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Abstract
Diabetic dyslipidemia is characterized by quantitative and qualitative abnor-
malities in lipoproteins. In addition to glycation and oxidation, carbamylation is 
also a post-translational modification affecting lipoproteins in diabetes. Patients 
with type 2 diabetes (T2D) exhibit higher levels of carbamylated low-density 
lipoproteins (cLDL) and high-density lipoproteins (cHDL). Accumulating 
evidence suggests that cLDL plays a role in atherosclerosis in diabetes. cLDL 
levels have been shown to predict cardiovascular events and all-cause mortality. 
cLDL facilitates immune cell recruitment in the vascular wall, promotes accumu-
lation of lipids in macrophages, and contributes to endothelial dysf-unction, 
endothelial nitric oxide-synthase (eNOS) inactivation and endothelial repair 
defects. Lastly, cLDL induces thrombus formation and platelet aggregation. On 
the other hand, recent data have demonstrated that cHDL serum level is 
independently associated with all-cause and cardiovascular-related mortality in 
T2D patients. This relationship may be causative since the atheroprotective 
properties of HDL are altered after carbamylation. Thus, cHDL loses the ability to 
remove cholesterol from macrophages, to inhibit monocyte adhesion and 
recruitment, to induce eNOS activation and to inhibit apoptosis. Taken together, it 
seems very likely that the abnormalities in the biological functions of LDL and 
HDL after carbamylation contribute to atherosclerosis and to the elevated 
cardiovascular risk in diabetes.

Key Words: Carbamylation; Lipoprotein; Diabetes; Low-density lipoprotein; High-density 
lipoprotein; Myeloperoxidase
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Core Tip: There is growing evidence that carbamylation of lipoproteins occurring in diabetes contributes to 
the pathophysiology of atherosclerosis, and therefore plays a role in the cardiovascular risk. Numerous 
studies have demonstrated that carbamylated low-density lipoproteins (LDL) is more atherogenic than 
native LDL, citing, for instance, its role in foam cell formation or ability to damage endothelial function. 
In addition, carbamylated high-density lipoproteins exhibits reduced antiatherogenic properties, especially 
in terms of the capacity to induce cholesterol efflux from macrophages and to protect endothelium.

Citation: Denimal D. Carbamylated lipoproteins in diabetes. World J Diabetes 2023; 14(3): 159-169
URL: https://www.wjgnet.com/1948-9358/full/v14/i3/159.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i3.159

INTRODUCTION
The excess of cardiovascular risk in patients with type 1 (T1D) or type 2 diabetes (T2D) is multifactorial. 
Dyslipidemia is a major contributor to this increased cardiovascular risk. It is characterized by 
quantitative abnormalities of lipoproteins, and also by kinetic, qualitative and functional alterations, 
that make lipoproteins more atherogenic (reviewed in[1,2]). From a quantitative point of view, T2D 
patients typically exhibit low serum levels of high-density lipoprotein (HDL)-cholesterol, postprandial 
hyperlipemia, and hypertriglyceridemia, mainly due to increased very low-density lipoproteins (VLDL). 
In contrast, most T1D patients only have quantitative lipoprotein abnormalities if they have poor 
glycemic control.

In addition to these quantitative changes, lipoproteins also undergo post-translational modifications 
in diabetes, such as glycation, oxidation, acetylation and carbamylation, and also alterations in their 
lipid and protein composition. These changes give them a more atherogenic profile overall, and 
therefore may likely contribute to the increased cardiovascular risk in diabetes. In this review, we will 
focus on one of these post-translational modifications affecting lipoproteins in diabetes, namely 
carbamylation. Carbamylation (carbamoylation stricto sensu) is a non-enzymatic irreversible process 
mediated by isocyanate, and corresponds to the binding of a carbamoyl moiety (-CONH2) to lysine, 
resulting in carbamyllysine (CML) (Figure 1). Thus, carbamylation affects the protein part of 
lipoproteins, primarily apolipoproteins (apo), but also other proteins. Isocyanate originates from either 
the spontaneous dissociation of urea, or from the myeloperoxidase (MPO)-catalyzed oxidation of 
thiocyanate, or to a lesser extent, from tobacco smoke or atmospheric pollution.

MPO is secreted mainly by neutrophils and monocytes at inflammatory sites including atherosclerotic 
plaques. It colocalizes with carbamylated proteins in human atherosclerotic lesions, and serves as a 
dominant pathway for promoting carbamylated proteins in atherosclerotic plaques[3]. The role of MPO 
in cyanate production suggests that, beyond uremia and chronic kidney disease (CKD), lipoprotein 
carbamylation may be also driven by inflammation, which is obviously a major phenomenon in athero-
sclerosis and diabetes. It has been well demonstrated that plasma MPO is increased in T1D[4-6] and T2D
[7,8] diabetes. Plasma MPO level is associated with the presence of coronary artery disease[9], and 
above all predicts coronary artery disease[10] and cardiovascular events[11]. It should be noted right 
away that MPO also produces hypochlorous acid (HOCl-) and peroxynitrite in addition to cyanate in 
atherosclerotic plaques, which can lead to lipoprotein changes other than carbamylation such as 
chlorination and nitration.

Accumulating evidence from in vitro, epidemiological, animal and human studies emphasizes an 
emerging role for carbamylation in atherosclerosis and diabetes. For instance, plasma levels of protein-
bound CML have been shown to be independently and positively associated with the frequency of 
patients having cardiovascular diseases, and to predict the risk of major adverse cardiac events in the 
following 3 years[3]. In this review, we will focus on the role of carbamylated LDL (cLDL) and HDL 
(cHDL) in the pathophysiology of atherosclerosis and diabetes.

CARBAMYLATED LDL
LDL, the major transporter of cholesterol within the blood, is composed of a core of esterified 
cholesterol enclosed in a monolayer of phospholipids and unesterified cholesterol, together with a 
single molecule of apoB-100. LDL delivers lipids to peripheral tissues after binding to LDL receptors. 
Circulating LDL particles are able to penetrate the endothelium of arterial walls and on entrance they 
become oxidized, and promote endothelial dysfunction, inflammation and foam cell formation. Serum 
LDL-cholesterol level is an independent risk factor for cardiovascular events, and lowering it is a major 
goal of dyslipidemia management in current guidelines.

https://www.wjgnet.com/1948-9358/full/v14/i3/159.htm
https://dx.doi.org/10.4239/wjd.v14.i3.159
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Figure 1 Carbamylation of lipoproteins is a non-enzymatic irreversible process mediated by isocyanate, and corresponds to the 
irreversible binding of a carbamoyl moiety to ε-NH2 of lysine residues in proteins, resulting in carbamyllysine. Isocyanate originates from either 
the non-enzymatic spontaneous dissociation of urea, or from the myeloperoxidase (MPO)-mediated oxidation of thiocyanate, or to a lesser extent from tobacco 
smoke or atmospheric pollution. The urea pathway is of particular relevance in diabetic patients with chronic kidney disease. MPO level is elevated in patients with 
type 1 and type 2 diabetes (T2D). Plasma levels of carbamylated low-density lipoproteins and high-density lipoproteins are increased in T2D patients with or without 
chronic kidney disease. T2D: Type 2 diabete; CML: Carbamyllysine; MPO: Myeloperoxidase; Lys: Lysine; cLDL: Carbamylated low-density lipoproteins; cHDL: 
Carbamylated high-density lipoproteins.

Beyond oxidation, LDL is also subject to carbamylation in diabetes, and it has been shown that 
patients with T2D[7,12] or metabolic syndrome[13], including those without CKD, exhibit higher levels 
of cLDL than healthy individuals. This increase is heightened even more in T2D patients with renal 
impairment[12]. MPO plays a major role in LDL carbamylation at inflammatory sites such as athero-
sclerotic lesions in diabetes. This is corroborated by the fact that plasma MPO is correlated with plasma 
cLDL levels in T2D patients[7]. To date, no data are available on cLDL levels in patients with T1D to our 
knowledge.

Numerous evidence supports the hypothesis that cLDL is more atherogenic than native LDL, and 
thus is likely to contribute to the increased cardiovascular risk in diabetes. At an epidemiological level, 
cLDL levels are predictive of cardiovascular events and all-cause mortality in patients with CKD[14]. At 
a cellular and molecular levels, numerous studies have shown that cLDL promotes atherosclerosis 
(Figure 2). First, it should be noted that cLDL shows greater accumulation in aortic subendothelial space 
more than native LDL[15]. In addition, cLDL is found in the aortic wall of apoE-null mice, and 
colocalizes with macrophage infiltration in aortic walls and atherosclerotic plaques[16]. Interestingly, 
the clearance of cLDL from human and rabbit plasma is modulated by the degree of carbamylation[17,
18], suggesting a longer residence time in subendothelial space.

Excessive deposition of cholesterol within arterial vessels and the development of foam cells are key 
features of atherosclerosis. Foam cells are derived mostly from macrophages that take up modified 
lipoproteins and lipoprotein-immune complexes. The various uptake mechanisms include scavenger 
receptors (SR) that are important particularly in the uptake of oxidized LDL (oxLDL). Several SR bind 
modified LDL, and are involved in the development and stability of atherosclerotic plaques, by 
initiating signaling cascades that regulate macrophage activation, lipid metabolism, and inflammation. 
It is now well established that SR-A1, SR-B2 (i.e., CD36) and SR-E1 [i.e., lectin-like-oxLDL receptor-1 or 
lipoprotein receptor-1 (LOX-1)], all expressed by multiple cell types in arterial tissue, are activated by 
the binding of oxLDL[19]. It has been shown that cLDL, like oxLDL, is more efficient than native LDL at 
inducing the accumulation of lipids in murine macrophages and promoting foam cell formation[3,20]. 
This effect appears to be mediated by the activation of SR. In fact, cLDL is able to bind to SR-A1, CD36, 
and LOX-1[15,20]. SR-A1 seems to play a crucial role in the effects of cLDL effects, because mice lacking 
SR-A1 are not prone to cholesterol accumulation and foam cell formation, and blockage of SR-A1 by an 
antibody reduces foam cell formation in murine macrophage cell cultures[3,20]. The inhibition of LOX-1 
by an antibody also reduces foam cell formation, suggesting that this receptor also has a pivotal role in 
the effects of cLDL effects on macrophages[20]. The role of CD36 remains unclear, since cLDL-induced 
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Figure 2 Role of carbamylated low-density lipoproteins in atherosclerosis. Carbamylated low-density lipoproteins (cLDL) facilitates immune cell 
recruitment in the subendothelial space by increasing the expression of adhesion molecules vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. 
It also promotes accumulation of lipids in macrophages and thus facilitates foam cell formation. cLDL induces platelet aggregation and thrombus formation associated 
with a higher activity of tissue factor and plasminogen activator inhibitor type 1. In addition, cLDL activates NAPDH oxidase and increases the production of reactive 
oxygen species. cLDL are less efficient than native LDL at activating endothelial nitric oxide synthase. Lastly, cLDL is cytotoxic for endothelial cells. VCAM-1: 
Vascular cell adhesion molecule-1; ICAM-1: Intercellular adhesion molecule-1; PAI-1: Plasminogen activator inhibitor type 1; cLDL: Carbamylated low-density 
lipoproteins; ROS: Reactive oxygen species; eNOS: Endothelial nitric oxide synthase.

foam cell formation is attenuated by an anti-CD36 antibody in murine macrophage cell cultures[20], 
whereas mice lacking CD36 are not more subjects to cholesterol accumulation and foam cell formation
[3]. Furthermore, cLDL are less well recognized by the LDL receptor than native LDL[3,18,21].

The adhesion of monocytes to endothelium and their migration into the intima are major steps in the 
initiation and progression of atherosclerosis. Next, monocytes differentiate into macrophages in the 
arterial wall, and are prone to becoming foam cells under proatherogenic conditions. The recruitment of 
monocytes into the intima is triggered by an increased production of chemotactic factors in vessels such 
as monocyte chemoattractant protein (MCP)-1 (i.e., C-C motif chemokine ligand 2), and also by an 
upregulation of adhesion molecules on endothelial cells, such as intercellular adhesion molecule-1 
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and selectins. It has been shown that cLDL 
facilitates monocyte adhesion to endothelial cells by increasing VCAM-1 and ICAM-1 expression on 
endothelial cells[15,22]. However, cLDL does not modify P-selectin expression and MCP-1 production 
in endothelial cells[22]. The LOX-1 receptor seems to be involved in the monocyte adhesion induced by 
cLDL, in contrast to SR-A1 and CD36[15]. A vicious circle could be set up since cLDL induces LOX-1 
expression in endothelial cells[15,23].

More broadly, cLDL promotes endothelial dysfunction, which is a cornerstone of atherosclerosis 
development. Ex-vivo experiments have shown that cLDL impairs endothelium-dependent relaxation of 
murine aortic rings[14]. From a mechanistic point of view, cLDL activates LOX-1 receptor and its 
effector p37-MAPK, thus activating NADPH-oxidase in endothelial cells[14]. Indeed, cLDL has been 
shown to induce more oxidative stress and reactive oxygen species (ROS) than native LDL in human 
umbilical vein endothelial cells (HUVEC)[23], human aortic endothelial cells[14], murine aortic rings
[14], murine aorta and blood[24], and in human endothelial progenitor cells[25]. Enhanced production 
of ROS is known to reduce the bioavailability of endothelium-derived nitric oxide (NO), contributing to 
endothelial dysfunction. Thus, cLDL leads to reduced activating phosphorylation of endothelial NO-
synthase (eNOS) at serine 1177[14,23], and to increased eNOS phosphorylation at the inhibitory site 
threonine 495[14]. cLDL also facilitates eNOS uncoupling[14], which in turn could contribute to 
increased ROS production. cLDL-induced eNOS uncoupling could be at least partially due to S-
glutathionylation of eNOS[14].

cLDL is cytotoxic for human endothelial cells[15,20,26], and it induces more apoptosis than native 
LDL[23,26,27]. LOX-1 receptor plays a role since its downregulation using a small interfering RNA 
strongly attenuates cLDL-induced apoptosis in HUVEC[23]. In addition, the cLDL-induced cytotoxic 
effect on endothelial cells is at least partially mediated by endonuclease G, a nuclease implicated in 
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caspase-independent cell death via DNA fragmentation[27]. Moreover, cLDL induces autophagy in 
human coronary artery endothelial cells[28]. cLDL accelerates senescence in human endothelial 
progenitor cells, which may play a role in the failure to repair endothelial damage in atherosclerosis
[25]. One study has shown that cLDL induces endothelial cell proliferation, leading to more cell death 
than native LDL, through the mitogen-activated protein kinase MAPK ERK1/2 pathway[29].

Although vascular smooth muscle cells (VSMC) play a complex role in atherosclerosis, VSMC and 
VSMC-derived cells are recognized to be a major source of plaque cells and extracellular matrix at all 
stages of atherosclerosis. It has been well demonstrated that cLDL induces a marked proliferation of 
VSMC[3,26,30]. However, cLDL has no cytotoxic effects on VSMC or on extracellular matrix protein 
synthesis by VSMC[30]. In addition, cLDL enhances migration of VSMC by the increasing the 
expression of LR11, a member of the LDL receptor family highly expressed in VSMC of the intima[31]. 
Lastly, cLDL increases VCAM-1 and ICAM-1 expression on VSMC[30], which could facilitate immune 
cell recruitment in the arterial wall.

Thrombus formation on disrupted atherosclerotic plaques or arterial erosions promotes the 
development of atherosclerotic lesions and frequently causes acute coronary syndrome. It has been 
elegantly shown that human cLDL administered to mice accelerates arterial thrombus formation 
compared to native LDL[24]. The underlying mechanisms could be a higher activity of tissue factor and 
plasminogen activator inhibitor type 1 through a LOX-1-dependent mechanism[24]. Moreover, cLDL 
enhances platelet aggregation in vitro[24].

Lastly, it has been suggested that cLDL may be involved in the pathogenesis of T2D by facilitating 
insulin resistance. Indeed, cLDL attenuates glucose uptake and decreases glucose transporter type 4 
membrane expression via NO mediated tyrosine nitration of insulin receptor substrate-1 in rat muscle 
cells[32].

CARBAMYLATED HDL
HDL is a heterogeneous lipoprotein in terms of its size, density and lipid and protein composition. 
ApoA-I is the major functional and structural protein. HDL is well known to protect against athero-
sclerosis by its preponderant role in the removal of excess cholesterol from the vascular wall. In 
addition, HDL also exhibits anti-inflammatory, anti-oxidative, anti-thrombotic and endothelium 
protection properties.

HDL undergoes modifications at sites of inflammation and within atherosclerotic lesions, disrupting 
their antiatherogenic effects (reviewed in[33]). HDL is prone to be carbamylated within the 
subendothelial space[34,35], and apoA-I isolated from human atherosclerotic lesions is largely more 
carbamylated than total proteins in plasma[36]. In addition, HDL isolated from human atherosclerotic 
lesions of the abdominal aorta has been demonstrated to be largely more carbamylated than in plasma
[34,35]. The relative contribution of the enzymatic (thiocyanate/MPO system) and the non-enzymatic 
(cyanate) pathways in HDL carbamylation is a matter of debate. It has been shown that MPO is 
associated with HDL within human atheroma[37], and that apoA-I is a selective target for MPO within 
atherosclerotic lesions[37]. MPO induces the carbamylation of lipid-poor apoA-I[36], a fact that is partic-
ularly relevant because the majority of apoA-I within aortic tissue is in lipid-free and lipid-poor forms
[38]. It has been observed that MPO-induced modifications of HDL, such as the formation of 3-chloro-
tyrosine (a specific fingerprint of MPO oxidation), is particularly elevated in human atherosclerotic 
intima[39]. In addition, the 3-chlorotyrosine content of HDL correlates significantly with the CML 
content[35]. In addition, the CML content of HDL from T2D patients correlates with MPO concentration
[40]. All these data taken together suggest that the carbamylation of HDL is largely mediated by MPO.

It has been observed that T2D patients (with or without CKD) have higher levels of cHDL than 
healthy individuals[12,40]. Moreover, cHDL levels are higher in T2D patients with coronary artery 
disease than in those without coronary artery disease[40]. Very interestingly, a recent prospective study 
has shown that cHDL serum level in T2D patients is independently associated with all-cause and 
cardiovascular-related mortality after a median follow-up of 14 years[41]. Furthermore, cHDL level 
seems to be associated with renal outcomes in T2D, since it has been recently shown to predict CKD 
progression in T2D patients[12]. This observation could be in line with previous data suggesting that 
alterations of HDL metabolism may be associated with renal outcomes in T2D, since HDL-cholesterol 
level is an independent risk factor for the development of kidney microvascular disease[42].

In T1D, data on cHDL levels are more scarce, although it has been demonstrated that plasma MPO 
activity is increased compared to non-diabetic individuals[4-6]. Our group recently showed that a 
standard intervention to improve glycemic control in T1D patients decreased cHDL levels[43]. That was 
independently associated with an improved cholesterol efflux capacity[43], which is now well 
recognized as a predictor of cardiovascular events.

One of the well-known properties of HDL is its ability to promote cholesterol efflux from lipid-laden 
macrophages using the transporters ATP-binding cassette transporter A1 (ABCA1), ATP-binding 
cassette transporter G1 and SR-BI, and as a carrier for its excretion. Over the past few years, research has 
demonstrated that the ability of HDL to promote cholesterol efflux is more strongly inversely associated 
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with incident cardiovascular events than circulating HDL cholesterol level[44,45]. Several findings 
suggest that carbamylation of HDL alters its atheroprotective properties (Figure 3). Our group and 
others have shown that carbamylation of HDL[35,43] or apoA-I[46] alters its ability to promote 
cholesterol efflux in human macrophages. Carbamylation reduces the ability of HDL to promote SR-BI-
dependent cholesterol efflux in macrophages, but the carbamylation of apoA-I has no effect on ABCA1-
mediated cholesterol uptake[35]. This result could be due to a change in the affinity of cHDL for SR-BI 
in macrophages[35]. Lecithin-cholesterol acyltransferase (LCAT), which is involved in the maturation of 
spherical HDL and in the initial step of reverse cholesterol transport, is less active in cHDL[34].

In addition, cHDL has altered protective effects on endothelium. Endothelial repair plays a crucial 
role in the prevention of vascular disease by maintaining the integrity of the endothelium. The ability of 
cHDL to stimulate migration, angiogenesis and proliferation is reduced in human aortic endothelial 
cells compared to native HDL[47]. cHDL decreases vascular endothelial growth factor receptor-2 and 
SR-BI levels, and subsequently affects the PI3K/Akt downstream pathway in human aortic endothelial 
cells, all of which being involved in endothelial repair[47]. This downregulation of the capacity for 
endothelial repair induced by cHDL is likely to contribute to endothelial dysfunction in diabetes. 
Paraoxonase-1 (PON-1) activity was found to be inversely correlated with cHDL level in end-stage renal 
disease[47]. cHDL loses its antiapoptotic activity on human coronary artery endothelial cells[3].

HDL particles have also anti-inflammatory functions. Very recently, an inverse association between 
the anti-inflammatory capacity of HDL and incident cardiovascular events has been established in a 
general population cohort, independently of both HDL cholesterol level and cholesterol efflux capacity
[48]. Many studies suggest that the anti-inflammatory properties of HDL are altered by its car-
bamylation. Thus, cHDL promotes the adhesion of monocytes to HUVEC in a dose-dependent manner
[40]. The carbamylation of HDL or of recombinant HDL reduces its ability to inhibit the tumor necrosis 
factor α-induced expression of VCAM-1, ICAM-1 and E-selectin in human coronary endothelial cells[40,
46]. The mechanism implies an upregulation of the nuclear factor-kappaB/p65 pathway[40], which 
plays an important role in the regulation of adhesion molecules.

Under physiological conditions, HDL is able to activate eNOS and therefore to stimulate NO 
production by the endothelium. This contributes to some beneficial effects of HDL such as vasore-
laxation or the inhibition of different factors that promote atherosclerosis progression[49]. We and 
others have found that HDL is less efficient at inducing NO production in endothelial cells in patients 
with T2D[50] or metabolic syndrome[51]. We showed that sphingosine-1-phosphate depletion of HDL is 
the main factor responsible for this defect in metabolic syndrome[51]. To our knowledge, no direct 
evidence to date demonstrates that cHDL is less efficient at inducing NO production. However, HDL 
modified by HOCl, another MPO product besides cyanate, was less efficient at activating eNOS, with 
associated changes in eNOS intracellular distribution[52]. MPO/HOCl induces the formation in HDL of 
2-chlorohexadecanal from HDL-associated plasmalogens, and this lipid has been shown to inactivate 
eNOS[52]. Interestingly, we have reported that HDL was depleted in plasmalogens from patients with 
T1D[53], T2D[54] and metabolic syndrome but without diabetes[55], and that could be an indirect 
marker of MPO/HOCl action on HDL particles.

HDL contributes to protecting LDL from oxidation. Plasmalogens and the HDL-associated proteins 
LCAT and PON-1 are involved in the anti-oxidant properties of HDL. The carbamylation of HDL 
reduces its ability to inhibit radical-induced LDL oxidation[34]. The carbamylation of LCAT and PON-1 
could explain this alteration, since it has been shown that PON-1 is prone to carbamylation[56], and 
above all that the activity of both LCAT and PON-1 is decreased in cHDL[34].

CONCLUSION
We have summarized here the main data on lipoprotein carbamylation in diabetes and on its potential 
role in the development of atherosclerosis. There is now accumulating evidence suggesting that cLDL 
plays a role in atherosclerosis, as oxLDL has been known for a long time. For example, it has been 
demonstrated that cLDL promotes foam cell formation, immune cell recruitment in the vascular wall, 
eNOS inactivation and uncoupling and endothelial repair defects. HDL, on the other hand, has altered 
atheroprotective properties after carbamylation. cHDL loses the ability to remove cholesterol from 
macrophages, to inhibit monocyte adhesion and recruitment, to induce eNOS activation and also to 
inhibit apoptosis. Taken together, this means it is very likely that these abnormalities in the biological 
functions of LDL and HDL after carbamylation contribute to atherosclerosis and to the increased 
cardiovascular risk in diabetes.

Minimizing the carbamylation of lipoproteins therefore appears to be a relevant approach in the 
management of diabetes to reduce cardiovascular risk. Above all else, smoking (a well-known source of 
cyanate) cessation is obviously a significant action to reduce lipoprotein carbamylation, and in general 
to decrease cardiovascular risk. Moreover, we must keep in mind that more than 40% of people with 
diabetes are likely to develop CKD[57]. Therefore, the prevention of CKD and subsequent elevated 
uremia trough the usual care is also a way to prevent lipoprotein carbamylation in diabetic patients. 
Our group recently showed that conventional treatment to improve glycemic control in uncontrolled 
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Figure 3 Role of carbamylated high-density lipoproteins in atherosclerosis. The atheroprotective properties of high-density lipoproteins (HDL) are 
altered after carbamylation. Thus, carbamylation HDL (cHDL) partially loses its ability to remove cholesterol from macrophages and to inhibit monocyte adhesion. 
cHDL is less able to protect low-density lipoproteins from oxidation, likely due to reduced lecithin-cholesterol acyltransferase and paraoxonase-1 activities. Lastly, 
cHDL has an impaired capacity to facilitate endothelial repair. VCAM-1: Vascular cell adhesion molecule-1; ICAM-1: Intercellular adhesion molecule-1; PAI-1: 
Plasminogen activator inhibitor type 1; LDL: Low-density lipoproteins; LCAT: Lecithin-cholesterol acyltransferase; PON-1: Paraoxonase-1; cHDL: Carbamylation high-
density lipoproteins.

T1D patients is accompanied by a decrease in cHDL, despite the lack of a clear mechanistic explanation
[43].

The inhibition of MPO could also be a promising strategy to inhibit the formation of carbamylated 
lipoproteins[58,59]. However, it should be kept in mind that MPO plays a role in innate immunity, and 
such an approach must be thoroughly evaluated regarding infection risk. The nuclear receptor 
peroxisome proliferator-activated receptor (PPAR)-gamma regulates MPO expression in macrophages
[60]. Interestingly, it has been demonstrated that the PPAR-gamma agonist rosiglitazone decreases MPO 
expression and activity in neutrophils from hypercholesterolemic rabbits[61], and that it lowers plasma 
cLDL and MPO levels in T2D patients with normal renal function[7]. Infusion of apoA-I or recombinant 
HDL resistant to carbamylation could be an interesting strategy in diabetic patients with cardiovascular 
events. This could theoretically be made by substituting relevant MPO/cyanate-targeted lysine residues 
of apoA-I, by analogy with what was done with the apoA-I variant 4WF, which is made resistant to 
MPO-induced oxidation by replacing four tryptophan residues with phenylalanine[62,63]. Another 
innovative strategy is the local delivery of adeno-associated viral vectors expressing apoA1 variants 
using endovascular stenting[64]. Finally, antioxidants could counteract the increased ROS production 
and MPO-mediated oxidation of lipoproteins in diabetes. Ascorbic acid (vitamin C), α-tocopherol 
(vitamin E) and above all lycopene have been shown to inhibit LDL carbamylation in vitro[65].

In addition, it has been hypothesized that ornithine may be able to compete with ε-amino groups of 
lysine residues found in apolipoproteins in their binding to isocyanate, leading to a decrease in cLDL 
formation[66]. Finally, it has been shown that flavonoids are able to inhibit LDL carbamylation 
(probably by scavenging cyanate ions)[67].

To conclude, increasing the knowledge of lipoprotein abnormalities in diabetes is important to better 
understand the pathophysiology of diabetic dyslipidemia, and to develop new therapeutic strategies to 
reduce cardiovascular risk. As far as carbamylation is concerned, recent studies suggest that 
carbamylated lipoproteins likely play a causative role in atherosclerosis, beyond simply being a 
biomarker of cardiovascular risk in patients with diabetes.
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