC: 0.90

Liao et al[56], 
2022

CT Retrospective Identification of PDAC, non-
cancerous pancreatic diseases 
and normal pancreas

CNN 3120 images (1872 
for training, 624 for 
validation, 624 for 
testing)

Sensitivity: 89.9%; specificity: 91.3%; AUC: 
0.960 when distinguishing between PDAC 
and control group

Tong et al
[57], 2022

US Retrospective Identification of PDAC and CP ResNet-
50

558 patients AUC: 0.967; sensitivity: 87.2%; specificity: 
100%

Watson et al
[58]

CT Retrospective Prediction of pathologic 
response of PDAC patients to 
NAC

LeNet 81 patients (65 for 
training and 
validation; 16 for 
testing)

AUC: 0.785; brier score: 0.174; sensitivity: 
81.4%; specificity: 60.4% in test set of hybrid 
deep learning model

Muhammad 
et al[59], 2018

CT Retrospective Evaluation of survival hazard 
of PDAC patients 

AlexNet 159 patients C-index: 0.76; hazard ratio: 9.46 in test set

Zhang et al
[60], 2020

CT Retrospective Evaluation of survival 
probability of PDAC patients

CNN 520 patients IPA: 11.81%, C-index: 0.651 in testing cohort

Zhang et al
[61], 2020

CT Retrospective Prediction of OS of PDAC 
patients; Evaluation of risk 
scores to distinguish patients 
with high or low risk

CNN 98 patients (68 in 
training cohort; 30 
in testing cohort)

AUC: 0.81; hazard ratio: 1.86

Zhang et al
[62], 2021

CT Retrospective Prediction of 2-yr OS of 
resectable PDAC patients

CNN 98 patients (68 in 
training cohort; 30 
in testing cohort)

AUC: 0.84; specificity: 68%; sensitivity: 91%

Yao et al[63], 
2021

CT Retrospective Prediction of survival risk and 
tumor resection margin of 
resectable PDAC patients

CNN 205 patients C-index: 0.705 for survival prediction; 
balanced accuracy: 73.6%, sensitivity: 81.3%, 
specificity: 65.9% for resection margin 
prediction

Yao et al[63], 
2021

CT Retrospective Prediction of survival risk and 
tumor resection margin of 
resectable PDAC patients

CNN 1209 patients C-index: 0.667 for survival prediction; 
balanced accuracy: 67.1%; sensitivity: 59.8%; 
specificity: 74.3% for resection margin 
prediction

An et al[64], 
2022

CT Retrospective Prediction of LNM status and 
OS in PDAC patients

ResNet-
18

148 patients (88 in 
training cohort, 25 
in validation 
cohort, 35 in 
testing cohort)

For combined model, AUC: 0.92; accuracy: 
86%; sensitivity: 94%; specificity: 78% in 
testing cohort

Li et al[65], 
2019

CT Retrospective Prediction of HMGA2 and C-
MYC gene expression status of 
PDAC patients;Prediction of 
survival time of patients

CNN 111 patients Average AUC score: 0.90; accuracy: 95%; 
sensitivity: 92%; specificity: 98% in C-MYC 
test with deep features selected by Doctor B; 
average AUC score: 0.91; accuracy: 88%; 
sensitivity: 89%; specificity: 88% in HMGA2 
test with deep features selected by Doctor B

CT: Computed tomography; US: Ultrasound; PDAC: Pancreatic ductal adenocarcinoma; AIP: Autoimmune pancreatitis; CP: Chronic pancreatitis; NAC: 
Neoadjuvant chemotherapy; LNM: Lymph node metastasis; OS: Overall survival; AUC: Area under the receiver operating characteristic curve; C-index: 
Harrell’s concordance index; CNN: Convolutional neural network; IPA: Index of prediction accuracy; DLR: Deep-learning-based radiomics.

DLR model achieved a higher AUC than the HCR model when predicting the response to 
chemotherapy in CRLM (training: 0.903 vs 0.745; validation: 0.820 vs 0.598). Microsatellite instability 
(MSI) function is a predictive biomarker for clinical outcomes and predicts responses to adjuvant 5-
fluorouracil and immunotherapy in CRC. A DL model that was created using the MobileNetV2 
architecture by Zhang et al[69] was adopted to predict the MSI status of CRC based on MR images. With 
AUC values of 0.868, the best model successfully identified 85.4% of the MSI status, indicating that the 
suggested model may aid in locating individuals who might benefit from chemotherapy or immuno-
therapy.

DLR in CRC also emphasizes the need to predict treatment response. For improving NCRT response 
prediction in locally advanced rectal cancer, Fu et al[70] compared the handcrafted and DL features 
extracted from pre-treatment diffusion-weighted MR images. The DLR approach produced a mean 
AUC of 0.73, while the HCR method yielded a mean AUC of 0.64, which demonstrated that DLR may 
achieve higher classification performance compared with HCRs. To predict the distant metastasis in 



Wong PK et al. DPR for gastrointestinal cancer

WJG https://www.wjgnet.com 6374 December 7, 2022 Volume 28 Issue 45

locally advanced rectal cancer patients receiving NCRT, Liu et al[71] exploited the use of a DLR model 
based on MR images. DLR achieved a C-index of 0.747 and AUC of 0.894 at 3 years. In order to define 
tumor morphological change for response evaluation in patients with metastatic CRC, Lu et al[72] 
offered a DLR study using CNN and recurrent neural network. They discovered that the DL network 
performed better than the size-based equivalent with C-index (0.649 vs 0.627), and was capable of 
predicting the early on-treatment response in metastatic CRC. The predictive performance could be 
improved by the integration of DL network with size-based methodology.

LN metastasis, which is a key prognostic factor for CRC, is among the other study topics of CRC. 
Ding et al[73] adopted a DLR nomogram based on faster region-based CNN (Faster R-CNN) to predict 
LN metastasis in patients with CRC. Patient age, Faster R-CNN-detected LN metastasis, and tumor 
differentiation were predictors in the Faster R-CNN nomogram for predicting LN metastasis, with 
AUCs in the training and validation sets of 0.862 and 0.920, respectively. Zhao et al[74] applied a DLR 
model related with genomics phenotypes for predicting LN metastasis in CRC and showed good 
performance with AUCs of 0.81, 0.77, and 0.73 in the training, testing and validation sets, respectively. 
Li et al[75] examined the performance of the three most popular classification techniques-DL, conven-
tional machine learning, and deep transfer learning-to determine the most efficient way for automatic 
classification of CRC LN metastases. Deep transfer learning was the most successful, with an accuracy 
of 0.7583 and AUC of 0.7941. All of these studies have shown that DLR technology has good 
performance in the prediction and classification of LN metastasis.

The studies exploring the creation of DLR for CRC are summarized in Table 5.

CHALLENGES AND RECOMMENDATIONS
In the past several years, with the development of DL technology, the research and application of DLR 
in tumor diagnosis, treatment and prognosis have been increasing. To perform a systematic evaluation 
of the status of DLRs for GI cancer, we conducted an extensive review on all original publications 
between January 1, 2015, and August 30, 2022. Even though several published articles have confirmed 
the exceptional performance of DLR, there are still many issues that algorithm designers and doctors 
must address. Below is a list of the challenges and recommendations for DLR in future research 
summarized by our team.

Prospective and multi-center studies
According to the most recent research, most studies on DLR were retrospective and single center. 
Retrospective studies may have sample selection bias and cannot truly reflect the distribution of clinical 
cases, which could jeopardize the precision of DLR models. As different centers have different machine 
parameters, scanning settings, and diagnostic rules, single-center studies limit the generalization of the 
DLR models. Prospective and multi-center studies can evaluate the reliability and accuracy of the DLR 
models, enhance their generalization, and bridge the gap between academic studies and clinical applic-
ations. Thus, carrying out prospective and multi-center studies is the key to accelerating the clinical 
application of DLRs models.

Development of user-friendly DL models
We found that many physicians do not really want to use DLR methods for related research because the 
models usually have complex structures, large parameters, poor interpretability, non-existence of 
gradients, overfitting, and other problems, which limit the promotion and use of DLR technology. 
Therefore, it is necessary to develop simple and user-friendly models and training schemes for non-
professional users. Publication of more source codes and pre-training weights are ways to reduce the 
development and training difficulty of DL models. For overfitting problems, development of automatic 
data augmentation schemes and image synthesis schemes can increase the amount of training data. For 
the black box nature of DL models, attention maps and network dissection schemes can be integrated 
into the model to improve interpretability.

Establishment of accessible datasets
For DLR, the dataset is the new oil. DLR analysis requires a large amount of data to train and validate 
models; however, most studies are based on private datasets and do not use uniform construction 
standards, which will hinder the reproducibility of the studies and deployment of DLR models. Thus, a 
professional data development organization that combines multi-center data should be established. The 
organization should also standardize the development process of multiple kinds of datasets and make 
the datasets publicly accessible. Additionally, to reward data contributors, researchers who use these 
datasets could charge appropriate fees.

Efficient fusion of multiple features
DLR is a new technology in the field of AI for medical image analysis. Although its performance is 
satisfactory, it is not a panacea, especially in the case of extreme shortage of data. Numerous studies 
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Table 5 Summary of studies using deep-learning-based radiomics for colorectal cancer

Ref. Imaging Study design Study aim DL model Dataset Outcomes

Wu et al[67], 
2020

CT Retrospective Predicting KRAS status in 
patients with CRC

CNN Primary cohort: 279 
patients; validation 
cohort: 119 patients

C-index of 0.815 for the 
primary cohort and 0.832 
for the validation cohort

Wei et al[68], 
2021

CT Retrospective Predicting the response to 
chemotherapy in CRLM

ResNet10 192 patients AUC of DLR: 0.820; AUC 
of HCR: 0.598

Zhang et al
[69], 2021

MRI Retrospective Predicting the MSI status 
of CRC 

MobileNetV2 491 patients Accuracy: 85.4%; AUC: 
0.868

Fu et al[70], 
2020

MRI Retrospective Predicting NCRT response 
in patients with LARC

VGG19 43 patients AUC of DLR: 0.73; AUC 
of HCR: 0.64

Liu et al[71], 
2021

MRI Retrospective Predicting the distant 
metastasis of LARC 
patients receiving NCRT

ResNet18 235 patients C-index of 0.747 and 
AUC of 0.894 in the 
validation cohort

Lu et al[72], 
2021

CT Retrospective Prediction of early on-
treatment response in 
mCRC

CNN + RNN 1028 patients C-index: 0.649

Ding et al
[73], 2020

MRI Retrospective Prediction of metastatic 
LN in CRC

Faster RCNN 545 patients AUC for training: 0.862; 
AUC for validation: 
0.920

Zhao et al
[74], 2022

CT Retrospective Prediction of metastatic 
LN in CRC

Autoencoder 423 patients AUC for training: 0.81; 
AUC for validation: 0.73; 
AUC for testing: 0.77

Li et al[75], 
2020

MRI Retrospective Classification of CRC LN 
Metastasis images

AlexNet 3364 samples (1646 
positive; 1718 
negative)

Accuracy: 75.83%; AUC: 
0.7941

CRC: Colorectal cancer; CT: Computed tomography; MRI: Magnetic resonance imaging; CRLM: Colorectal liver metastases; MSI: Microsatellite instability; 
NCRT: Neoadjuvant chemoradiotherapy; LARC: Locally advanced rectal cancer; mCRC: Metastatic colorectal cancer; LN: Lymph node; CNN: 
Convolutional neural network; RNN: Recurrent neural network; AUC: Area under the receiver operating characteristic curve; C-index: Harrell’s 
concordance index; DLR: Deep-learning-based radiomics; HCR: Handcrafted radiomics; Faster R-CNN: Faster region-based convolutional neural network.

have demonstrated that combining HCR and DLR, can result in better performance. Thus, we suggest 
integrating other clinical features, genomics, handcrafted features, and DL features to build an optimal 
solution. Moreover, a suitable feature dimensionality reduction scheme should also be adopted to 
reduce the redundancy of the integrated features. In addition to imaging features, features extracted 
from clinical data sources, such as gene expression, clinical characteristics, and blood biomarkers, can 
also be combined to enhance radiomic features.

CONCLUSION
Globally, GI cancers account for a large portion of cancer-related fatalities. For the diagnosis and 
treatment of GI cancer, DLR can offer a simpler, quicker and more reliable approach. This article is the 
first comprehensive review on DLR in the GI tract. The status, difficulties, and suggestions discussed in 
this review can help engineers create optimal radiomics products to support clinical decision-making 
and offer guidance for diagnosis and treatment of other tumors. Despite the success of DLR in GI 
cancer, prospective and multi-center studies are still needed. Development of user-friendly DL models, 
the creation of large public databases, and the fusion of multiple features are also necessary to 
encourage the clinical application of radiomics.
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