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Abstract
Many digestive system malignant tumors are characterized by high incidence and 
mortality rate. Increasing evidence has revealed that the tumor microenvironment 
(TME) is involved in cancer initiation and tumor progression. Tumor-associated 
macrophages (TAMs) are a predominant constituent of the TME, and participate 
in the regulation of various biological behaviors and influence the prognosis of 
digestive system cancer. TAMs can be mainly classified into the antitumor M1 
phenotype and protumor M2 phenotype. The latter especially are crucial drivers 
of tumor invasion, growth, angiogenesis, metastasis, immunosuppression, and 
resistance to therapy. TAMs are of importance in the occurrence, development, 
diagnosis, prognosis, and treatment of common digestive system malignant 
tumors. In this review, we summarize the role of TAMs in common digestive 
system malignant tumors, including esophageal, gastric, colorectal, pancreatic and 
liver cancers. How TAMs promote the development of tumors, and how they act 
as potential therapeutic targets and their clinical applications are also described.

Key Words: Tumor-associated macrophages; Digestive system malignant tumors; Tumor 
development; Therapeutic targets; Clinical applications
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Core Tip: This review summarizes the role of tumor-associated macrophages (TAMs) in common digestive 
system malignant tumors, including esophageal, gastric, colorectal, pancreatic and liver cancers. How 
TAMs promote the development of tumors, and how they act as potential therapeutic targets and their 
clinical applications are also described.
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INTRODUCTION
Many digestive system malignant tumors have high incidence and mortality rate, including esophageal 
cancer (EC), gastric cancer (GC), colorectal cancer (CRC), pancreatic cancer (PC), and liver cancer (LC). 
There is increasing evidence that the tumor microenvironment (TME), which encompasses the tumor 
tissue structure comprising stromal cells, is involved in cancer initiation and tumor progression[1-4]. 
Tumor-associated macrophages (TAMs) as a predominant constituent of the TME, are a special type of 
macrophages generated by circulating monocytes and recruited into the TME[5]. TAMs are categorized 
into two functionally contrasting subtypes: Classically activated M1 macrophages and alternatively 
activated M2 macrophages. TAMs are extensively present in various tumors[6,7], which can participate 
in the regulation of various biological behaviors and influence the prognosis of digestive system 
cancers. In this review, we summarize the role of TAMs in EC, GC, CRC, PC and LC. More specifically, 
we also described how TAMs promote the development of tumors (Figure 1), and how they act as 
potential therapeutic targets (Figure 2) and their clinical applications.

CHARACTERISTICS OF TAMS
Origin of TAMs
It was originally believed that macrophages in the TME originated from circulating monocyte 
precursors in the bone marrow (BM), under the influence of tissue microenvironmental signals. 
However, other studies suggested a minor splenic[8] and early embryonic[9] contribution to the main 
proportion of TAMs derived from the BM, validating the coexistence of macrophages with different 
origins.

TAM polarization
In accordance with the commonly accepted theory[10], TAMs can be primarily categorized into the 
antitumor M1 phenotype (classically activated state) and the protumor M2 phenotype (alternatively 
activated state), which have contrasting functions. The former has the capacity to remove tumor cells
[11] and facilitate tumor cell destruction via initiating cytokine[12] production within the TME and 
recruitment of immunostimulating leukocytes and tumor cells phagocytosis. On the contrary, M2 
macrophages have a central role in propagating tumorigenesis. The function of M2 macrophages 
includes the removal of debris, promotion of angiogenesis, tissue reconstruction, and injury repair, as 
well as facilitation of tumorigenesis and progression[6].

TAM plasticity
Upon recruited to the TME by tumor-secreted stimuli, TAMs undergo M1- or M2-like activation in 
response[13]. However, as a result of their remarkable plasticity, TAMs can reversibly respond to 
specific stimuli in the TME and switch from one phenotype to another[14], transition between antitumor 
M1-like and protumor M2-like phenotypes amidst the immune response. Colegio et al[15] have reported 
that the hypoxic TME can induce M2-type polarization through the production of tumor-derived lactic 
acid and hypoxia-inducible factor (HIF)-1α[15]. Many other cytokines can govern M2 polarization, 
including interleukin (IL)-21[16] and IL-33[17]. TAM plasticity highlights that the reprogramming of 
TAMs is an attractive potential therapeutic target to inhibit tumor progression.

https://www.wjgnet.com/1948-5204/full/v15/i4/596.htm
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Figure 1 Tumor-associated macrophages can promote the development of tumors. Tumor-associated macrophages (TAMs) can affect cancer 
progression through multiple mechanisms, which are varying in esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), pancreatic cancer (PC), liver 
cancer (LC). Color differences indicate various strategies the TAMs use on their targets, the arrows represent secretory or regulatory behaviors, and braces represent 
combined action of the factors. Moreover, the pink icons stand for common signaling pathways and the green icons, biological processes. In EC, growth/differentiation 
factor-15 and transforming growth factor-beta receptor are involved in regulations. In GC, stimulation with anti-inflammatory triggers, growth factors, chemokine, 
exosomes and enzymes, leads to expression of transcription factors. In CRC, TAMs work with exosomes, matrix metalloproteinases and cathelicidin, concerning 
signaling pathways, cell cycle transition, metabolic reprogram, inflammatory pathways and oxidative stress. In PC and LC, TAMs regulate their development similarly 
through interleukins and Toll like receptor 4, leading to activation of transcription factors and epithelial mesenchymal transition of tumors. Thus, TAMs can regulate 
digestive system malignant tumors by diverse direct and indirect mechanisms. TAM: Tumor-associated macrophages; GDF-15: Growth/differentiation factor-15; TGF-
β: Transforming growth factor-β; PI3K: Phosphoinositide 3-kinase; MMP9: Matrix metalloproteinases 9; EGF: Epidermal growth factor; VEGF: Vascular endothelial 
growth factor; CCL5: CC ligand 5; TNF-α: Tumor necrosis factor-α; IL: Interleukin; STAT3: Signal transducers and activator of transcription 3; NF-kB: Nuclear factor 
kB; PD-1: Programmed death 1; PDA: Pancreatic ductal adenocarcinoma; TLR4: Toll like receptor 4; VCAM: Vascular cellular adhesion molecule-1; EMT: Epithelial 
mesenchymal transition; DNMT1: DNA methyltransferase 1.

TAM STATUS IN TUMORS
TAMs can influence tumor progression 
M2 TAMs are crucial drivers of tumor invasion, growth, angiogenesis, metastasis, immunosuppression, 
and resistance to therapy[18]. TAMs can propagate tumor progression through upregulation of 
proteolytic enzymes[19] and in a manner dependent on tumor necrosis factor (TNF)-α and matrix 
metalloproteinases (MMPs)[20]. TAMs can also express a number of soluble factors[13] and major 
inflammatory mediators[21], stimulating tumor cell proliferation and survival.

TAMs act in various microenvironments, such as invasive regions where they facilitate cancer cell 
movement, stromal and perivascular regions where they promote metastasis, and avascular and 
perivascular regions where hypoxic TAMs induce angiogenesis[18].

Clinical implication of TAMs
Research advances in cancer immunology have led to multifarious strategies for modulation of TAMs 
for therapeutic applications[22], including strategies to deplete TAMs, inhibit TAM recruitment, 
influence TAM polarization, and target TAM receptors. M2 TAMs can also contribute to evaluating 
prognosis, which has been proven to be correlated with poorer outcomes in almost all digestive system 
malignant tumors[23]. On the contrary, increasing levels of M1 TAMs indicate better prognosis[24], 
resulting in emerging therapeutic strategies to remove M2 TAMs or alter TAM phenotypes, which can 
facilitate promising therapeutic benefits.
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Figure 2 Tumor-associated macrophages act as potential therapeutic targets for tumors. Multifarious strategies for modulation of tumor-associated 
macrophages (TAMs) are unveiled for therapeutic applications, which are varying in different digestive system malignant tumors. Color differences indicate various 
approaches to regulate TAMs’ behaviors, the arrows represent secretory or regulatory behaviors, and braces represent combined action of the factors. Moreover, the 
pink icons stand for common signaling pathways, the green icons stand for biological processes, and the purple icons stand for different reactions of TAMs, including 
TAMs’ polarization, activation, recruitment, trafficking, infiltration, transcription, and so on. Tumor and immune cells secrete growth factors, cytokines, chemokines, 
metabolites and extracellular vesicles that promote TAM protumor polarization. Besides, RNA, virus and specific cells also exert influence on TAM plasticity and 
activation. Several key signaling pathways are involved in these regulation processes, including phosphoinositide 3-kinase-Akt-mammalian target of rapamycin, 
nuclear factor kB, stimulator of interferon genes, and so on. Thus, TAMs can act as a promising potential therapeutic target for digestive system malignant tumors. 
NCAM: Neural cell adhesion molecule; FGF-2: Fibroblast growth factor 2; ATF3: Activation transcription factor 3; TAM: Tumor-associated macrophages; PI3K: 
Phosphoinositide 3-kinase; HPV: Human papillomavirus; STAT3: Signal transducers and activator of transcription 3; STING: Stimulator of interferon genes; IL: 
Interleukin; TNF-α: Tumor necrosis factor-α; VEGF: Vascular endothelial growth factor; mTOR: Mammalian target of rapamycin; iNOS: Inducible nitric oxide 
synthase; NF-kB: Nuclear factor kB; MAGL: Monoacylglycerol lipase; TREM: Triggering receptors expressed on myeloid cells; EMT: Epithelial mesenchymal 
transition; EGF: Epidermal growth factor; HSC: Hematopoietic stem cell; GARP: Glycoprotein A repetitions predominant; IFN-γ: Interferon-γ; EVs: Extracellular 
vesicles; CCL: CC ligand; PTEN: Phosphatase and tensin homolog.

Interaction of TAMs and T cells
Numerous studies have shown that TAMs can directly and indirectly dampen the antitumor activity of 
cytotoxic T lymphocytes (CTLs)[25] and tumor-infiltrating T cells[26] in various tumors[27,28]. 
Underlying this functional role are molecular mechanisms that initially involve immune checkpoint 
engagement, which is initially mediated through the expression of molecules like programmed cell 
death 1 (PD-1) ligand 1 (PD-L1)[29]. In addition, the production of inhibitory cytokines and 
transcription factors are also implicated in the suppression progress, which mainly include IL-10[28], 
interferon (IFN)-γ[30], transforming growth factor (TGF)-β[31,32] and HIF-1α[26]. Metabolic activities of 
TAMs, concerning the consumption of metabolites such as L-arginine[33] and generation of reactive 
oxygen species, also contribute to suppression of T-cell responses that is either specific to or indep-
endent of antigens. Finally, TAMs inhibit T-cell responses indirectly by controlling the immune 
microenvironment, including regulation of the vascular structure, extracellular matrix[34] and the 
chemokine milieu, such as TAM-derived chemokine CXC ligand (CXCL)9 and CXCL10[35]. Conversely, 
T regulatory (Treg) cells maintain metabolic adaptability, mitochondrial integrity, and survival rate of 
M2-like TAMs in an indirect but selective manner. This is achieved through the inhibition of IFN-γ 
secretion by CD8+ T cells, which subsequently hinders the activation of fatty acid synthesis intervened 
by sterol regulatory element binding protein 1 in immunosuppressive M2-like TAMs[36].
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Specifically in digestive system cancers, TAMs are similarly thought to have mutual modulation with 
T cells, including but not limited to blocking the recruitment and priming of T cells and resulting in T-
cell exclusion within the TME. In GC, TAMs and LAMP3+ dendritic cells (DCs) are involved in 
mediating T-cell activity and form intercellular interaction hubs with tumor-associated stromal cells
[37]. IL-10+ TAM infiltration yielded an immunoevasive TME featured by Treg cell infiltration and CD8+ 
T-cell dysfunction[38]. In CRC, C1q+ TAMs modulate tumor-infiltrating CD8+ T cells by expressing 
multiple immunomodulatory ligands in an RNA N6-methyladenosine (m6A)-dependent manner. There 
is evidence that compensation between TAMs and Forkhead box (Fox)p3+ Treg cells promote tumor 
progression by limiting antitumor immunity. Decreasing colony-stimulating factor (CSF)1-dependent 
TAMs led to heightened CD8+ T-cell against tumors, although the impact on tumor growth was 
restricted by a compensatory rise in Foxp3+ Treg cells[39]. In pancreatic ductal adenocarcinoma (PDAC), 
receptor-interacting serine/threonine protein kinase (RIP)1 inhibition in TAMs resulted in CTL 
activation and T helper (Th) cell differentiation toward a mixed Th1/Th17 phenotype[40]. By targeting 
proliferating tumor-infiltrating macrophages, the infiltration of CD8+ CTL and the spatial redistribution 
of CD8+ T cells within tumors could be escalated[41]. TAMs are critical regulators in orchestrating 
epigenetic profile of PDAC-infiltrating T cells towards a protumoral phenotype[42]. In hepatocellular 
carcinoma (HCC), HCC-derived exosomes instigate macrophages to heighten IFN-γ and TNF-α 
expression in T cells, while upregulating the expression of inhibitory receptors PD-1 and cytotoxic T-
lymphocyte-associated antigen-4[43]. These findings collectively demonstrate that TAMs are central 
drivers of immunosuppressive TME within digestive system tumors by suppressing T cell mobilization 
and performance.

TAMS AND TARGETED THERAPIES OF DIGESTIVE SYSTEM MALIGNANT TUMORS
EC
TAMs can promote development of EC: TAMs can facilitate a variety of protumorigenic mechanisms in 
EC (Figure 1 and Table 1). In esophageal squamous cell carcinoma (ESCC), growth differentiation factor 
15 derived from TAMs promoted cancer progression via TGF-β type II receptor activation[44].

TAMs act as potential therapeutic targets for EC: TAMs might be potential therapeutic targets to 
prevent EC progression (Table 2). There is evidence supporting that miR-498 inhibits autophagy and 
M2-like polarization of TAMs in EC via inhibiting murine double minute 2-mediated degradation of 
activated transcription factor-3[45]. miR-155-regulated fibroblast growth factor (FGF)-2 expression from 
TAMs inhibited EC cell invasion, migration and proliferation, and blocked vasculature formation[46]. 
EC-derived extracellular vesicle miR-21-5p upregulated ESCC-derived EVs-miR-21-5p through the 
phosphatase and tensin homolog (PTEN)/AKT/signal transducers and activator of transcription 
(STAT)6 pathway, thus disorganizing macrophage polarization through, and contributing to epithelial 
mesenchymal transition (EMT) of ESCC cells via TGF-β/Smad2 signaling[47]. PTEN induced M2 TAM 
polarization through the phosphoinositide 3-kinase (PI3K)/AKT cascade, thus enhancing the malignant 
behavior of tumor-associated vascular endothelial cells and promoting ESCC angiogenesis[48]. Neural-
cell-adhesion-molecule- and FGF2-mediated FGFR1 signaling in the TME of EC regulated the survival 
and migration of TAMs and cancer cells[49]. Human papillomavirus 16 infection can promote an M2 
macrophage phenotype, contributing to the invasion and metastasis of ESCC[50].

Clinical significance of TAMs in EC: Clinically, TAMs are associated with the response of EC to 
chemotherapy. In patients undergoing neoadjuvant chemotherapy, high infiltration of CD68+/CD163- 
macrophages can serve as an adverse prognostic factor in esophageal and gastric adenocarcinoma[51,
52].

GC
TAMs can promote development of GC: In GC, peritoneal dissemination transpires through an 
invasive mechanism in which cancer cells directly penetrate the gastric wall and exfoliate into the 
peritoneal cavity (Table 1). Stimulation with anti-inflammatory triggers (such as TNF-α and IL-6), 
growth factors [such as epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) and 
TGF-β2], chemokines [such as chemokine CC ligand (CCL)5], exosomes and enzymes (such as MMP and 
PI3K/Akt), leads to expression of transcription factors [such as STAT6, nuclear factor (NF)-κB and Snail) 
(Figure 1). Intraperitoneal TAMs are involved in promoting peritoneal dissemination of GC via secreted 
IL-6[53] and polarization to the M2 phenotype[54].

Numerous studies have demonstrated that TAMs are capable of express multifarious cytokines and 
chemokines that promote tumor cell proliferation and viability, including EGF[55], VEGF[55], TNF-α
[56], TGF-β2[57], IL-6[56], and CCL5[58]. TAMs can facilitate the development of GC through multiple 
signal pathways, such as cyclooxygenase-2/prostaglandin E2/TGF-β/VEGF[59], and CCL5/chemokine 
CC receptor 5/STAT3[60].
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Table 1 Tumor-associated macrophages can promote the development of tumors

Diseases Factors Functions Mechanism Ref.

EC GDF-15 derived from TAMs Promoting progression of ESCC Activating TGF-β type II receptor [44]

TAMs Promoting peritoneal dissem-
ination of GC

Secreting IL-6 [53]

TAMs Promoting progression in GC Polarizing to the M2 phenotype [54]

TAMs Supporting peritoneal metastasis Producing EGF and VEGF [55]

TNF-alpha and IL-6 secreted 
by TAMs

Promoting proliferation of GC 
cells

Activating the NF-κB and STAT3 
signaling pathway to regulate PD-L1 
expression

[56]

TGFβ2 secreted by TAMs Promoting the invasion of GC cells Regulating Kindlin-2 through NF-κB [57]

CCL5 secreted by TAMs Promoting the proliferation, 
invasion and metastasis of GC 
cells

Stat3 signaling pathway [58]

TAMs Influencing omental milky spots 
and lymph nodes micrometastasis

COX-2/PGE-2/TGF-β/VEGF signal 
pathways

[59]

TAMs Promoting epigenetic silencing of 
tumor suppressor gelsolin, and 
silence GSN

Upregulation of DNMT1 by 
CCL5/CCR5/STAT3 signaling

[60]

TAMs Inducing invasion and poor 
prognosis in GC

Promoting MMP9 expression [63]

MMP-9 secreted by TAMs Suppressing distant metastasis in 
GC

PI3K/AKT/Snail dependent pathway [64]

Exosomal miR-487a derived 
from TAMs

Promoting the proliferation and 
tumorigenesis in GC

- [65]

GC

M2 macrophage-derived 
exosomes

Remodeling the cytoskeleton-
supporting migration in recipient 
GC cells

Mediating an intercellular transfer of 
ApoE-activating PI3K-Akt signaling 
pathway

[66]

TAMs Potentiating the angiogenic 
capacity of the TME

Oxidative stress-dependent manner [91]

Metabolic reprogramming in 
TAMs

Building a bridge between 
metabolic dysfunction and the 
onset and progression of CRC

Inflammatory pathways [92]

M2 macrophage-derived 
exosomes

Promoting CRC cells’ migration 
and invasion

MiR-21-5p and miR-155-5p [93]

Exosomal miR-183-5p Shuttled 
by M2 TAMs

Promoting the development of 
colon cancer

THEM4 mediated PI3K/AKT and NF-
κB pathways

[94]

MMP1 derived from TAMs Facilitating colon cancer cell prolif-
eration

Accelerating cell cycle transition from 
G0/G1 to S and G2/M phase

[95]

M2 TAMs Inducing colon cancer cell 
invasion

MMP-9 [96]

CRC

Cathelicidin secreted by TAMs Promoting the growth of CRC Recruiting inflammatory cells [97]

Intraperitoneal TAMs Promoting peritoneal dissem-
ination and chemoresistance

Inducing EMT [123]

M2 TAMs Promoting EMT TLR4/IL-10 signaling [124]

TAMs Promoting progression and the 
Warburg effect

CCL18/NF-Kb/VCAM-1 pathway [125]

CCL20 secreted by M2 TAMs Promoting the migration, 
epithelial-mesenchymal transition, 
and invasion of pancreatic cancer 
cells

- [126]

PC

TAMs Orchestrating functions PDA-
infiltrating T cells

Odulating PDA-infiltrating T cells 
epigenetic profile towards a pro-
tumoral phenotype

[42]

TAMs Promoting LCSLC self-renewal 
capability and carcinogenicity

M2 polarization [151]LC
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TAMs Promoting EMT of Hep3B 
hepatoma cells

TLR4 [153]

IL-6 secreted by TAMs Promoting expansion of these 
CSCs and tumorigenesis

STAT3 signaling [154]

Tumor-associated macrophages (TAMs) contribute to the development of esophageal cancer, gastric cancer, colorectal cancer, pancreatic cancer and liver 
cancer. The effective factors are TAMs and their derivants or secretions. The function indicates that how these factors exert influence on tumor progression, 
concerning proliferation, invasion, metastasis, migration and so on. In addition, the mechanism indicates the corresponding signaling pathways or 
regulatory intermediates, through which TAMs and their derivants promote or suppress development of the cancers. The last column indicates the 
corresponding reference of the entry. EC: Esophageal cancer; GC: Gastric cancer; CRC: Colorectal cancer; PC: Pancreatic cancer; LC: Liver cancer; GDF-15: 
Growth/differentiation factor-15; TAM: Tumor-associated macrophages; ESCC: Esophageal squamous cell carcinoma; TGF-β: Transforming growth factor-
β; IL: Interleukin; EGF: Epidermal growth factor; VEGF: Vascular endothelial growth factor; TNF-α: Tumor necrosis factor-α; NF-kB: Nuclear factor kB; 
STAT3: Signal transducers and activator of transcription 3; PD-L1: Programmed Cell Death Ligand 1; PGE-2: Prostaglandin E2; PI3K: Phosphoinositide 3-
kinase; MMP9: Matrix metalloproteinases 9; CCL5: CC ligand 5; TLR4: Toll like receptor 4; LCSLC: Liver cancer stem-like cell; CSC: Cancer stem cell.

It is also reported that TAMs may promote the invasion, metastasis and poor prognosis of GC cells by 
increasing expression of MMP9 and MMP2[61-63], mechanistically involving the PI3K/AKT/Snail-
dependent pathway[64].

As for exosomes like exosomal miR-487a[65] derived from M2 macrophages, they can promote the 
proliferation and tumorigenesis, and remodel cytoskeleton-supporting migration in GC, through the 
ApoE-activating PI3K/Akt signaling pathway[66].

TAMs act as potential therapeutic targets for GC: As a potential therapeutic target in GC, TAMs can be 
reprogrammed into a proinflammatory subtype by targeting many pathways (Table 2), such as the 
stimulator of interferon genes (STING) pathway[67]. At the RNA level, LINC00665 interfaces with 
transcription factor BTB domain and CNC homology 1 to activate Wnt1 and mediates M2 polarization 
of TAMs in GC[68]. Many proteins can also mediate TAM polarization (calmodulin 2[69], methionine 
enkephalin[70], ETS-like transcription factor 4[71], IL-6[72], and IL-8[73]) and repress TAM activation 
(vasoactive intestinal peptide[74]), via signaling pathways such as STAT3/HIF-1A/VEGF-A axis[69], 
opioid growth factor receptor/PI3K/AKT/mammalian target of rapamycin (mTOR) axis[70], and IL-6/
STAT3/interferon regulatory factor 4 axis[72], and so on. Lipid-droplet-dependent fatty acid 
metabolism[75] and miR-151-3p derived from GC exosomes[76] can also control the immunosup-
pressive phenotype of TAMs.

TAMs can be regulated by other cells, such as tumor-promoting GC-derived mesenchymal stromal 
cells[74] and IL-33-mediated mast cells[77].

Clinical significance of TAMs in GC: More clinically, TAMs can be used to potentiate localized 
immunotherapy of GC. For instance, researchers created an injectable hydrogel that can shear-thin and 
is loaded with polyphyllin II and resiquimod, which can help potentiate localized immunotherapy of 
GC by repolarizing TAMs[78]. Polyclonal antibody stimulator monotherapy or combined with PD-1 
antibody[79], as well as using a natural alkaloid product isolated from sophora alopecuroides. L, 
sophoridine[80], may decrease the number of immunosuppressive M2-polarized TAMs.

When it comes to chemotherapy, exosomes and other factors could represses the chemosensitivity of 
gastric tumor cells in a TAM-dependent manner. Exosomal transfer of TAM-derived miR-21 confers 
cisplatin resistance in GC cells[81]. Yu et al[82] discovered that macrophages can be stimulated into a 
tumor-protective M2-like phenotype by tumor-derived leukemia inhibitory factor through activation of 
the STAT3 signaling pathway[82]. 5-Fluorouracil (5-FU) treatment activates HIF-1α in GC cells, leading 
to the accumulation of M2 TAMs that shield tumor cells from the effects of chemotherapeutic agents
[83]. By generating growth differentiation factor 15 to exacerbate fatty acid β-oxidation in tumor cells, 
the recruited TAMs display the tumor-supporting M2 phenotype and enhance the chemoresistance of 
GC cells. And inversely polarized M2 macrophages can potentiate 5-FU resistance in tumors via CCL8 
and phosphorylation of the Janus kinase 1/STAT3 signaling pathway[84].

The positive correlation between high level of TAMs in tumors and low overall survival of patients 
has been demonstrated. High density of M2 TAMs was associated with larger tumor size, diffuse 
Lauren type, poor histological differentiation, deeper tumor invasion, lymph node metastasis, and 
advanced TNM stage[85]. Abundance of CD163-positive TAMs in early GC[86] as well as CD206+ 
myeloid-derived TAMs[87] predict te recurrence after curative resection. CD8+ tumor-infiltrating 
lymphocytes and CD68+ TAMs[88], and high expression of HIF-1α combined with TAM infiltration[89] 
and coexistence of osteopontin and infiltrating M2 TAMs[90] can serve as a prognostic marker in GC.

CRC
TAMs can promote the development of CRC: The protumor role of TAMs in the development of colon 
carcinoma has been confirmed (Table 1). TAMs work with exosomes, MMP and cathelicidin, concerning 
signaling pathways (such as PI3K/Akt and NF-κB), cell cycle transition, metabolic reprogramming, 
inflammatory pathways, and oxidative stress (Figure 1). TAMs potentiate the angiogenic capacity of the 
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Table 2 Tumor-associated macrophages act as potential therapeutic targets for tumors

Diseases Factors Types Targets Functions Mechanism Ref.

MiR-498 MiRNA Inhibiting autophagy 
and M2-like polarization 
of TAMs in esophageal 
cancer

- Inhibiting MDM2-mediated 
ATF3 degradation

[45]

MiR-155 MiRNA Regulating TAMs FGF2 
expression

Suppressing EC cell 
proliferation, migration, 
invasion and inhibiting 
vasculature formation

- [46]

EC-Derived 
Extracellular Vesicle 
miR-21-5p

MiRNA Disorganizing 
macrophages 
polarization

Contributing to EMT of 
ESCC cells via TGF-β/
Smad2 signaling

PTEN/AKT/STAT6 
pathway

[47]

PTEN Protein Inducing M2 TAMs 
polarization

Enhancing the malignant 
behavior of TECs, 
promoting ESCC 
angiogenesis

Activating the PI3K/AKT 
signaling pathway

[48]

NCAM- and FGF-2-
mediated FGFR1 
signaling

Signaling Regulating the survival 
and migration of TAMs 
and cancer cells

- NCAM knockdown via a 
suppression of PI3K-Akt and 
FGFR1 signaling, and rhFGF-
2 -through FGFR1 signaling

[49]

EC

HR-HPV; HPV16 
infection

Virus Promoting M2 
macrophages phenotype

Promoting the invasion 
and metastasis of 
esophageal squamous 
cell carcinoma

- [50]

STING Gene Promoting TAMs 
polarizing into pro-
inflammatory subtype

Inducing apoptosis of 
GC cells

IL6R-JAK-L24pathway [67]

LINC00665 LncRNA Activating Wnt1 and 
mediating TAMs M2 
polarization

- Interacting with BTB domain 
and BACH1

[68]

CALM2 Protein Polarizing TAMs Facilitating angiogenesis 
and metastasis of GC

STAT3/HIF-1A/VEGF-A [69]

MENK Protein Skewing macrophages 
toward M2 phenotype 
from M1 phenotype

Inducing cells apoptosis OGFr/PI3K/AKT/Mtor 
signaling pathway

[70]

ELK4 Transcription 
factor

Promoting M2 
polarization

Promoting the 
development of GC

Reducing the PJA2-
dependent inhibition of 
KSR1 by transcriptional 
activation of KDM5A

[71]

IL-6 Cytokine Polarizing the Mφs Promoting tumor 
invasion

IL-6/STAT3/IRF4 signaling 
pathway

[72]

GC-MSCs Cell Promoting M2 
polarization

Promoting metastasis 
and EMT in GC

Secreting IL-6 and IL-8 [73]

Vasoactive intestinal 
peptide

Protein Repressing activation of 
TAMs

- Regulating TNFα, IL-6, IL-12 
and Inos

[74]

Lipid droplet-
dependent fatty acid

Fatty acid Controlling the immune 
suppressive phenotype 
of TAMs

- - [75]

MiR-151-3p derived 
from GC exosomes

Exosome Inducing M2-phenotype 
polarization

Promoting tumor 
growth

- [76]

GC

IL-33-mediated mast 
cell

Cell Mobilizing macrophages Promoting GC - [77]

PKN2 Protein Inhibiting M2 
phenotype polarization

- DUSP6-Erk1/2 pathway [98]

AQP9 Protein Stimulating M2-like 
polarization

Promoting colon cancer 
progression

Transporting lactate [99]

PKCα Tumor 
suppressor

Promoting M1 
macrophages 
polarization

- MKK3/6-P38 signaling 
pathway

[100]

Promoting polarization 

CRC

MK2 Protein - - [101]
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of protumorigenic 
TAMs

MiR-195-
5p/NOTCH2-
mediated EMT

- Affecting M2-like TAMs 
polarization

- Modulating IL-4 secretion [102]

CRC cell-derived 
exosomal miR-934

Exosome Inducing M2 
macrophages 
polarization

- Downregulating PTEN 
expression and activate the 
PI3K/AKT signaling 
pathway

[103]

Stimulator of STING 
pathway

Signaling 
pathway

Activating reprogramed 
TAMs toward the M1 
phenotype

- - [104]

Colon cancer cell Cell Promoting M2 
polarization of TAMs

- Secreting EGF; 
EGFR/PI3K/AKT/Mtor 
pathway

[105]

CXCL10 and CXCL11 Chemokine Inducing the infiltration 
of TAMs

Leading to the poor 
prognosis of CRC

- [106]

β-1, 6-glucan Organic 
compound

Reseting TAMs from 
M2-like to M1-like 
phenotype

Inhibiting the viability of 
colon cancer cells

Increasing the 
phosphorylation of Akt/NF-
κB and MAPK

[107]

H. pylori infection Becteria Reducing the infiltration 
of M2-like TAMs

- Downregulating TNF-α, IL-1
β, IL-6 and IL-23

[108]

Autophagy-dependent 
ferroptosis

- Driving TAMs 
polarization

- Releasing and uptaking of 
oncogenic KRAS protein

[127]

RIP1 Kinase Reprogramming TAMs - STAT1-dependent manner [40]

Deletion of CAF-HIF2 Protein Decreasing the intrat-
umoral recruitment of 
immunosuppressive M2 
macrophages

- - [128]

ADH-503 Small-molecule 
agonist

Leading to the repolar-
ization of TAMs

- Partial activation of CD11b [129]

NLRP3 Inflammasome Regulating TAMs 
polarization

Enhancing lung 
metastasis of PDAC

- [130]

IL-27 Cytokine Targeting M2 TAMs Dampening the prolif-
eration, migration and 
metastasis of PC cells

- [131]

IFN-γ Chemokines Preventing trafficking of 
TAMs

Improving the efficacy of 
PD1 blockade therapy in 
PC

Blocking the CXCL8-CXCR2 
axis

[132]

PC-derived exosomal 
FGD5-AS1

Exosome Stimulating M2 
macrophages 
polarization

Promoting proliferation 
and migration of PC cell

Activating STAT3/NF-κB 
pathway

[133]

PDAC-derived Sev-
EZR

Exosome Modulating TAMs 
polarization

Promoting PDAC 
metastasis

- [134]

CUX1 Transcription 
factor

Mediating M1 
polarization

Inhibiting angiogenesis 
and tumor progression

Downregulating several NF-
κB -regulated chemokines

[135]

Tryptophan-derived 
microbial metabolite

Metabolite Activating the aryl 
hydrocarbon receptor in 
TAMs

Suppressing anti-tumor 
immunity

- [136]

Nrf2 Transcription 
factor

Stimulating M2 
macrophages 
polarization

Promoting EMT Activating cancer cell-
derived lactate

[137]

Lactic acid Organic 
compound

Redistributing M2TAMs 
subsets

Upregulating PDL1 to 
assist tumor immune 
escape

HIF1α signaling pathway [138]

Activation of DRD4 by 
DA

Protein Suppressing the tumor-
promoting inflammation 
of TAMs

- Decreasing Camp; inhibit the 
activation of PKA/p38 signal 
pathway

[139]

PC

PDA cells Cell Reprogramming M1-like 
macrophages

- GARP-dependent and DNA 
methylation-mediated 
mechanism

[140]
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Ndrg2 Gene Influencing TAMs 
polarization

- NF-κB pathway [155]

TREM1knockdown Gene Shifting M2 
macrophages towards a 
M1 phenotype

- Inhibiting PI3K/AKT/Mtor 
activation

[156]

MiR-99b MiRNA Promoting M1 while 
suppressing M2 
macrophages 
polarization

- Targeting κB -Ras2 and/or 
mTOR

[157]

MAGL Kinase Promoting the 
transcription and 
secretion of inflam-
matory factors in TAMs

- - [158]

- - Blocking triggering 
receptor expressed on 
myeloid cells-1-positive 
TAMs

Reversing immunosup-
pression and anti-PD-L1 
resistance in LC

- [159]

Regorafenib Multikinase 
inhibitors

Reversing M2 
polarization

- Suppressing p38 kinase 
phosphorylation and 
downregulating Creb1/Klf4 
activity in BMDMs

[160]

ZIP9 Protein Promoting M2 
macrophages 
polarization

- Enhancing phosphorylated 
STAT6

[161]

Phosphoinositide-
related signaling 
pathway

Signaling 
pathway

Reprogramming TAMs - Enhancing activation of the 
PI3K/Akt pathway

[162]

Inhibite VEGF 
signaling pathway

Signaling 
pathway

Attenuating TAMs 
activity in liver cancer

- - [163]

SALL4-mediated 
upregulation of 
exosomal miR-146a-5p

Exosome Leading to M2-polarized 
TAMs

- Activating NF-κB signaling 
and inducing pro-inflam-
matory factors

[43]

LC

Activated HSCs Cell Converting 
macrophages to TAMs

- - [164]

In esophageal cancer, gastric cancer, colorectal cancer, pancreatic cancer and liver cancer, there are multifarious approaches to regulate tumor-associated 
macrophages (TAMs), the effective factors of which, and corresponding types, are presented in the second and third column. The targets indicate which 
behaviors of TAMs that are modulated. In addition, the functions, mechanism and reference section are similar as Table 1. EC: Esophageal cancer; GC: 
Gastric cancer; CRC: Colorectal cancer; PC: Pancreatic cancer; LC: Liver cancer; TAM: Tumor-associated macrophages; PTEN: Phosphatase and tensin 
homolog; TEC: Tumor endothelial cells; STAT3: Signal transducers and activator of transcription 3; ESCC: Esophageal squamous cell carcinoma; NCAM: 
Neural cell adhesion molecule; FGF-2: Fibroblast growth factor 2; HPV: Human papillomavirus; VEGF: Vascular endothelial growth factor; STING: 
Stimulator of interferon genes; MSC: Mesenchymal stem cell; TNF-α: Tumor necrosis factor-α; IL: Interleukin; PI3K: Phosphoinositide 3-kinase; EGF: 
Epidermal growth factor; EGFR: Epidermal growth factor receptor; STAT1: Signal transducers and activator of transcription 1; IFN-γ: Interferon-γ; GARP: 
Glycoprotein A repetitions predominant; HIF-1α: Hypoxia-inducible factor-1α; PD-L1: Programmed Cell Death Ligand 1; EMT: Epithelial mesenchymal 
transition; mTOR: Mammalian target of rapamycin; HSC: Hematopoietic stem cell; OGFR: Opioid growth factor receptor; Nrf2: Nuclear factor erythroid 2-
related factor 2.

TME in an oxidative-stress-dependent manner[91] or by metabolic reprogramming[92].
M2-macrophage-mediated regulation of CRC cell migration and invasion relies on M2-macrophage-

derived exosomes, such as miR-21-5p and miR-155-5p[93], which may take effect through downregu-
lating expression of BRG1. Exosomal miR-183-5p transferred by M2 polarized TAMs facilitate colon 
cancer through targeting thioesterase superfamily member 4-mediated PI3K/AKT and NF-kB pathways
[94].

Multiple studies indicated that MMPs, such as MMP1 and MMP9, derived from TAMs may induce 
colon cancer cell invasion and proliferation[95,96]. It has been demonstrated that cathelicidin secreted 
by TAMs can promote the growth of CRC in mice by recruiting inflammatory cells such as macrophages 
into the TME[97].

TAMs act as potential therapeutic targets for CRC: In colon carcinoma, TAM M2 phenotype 
polarization can be regulated by diverse proteins (Table 2), such as protein kinase N2[98], aquaporin 9
[99], tumor suppressor protein kinase (PK)Cα[100], and MAPKAP kinase 2[101]. miR-195-5p/NOTCH2-
mediated EMT also affects M2-like TAM polarization by modulating IL-4 secretion in CRC[102], as does 
CRC-cell-derived exosomal miR-934 by downregulating PTEN expression and activating the PI3K/AKT 
signaling pathway[103].
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The activation of pathways like the STING[104] and EGFR/PI3K/AKT/mTOR axis[105] has some of 
this same functionality. As chemokines, neuroendocrine-like-cell-derived CXCL10 and CXCL11 expand 
the infiltration of TAMs, accounting of the poor prognosis of CRC[106].

From the metabolic perspective, β-1,6-glucan resets tumor-supporting M2-like macrophages to 
tumor-inhibiting M1-like phenotype by activating the phosphorylation of Akt/NF-kB) and mitogen-
activated protein kinase[107]. In mice with colitis-associated colorectal tumors, Helicobacter pylori 
infection quenched infiltration of TAMs, especially M2-like TAMs, while downregulating proinflam-
matory and protumorigenic factors TNF-α, IL-1β, IL-6, and IL-23[108].

Clinical significance of TAMs in CRC: TAMs with an M2-like phenotype have been associated with 
immunosuppression and resistance to chemotherapy of CRC. CD206/CD68 ratio[109] functions as a 
potent prognostic biomarker for predicting postoperative adjuvant chemotherapy in stage II colon 
cancer. In CRC, high infiltration of CD68+ TAMs[110], as well as type and number of intratumoral 
macrophages and clever-1(+) vessel density[111] could both function as a favorable prognostic marker.

Several TAM-targeting immunotherapies have been shown to promote antitumor immunity in CRC. 
A ketogenic diet restrains colon tumors via inducing intratumor oxidative stress through downregu-
lation of MMP9 expression, and facilitating the polarization of TAM towards an M1-like proinflam-
matory phenotype[112]. By re-educating TAMs in CRC, piceatannol is an effective TGF-β1/TGF-Βr1 
pathway inhibitor and TME modulator that inhibits tumor progression and metastasis[113]. Licorne-
mediated immunogenic photodynamic therapy synergizes with myeloid-derived suppressor cell 
(MDSC)-targeting immunotherapy[114], Bte-Pd-Au-R-combined radiophotothermal therapy[115], as 
well as combination of foretinib and anti-PD-1 antibody immunotherapy[116] significantly inhibited 
tumor growth via decreasing tumor infiltration or the percentage of M2-like TAMs. Numerous studies 
have demonstrated that triptolide decreased TAM infiltration and M2 polarization[117] to remodel the 
colon cancer immune microenvironment through suppressing the sphingosine kinase–sphingosine-1-
phosphate signaling pathway[118], or inhibiting tumor-derived CXCL12 via NF-kB and the extracellular 
signal-regulated protein kinases 1 and 2 axis[119]. Plinabulin[120], a distinct microtubule-targeting 
chemotherapy, as well as short-course radiotherapy[121], promoted a shift in M2 to M1 TAM 
polarization.

PC
TAMs can promote development of PC: Pancreatic tumors are characterized by a desmoplastic stroma 
consisting of fibroblasts, immune cells, and a dense network of collagen fibers. Within this stroma, 
TAMs are among the most numerous immune cell populations[122]. Their protumorigenic function is 
predominantly attributed to their capacity to facilitate immune evasion and metastasis (Figure 1 and 
Table 1).

In PC, intraperitoneal TAMs potentially play a crucial role in promoting peritoneal dissemination and 
chemoresistance by inducing EMT[123]. Similarly, M2-polarized TAMs enhanced EMT in PC cells 
partially via Toll like receptor (TLR)-4/IL-10 signaling[124]. TAMs promote progression and the 
Warburg effect via CCL18/NF-kB/vascular cellular adhesion molecule 1 pathway in PDAC[125]. In 
addition, CCL20 secreted by M2 macrophages promoted the migration, EMT, and invasion of PC cells
[126]. The study indicated a decisive role of TAMs in orchestrating functions of PDAC-infiltrating T cells 
by modifying their epigenetic profile towards a pro-tumoral phenotype[42].

TAMs act as potential therapeutic targets for PC: TAMs can also act as potential therapeutic targets for 
PC (Table 2). Autophagy-dependent ferroptosis accelerates TAM polarization via secretion and 
absorption of oncogenic KRAS protein[127]. Researchers discovered upregulation of RIP-1 in TAMs in 
PDAC[40]. Deletion of cancer-associated fibroblast HIF-2 significantly decreased the intratumoral 
recruitment of immunosuppressive M2 macrophages[128]. Fractional activation of CD11b by a small-
molecule agonist contributes to TAM repolarization[129]. NLRP3 activation in TAMs enhanced lung 
metastasis of PDAC through regulation of TAM polarization[130].

By targeting M2-like TAMs, IL-27 dampened the proliferation, migration and metastasis of PC cells 
and boosted the potency of gemcitabine[131]. IFN-γ is a potential translational strategy to optimize 
performance of PD-1 blockade therapy in PC by preventing migration of CXCR2+CD68+ macrophages 
by blocking the CXCL8/CXCR2 axis[132]. PC-derived exosomal FGD5-AS1 induced M2 macrophage 
polarization via STAT3/NF-κB pathway[133]. The PDAC-derived small extracellular vesicle Ezrin can 
modulate macrophage polarization and promote PDAC metastasis[134]. Cut like homeobox 1 
suppresses handful NF-κB-regulated chemokines like CXCL10, which are linked with M1 polarization 
and hindrance of angiogenesis and tumor development[135].

In addition, tryptophan-derived microbial metabolites stimulate the aryl hydrocarbon receptor in 
TAMs to inhibit antitumor immunity[136]. Cancer-cell-derived lactate activates macrophage nuclear 
factor erythroid 2-related factor 2 (Nrf2), skewing macrophages polarization towards an M2-like 
phenotype. These educated macrophages then trigger Nrf2 activation in cancer cells, ultimately 
promoting EMT[137]. Modulation of lactic acid level can redistribute M2 TAMs and upregulate PD-L1 
to assist tumor immune escape, possibly through the HIF-1α signaling pathway[138]. Activation of 
dopamine receptor D4 by dopamine is instrumental in a depletion of cAMP, thereby hindering the 
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activation of the PKA/p38 signaling pathway, ultimately leading to the suppression of tumor-
promoting inflammation of TAMs[139].

For PC cells themselves, they render TAMs metabolically reprogrammed through a glycoprotein A 
repetitions predominant (GARP)-dependent and DNA-methylation-mediated mechanism to adopt a 
precancerous fate[140].

Clinical significance of TAMs in PC: The association between TAMs and immune response has 
primarily been observed as a reduction in the immunostimulatory function of TAMs.

An exosome-based dual delivery biosystem was created to improve immunotherapy for PDAC and 
reverse immunosuppression of M2 TAMs upon disruption of the galectin-9/dectin 1 axis[141]. A TME-
responsive micellar system co-loaded with gemcitabine and PI3K inhibitor wortmannin was employed 
to achieve dual targeting of TAMs and tumor cells, aimed at repolarizing TAMs and improving the 
chemoimmunotherapy efficacy against PC[142].

Hyaluronic acid nanoparticle-encapsulated miRNA-125b reprogrammed TAMs to an antitumor 
phenotype in PDAC[143]. M2-TAM-targeting nanomicelles were created to simultaneously deliver 
PI3K-γ inhibitor NVP-BEZ 235 and CSF-1R-siRNA, leading to specific TAM reprogramming and 
antitumor immune response activation[144]. A customized nanocomplex through the self-assembling 
synthetic 4-(phosphonooxy)phenyl-2,4-dinitrobenzenesulfonate and Fe3+, subsequently decorated with 
hyaluronic acid, jointly repolarized TAMs to deactivate stromal cells and therefore weaken stroma[145]. 
A reduction-responsive RNAi nanoplatform utilized its reduction-responsive characteristic to rapidly 
release siRNA, inducing depolarization of TAMs into tumor-inhibiting M1-like phenotype[146].

To aid diagnosis, metabolizable near-infrared-II nanoprobes were applied to dynamic imaging of 
deep-seated TAMs in PC[147]. DN-ICG nanoprobes were qualified to discern dynamic variation of 
TAMs stimulated by low-dose radiotherapy and zoledronic acid.

By activating M2-like TAM polarization, atorvastatin mitigates the effect of aspirin on PC 
development and the chemotherapeutic potency of gemcitabine in PC[148]. Combined blockade of TGF-
β1 and granulocyte-macrophage CSF improves chemotherapeutic effects in PC by modulating the TME
[149]. In tumor-bearing Klebsiella pneumoniae carbapenemase mice, pharmacological TAM depletion 
enhanced therapeutic response to gemcitabine[150].

LC 
TAMs can promote development of LC: TAMs have been proved to promote the development of LC 
(Table 1). M2 polarization of TAMs in the TME promotes LC stem-like cell self-renewal capability and 
carcinogenicity[151,152]. Since TAMs can hasten EMT of Hep3B hepatoma cells, reduction of TLR4 
expression in TAMs may attenuate that[153]. TAMs produce IL-6, which promotes expansion of these 
cancer stem cells and tumorigenesis. Restraint of TAM-stimulated CD44+ cell activity can be attainable 
by obstructing IL-6 signaling using tocilizumab, a drug approved by the United States Food and Drug 
Administration (FDA) for the treatment of rheumatoid arthritis[154].

TAMs act as potential therapeutic targets for LC: TAMs have also been found to serve as potential 
therapeutic targets for LC (Table 2). Researchers demonstrated that loss of Ndrg-2 influenced TAM 
polarization via the NF-κB pathway[155]. Knocking down triggering receptors expressed on myeloid 
cells (TREM1) in macrophages quenched the activation of the PI3K/AKT/mTOR pathway in M2 
macrophages polarization[156]. Targeted delivery of miR-99b and/or miR-125a into TAMs substantially 
decelerated the progression of HCC and Lewis lung cancer, particularly following miR-99b delivery
[157].

The mechanistic study illustrated that the high expression of monoacylglycerol lipase promoted the 
transcription and excretion of inflammatory factors such as IL-1β, IL-6 and TNF-α in M2-type TAMs 
cells[158]. Blocking TREM1-positive TAMs induced by hypoxia reverses immunosuppression and anti-
PD-L1 resistance in LC[159]. Regorafenib, a multikinase inhibitor, reversed M2 polarization by 
suppressing p38 kinase phosphorylation and downstream Creb1/Klf4 activity in BM-derived 
macrophages[160]. The zinc-regulated transporters, iron-regulated transporter-like protein 9 
upregulates phosphorylated STAT6 to facilitate polarization of M2 macrophages while downregulating 
the phosphorylation of IκBα/β to hinder M1 macrophage polarization[161].

TNF-α-induced protein 8-like 1 redounded arousal of the PI3K/Akt pathway in macrophages by 
directly attaching to and modulating the metabolism of phosphatidylinositol 4,5-bisphosphate and 
phosphatidylinositol 3,4,5-trisphosphate[162]. Inhibiting the VEGF signaling pathway was shown to 
attenuate TAM activity in LC[163]. Sal-like protein-4-mediated upregulation of exosomal miR-146a-5p 
remodeled macrophages by triggering NF-κB signaling and proinflammatory factors, contributing to 
M2-type polarization in TAMs[43].

In the TME, activated hematopoietic stem cells transform macrophages to TAMs and respectively 
stimulate the differentiation of DCs and monocytes into regulatory DCs and MDSCs[164].

Clinical significance of TAMs in LC: To reverse immunosuppressive process, a BisCCL2/5i mRNA 
nanoplatform was directly evolved, which appreciably ignited the antitumoral M1-type polarization in 
TAMs and reduced immunosuppression in the TME[165]. Researchers developed a nanoliposome-
loaded C6-ceremide (LipC6) to reduce the number of TAMs and their production of reactive oxygen 
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species[166]. LipC6 animated TAM differentiation into M1 phenotype, which engendering a decrease in 
immunosuppression and an increase in CD8+ T cell activity.

By interference with insulin-like growth factor (IGF)-1 secretion, sorafenib altered macrophage 
polarization, reduced IGF-1-driven cancer growth in vitro and partially inhibited macrophage activation 
in vivo[167]. Elevated serum levels of taurocholic acid were associated with reduced sirtuin (SIRT)5 
expression and an increase in M2-like TAMs in HCC patient samples. Treatment with cholestyramine, a 
bile acid sequestrant and FDA-approved medication for hyperlipemia, reversed the implication of 
SIRT5 deficiency in impelling M2-like polarized TAMs and LC progression[168]. The novel 
glycyrrhetinic acid-tetramethylpyrazine conjugate TOGA exerted an anti-hepatocarcinogenic effect by 
attenuating effectiveness of TAMs on tumor cells through a mechanism related to the NF-κB pathway
[169].

In the HCC microenvironment, M2 TAMs secreted considerable amounts of IL-17, which suppressed 
oxaliplatin-induced tumor cell apoptosis by triggering chaperone-mediated autophagy and curtailing 
cyclin D1 expression[170]. Radiofrequency ablation suppressed protumoral activation of local TAMs
[171]. The combination of zwitterionic chito-oligosaccharides (COSs) with a photothermal material 
impaired the undesirable tumor promotion of TAMs, thus enhancing the outcome of photothermal 
therapy. Zwitterionic COSs acted as potent immune activators to re-educate TAMs to M1[172].

CONCLUSION
TAMs play a significant role in digestive system malignant tumors; therefore, TAM modulation is an 
attractive potential therapeutic target to enhance antitumor immune response and inhibit tumor 
progression. So far, diverse clinical therapies targeting TAMs have proven to be effective, highlighting 
the clinical significance of TAMs in digestive system malignant tumors. However, there are still many 
questions about the characteristics and functions of TAMs in digestive system malignant tumors. 
Continuous basic, transformation and clinical research may reveal some new prospects, such as how to 
use TAMs to improve cancer outcomes. Therefore, this is a promising field of cancer treatment, which 
may provide fruitful results.
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