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Abstract
BACKGROUND 
Hepatocellular carcinoma (HCC) is a common clinical condition with a poor 
prognosis and few effective treatment options. Potent anticancer agents for 
treating HCC must be identified. Epigenetics plays an essential role in HCC 
tumorigenesis. Suberoylanilide hydroxamic acid (SAHA), the most common 
histone deacetylase inhibitor agent, triggers many forms of cell death in HCC. 
However, the underlying mechanism of action remains unclear. Family with 
sequence similarity 134 member B (FAM134B)-induced reticulophagy, a selective 
autophagic pathway, participates in the decision of cell fate and exhibits anti-
cancer activity. This study focused on the relationship between FAM134B-induced 
reticulophagy and SAHA-mediated cell death.

AIM 
To elucidate potential roles and underlying molecular mechanisms of reticu-
lophagy in SAHA-induced HCC cell death.

METHODS 
The viability, apoptosis, cell cycle, migration, and invasion of SAHA-treated Huh7 
and MHCC97L cells were measured. Proteins related to the reticulophagy 
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pathway, mitochondria-endoplasmic reticulum (ER) contact sites, intrinsic mitochondrial apoptosis, and histone 
acetylation were quantified using western blotting. ER and lysosome colocalization, and mitochondrial Ca2+ levels 
were characterized via confocal microscopy. The level of cell death was evaluated through Hoechst 33342 staining 
and propidium iodide colocalization. Chromatin immunoprecipitation was used to verify histone H4 lysine-16 
acetylation in the FAM134B promoter region.

RESULTS 
After SAHA treatment, the proliferation of Huh7 and MHCC97L cells was significantly inhibited, and the 
migration and invasion abilities were greatly blocked in vitro. This promoted apoptosis and caused G1 phase cells 
to increase in a concentration-dependent manner. Following treatment with SAHA, ER-phagy was activated, 
thereby triggering autophagy-mediated cell death of HCC cells in vitro. Western blotting and chromatin immuno-
precipitation assays confirmed that SAHA regulated FAM134B expression by enhancing the histone H4 lysine-16 
acetylation in the FAM134B promoter region. Further, SAHA disturbed the Ca2+ homeostasis and upregulated the 
level of autocrine motility factor receptor and proteins related to mitochondria-endoplasmic reticulum contact sites 
in HCC cells. Additionally, SAHA decreased the mitochondrial membrane potential levels, thereby accelerating the 
activation of the reticulophagy-mediated mitochondrial apoptosis pathway and promoting HCC cell death in vitro.

CONCLUSION 
SAHA stimulates FAM134B-mediated ER-phagy to synergistically enhance the mitochondrial apoptotic pathway, 
thereby enhancing HCC cell death.

Key Words: Suberoylanilide hydroxamic acid; Histone H4 lysine-16; Reticulophagy; Apoptosis; Autophagic cell death; 
Hepatocellular carcinoma

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Family with sequence similarity 134 member B (FAM134B) is considered to be a tumor suppressor protein that 
can play a pivotal role in inhibiting hepatocellular carcinoma (HCC) cells. In addition, FAM134B acts as a putative reticu-
lophagy receptor in the regulation of the reticulophagy process. Furthermore, suberoylanilide hydroxamic acid (SAHA) 
upregulates FAM134B expression in HCC cells and promotes apoptosis and autophagy-mediated cell death. Thus, 
FAM134B-mediated reticulophagy synergizes with SAHA to induce HCC cell death. Our findings offer novel insights into 
the mechanism underlying SAHA-induced HCC cell death.

Citation: Li JY, Tian T, Han B, Yang T, Guo YX, Wu JY, Chen YS, Yang Q, Xie RJ. Suberoylanilide hydroxamic acid upregulates 
reticulophagy receptor expression and promotes cell death in hepatocellular carcinoma cells. World J Gastroenterol 2023; 29(34): 
5038-5053
URL: https://www.wjgnet.com/1007-9327/full/v29/i34/5038.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i34.5038

INTRODUCTION
Hepatocellular carcinoma (HCC) represents the most well-known and prevalent primary liver cancer in China. The 
mortality rates with HCC have consistently increased annually[1]. Immune checkpoint therapies have recently emerged 
as noteworthy treatments for HCC[2-4]. A considerable proportion of patients, approximately 70% with advanced HCC, 
fail to derive benefits from immunotherapy[5]. Thus, pursuing more potent anticancer medications to combat HCC must 
persist. Owing to its high degree of malignancy, poor prognosis, and relatively limited range of treatment strategies, it is 
necessary to seek more powerful anticancer agents for treating HCC. In the past decade, accumulating evidence has 
validated the role that epigenetics plays in HCC tumorigenesis[6,7]. Epigenetic regulation changes the transcriptional 
activity of key genes without altering DNA sequences[8,9].

Epigenetic regulation occurs primarily through DNA methylation, post-translational histone modification, chromatin 
remodeling, and non-coding RNA-mediated gene silencing[10]. Current therapies targeting epigenetic modifications to 
cancer mainly include DNA methyltransferases and histone deacetylases (HDACs) as well as microRNAs (miRNAs). Due 
to the widespread existence of DNA methylation variation in HCC, a variety of corresponding regulators of DNA methyl-
transferase have been developed[11]. At the same time, miRNAs such as miRNA-148a are used in anti-HCC therapy by 
combining with oncolytic viruses.

Histone acetylation modification, induced by HDACs and histone acetyltransferases, is a prominent mode of 
epigenetic regulation[12]. The histone acetylation/deacetylation balance is dynamically regulated to maintain global 
chromatin structure[13]. Therefore, any dysregulation may contribute to altered gene expression, leading to pathological 
conditions, such as HCC. Suberoylanilide hydroxamic acid (SAHA) represents the most typical HDAC inhibitor (HDACi) 
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and was the first of its kind to be approved for human treatment. So far, SAHA has been found to induce the differen-
tiation of malignant tumor cells and accelerate apoptosis in vitro and in vivo[14]. According to our previous results, SAHA 
may act as a potential initiator of endoplasmic reticulum (ER) stress-associated apoptosis in HepG2 hepatoma cells by 
activating ER stress-related apoptotic pathways[15]. However, it is still unknown whether SAHA utilizes a new 
mechanism to induce HCC cell death through some different therapeutic targets.

Acetylation of histone H4 lysine 16 (H4K16ac) is important for gene initiation[16]. Recently, researchers have found 
that H4K16ac is closely associated with autophagy induction and significantly correlated with autophagy regulation. 
Moreover, deacetylase inhibitors can promote the upregulation of H4K16ac and lead to autophagic death of cancer cells
[17]. However, the regulatory mechanism underlying the induction of H4K16ac-mediated reticulophagy is unclear.

Family with sequence similarity 134 member B (FAM134B) has been proposed as a cancer suppressor gene[18,19]. 
Numerous researchers have demonstrated that in colorectal carcinoma, the presence of FAM134B limits the overgrowth 
and suppresses the proliferation of cancer cells[20,21]. In addition, FAM134B acts as a putative reticulophagy receptor in 
regulating ER turnover and maintaining calcium homeostasis by remodeling ER[22,23]. Recent findings have also 
identified that FAM134B-mediated ER-phagy may regulate ER-mitochondrion interaction[24]. As the largest cellular 
organelle, the ER can interact with mitochondria through multiple contact sites, termed mitochondria-ER contact sites 
(MERCS).

Many ER-related and mitochondria-related proteins have been discovered at MERCS, including the inositol 1, 4, 5-
trisphosphate receptor type 1 (IP3R1)/glucose-regulated protein 75 (GRP75)/voltage-dependent anion channel 1 
(VDAC1) complex, which is a central component of MERCS that contributes to calcium exchange regulation[25,26]. 
Recent research has suggested that Ca2+ deregulation between ER and mitochondria by MERCS led to mitochondrial 
calcium overload, thereby activating the mitochondria-associated apoptotic pathway[27]. In the present study, we 
verified that SAHA treatment augmented FAM134B expression and facilitated Huh7 and MHCC97L HCC cell apoptosis; 
however, the regulatory mechanisms underlying this effect remain unknown. In our study, we elucidated potential roles 
and underlying molecular mechanisms of reticulophagy in SAHA-induced HCC cell death. Our findings may offer new 
perspectives for clinical trials of HCC.

MATERIALS AND METHODS
Cell culture and treatments
The human Huh7 and MHCC97L cell lines were derived from the cell bank of the Chinese Academy of Sciences 
(Shanghai, China). Both cell lines were cultivated at 37 °C in a 5% CO2-supplemented atmosphere and maintained in 
high-glucose Dulbecco’s modified Eagle’s medium (ESscience, Shanghai, China) supplemented with 10% fetal bovine 
serum (Gibco, Grand Island, NY, United States) and 1% penicillin-streptomycin (BioInd, Beit-Haemek, Israel). SAHA 
(Abcam, Cambridge, United Kingdom) was dissolved in dimethyl sulfoxide as a 5 mmol/L stock solution and then 
diluted with the complete medium to achieve ultimate concentrations of 0-24 μmol/L. Both cell lines were exposed to 
SAHA or vehicle treated with 0.1% dimethyl sulfoxide.

Cell counting kit-8 assay
Cell counting kit-8 (CCK-8) assay was applied to evaluate the anti-proliferative effects of SAHA. Briefly, MHCC97L and 
Huh7 cells (5 × 103) were plated onto 96-well plates and given 24 h to adhere before being treated with SAHA. The cells 
were then exposed to various doses of SAHA (0, 0.5, 1, 3, 6, 9, 12, 18, and 24 μmol/L) for 48 h. Subsequently, 10 μL CCK-8 
reagent (Solarbio, Beijing, China) was added to each well and incubated for 4 h. Absorbance at 450 nm was recorded 
using a spectrophotometer (BioRad, Hercules, United States). The IC50 of SAHA was calculated using GraphPad Prism 
software (v9.0.0, GraphPad Software, La Jolla, CA, United States).

Flow cytometry
The data regarding the apoptosis and cell cycle of HCC cells treated with 0, 1, 3, 6, and 12 μmol/L SAHA were obtained 
via standard flow cytometry (NovoCyte, Agilent, Santa Clara, CA, United States). The apoptosis assay was carried out 
using a cellular apoptosis detection kit (KeyGEN BioTECH, Nanjing, China) following the manufacturer’s protocol. 
Briefly, Huh7 and MHCC97L cells were plated onto 6-well plates at 1 × 105 cells per well before adding SAHA solution. 
Then, each group of cells was harvested, rinsed with chilled phosphate buffered saline (PBS), and loaded with binding 
buffer. The cells were labelled with Annexin V-FITC/propidium iodide (PI) solution, and the stained cells were 
calculated using the flow cytometer. Similarly, cell cycle analysis was conducted using the flow cytometer following the 
manufacturer’s instructions. Each group of cells was collected and washed thrice with chilled PBS. The cells were fixed 
with 70% ethanol and stained with PI/RNase I solution (KeyGEN BioTECH), and the percentages of cells in the G1, S, 
and G2 stages were measured using the flow cytometer. The inbuilt software NovoExpress® 1.4.1 was used for statistical 
analysis.

Wound healing assay
The wound healing assay was monitored to evaluate the effect of SAHA on HCC cell migration. Briefly, Huh7 and 
MHCC97L cells (3 × 104) were planted onto 6-well plates, grown until they formed an optically confluent monolayer, and 
then wounded with a sterile 200 μL micropipette tip. Upon treatment with 0 μmol/L or 3 μmol/L SAHA for 48 h, HCC 
cells were photographed using a microscope (× 40).
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Transwell assay
The cell invasion and migration assay in vitro was carried out using 24 transwell plates divided into upper and lower 
chambers using sterile polycarbonate with 8 μm pore size (Corning Life Science, Corning, NY, United States). The sterile 
polycarbonate covered 200 μL Matrigel (BD Biosciences, San Jose, CA, United States) in the cell invasion assay but not in 
the cell migration assay. Upon treatment with 0 μmol/L or 3 μmol/L SAHA for 48 h, cells that passed through the pore 
were stained with crystal violet, photographed, and quantified.

Western blot analysis
Huh7 and MHCC97L cells were exposed to 0, 1, 3, 6, and 12 μmol/L SAHA for 48 h. Then, the cells were rinsed with pre-
chilled PBS, lysed in 100 μL RIPA lysis buffer with protease inhibitor (Solarbio), and collected with cell scrapers. Protein 
samples were boiled for 5 min, and total protein extracts were subjected to standard sodium-dodecyl sulfate gel electro-
phoresis and subsequently removed to polyvinylidene difluoride membranes (Merck Millipore, Burlington, MA, United 
States). The membranes were blocked with rapid blocking solution and stained overnight with the corresponding 
primary antibodies, including FAM134B (Proteintech; Wuhan, China 1:1500), CCPG1 (Proteintech; 1:1500), LC3 (Abcam; 
1:2000), ATG12 (Cell Signaling Technology; Danvers, MA, United States 1:1500), H4 (Proteintech; 1:2000), total acH4 
(Proteintech; 1:2000), H3K27ac (Cell Signaling Technology; 1:6000), H4K5ac (Cell Signaling Technology; 1:6000), H4K12ac 
(Cell Signaling Technology; 1:6000), H4K16ac (Abcam; 1:10000), GRP75 (Abcam; 1:2000), VDAC1 (Abcam; 1:2000), IP3R 
(Abcam; 1:1000), autocrine motility factor receptor (AMFR) (Proteintech; 1:500), cyt c (Cell Signaling Technology; 1:1500), 
cleaved caspase-3 (Cell Signaling Technology; 1:1500), Bax (Cell Signaling Technology; 1:1500), Bcl-2 (Cell Signaling 
Technology; 1;1500), and β-actin (Abcam; 1:1000), followed by incubation with the corresponding secondary antibodies 
(1:8000). Polyvinylidene fluoride membranes carrying proteins were treated with enhanced chemiluminescence reagent 
(Solarbio), and ImageLab software was used to observe the protein bands.

Live imaging of the ER and lysosomes
ER-trackers and Lyso-trackers (Beyotime; Nanjing, China), the specific organelle dyes, were applied to stain and locate ER 
and lysosomes, respectively. Huh7 and MHCC97L cells were exposed to 0, 1, 3, 6, and 12 μmol/L SAHA for 48 h. Then, 
the cells were coincubated with the two tracking dyes at 37 °C for 45 min and rinsed thrice with PBS. The stained cells 
were viewed at × 200 magnification under a confocal microscope (Olympus, Tokyo, Japan) and immediately imaged.

Hoechst 33342/PI double chromatin staining assay
Huh7 and MHCC97L cells (3 × 104) were seeded in confocal laser Petri dishes. The cells were pretreated with 0.5 nmol/L 
bafilomycin A1 (MedChemexpress, NJ, United States) for 12 h and then exposed with 12 μmol/L SAHA for 48 h. 
Subsequently, Hoechst 33342/PI double fluorescent chromatin staining assay was conducted using a Viastain™ Hoechst 
33342/PI viability kit (Beyotime). Cells were stained with Hoechst 33342 and PI for 30 min at 25 °C in the dark. The 
labelled cells were observed with a confocal microscope under × 400 magnification.

Mitochondrial calcium labeling
Rhod-2 AM Red (Abcam), a specific Ca2+ indicator, was applied to detect the level of mitochondrial Ca2+. Huh7 and 
MHCC97L cells were exposed to 0, 1, 3, 6, and 12 μmol/L SAHA for 48 h and rinsed thrice with Hank’s balanced salt 
solution. The treated cells were labelled with a mixture of Mito-Tracker Green (Beyotime) and Rhod-2 AM Red 
(Beyotime) and incubated for 50 min. The labelled cells were observed with a confocal microscope under × 400 
magnification.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) assay of Huh7 cells was conducted as described previously[28]. Huh7 cells 
treated with 0 μmol/L or 6 μmol/L SAHA were subjected to ChIP assay using a ChIP Kit (Thermo Fisher Scientific, 
Waltham, MA, United States). In brief, the Huh7 cells were cross-linked with 1% formaldehyde and lysed with sodium-
dodecyl sulfate lysis buffer. The lysate was sonicated and centrifuged (9000 × g/min) to harvest chromatin fragments 
(200-1000 bp). Immunoprecipitation was conducted with the following antibodies: anti-H4K16ac (1:50); rabbit IgG (1:50); 
and anti-RNA polymerase II (1:50). A no-antibody sample was used as input control. Input DNA and ChIP DNA were 
detected via quantitative polymerase chain reaction.

JC-1 fluorescence mitochondrial imaging
The JC-1 fluorescence mitochondrial imaging technique was applied to examine the mitochondrial membrane potential of 
HCC cells treated with 0, 1, 3, 6, and 12 μmol/L SAHA. Briefly, Huh7 and MHCC97L cells (1 × 105) were plated onto 6-
well plates before adding SAHA solution and incubated with JC-1 fluorescence solution in an incubator for 20 min. 
Analysis was performed using a flow cytometer.

Statistical analysis
Data were processed and analyzed, and experimental graphs were prepared using GraphPad Prism software. All 
experiments were conducted in biological triplicate. All data are shown as means ± standard deviation. One-way analysis 
of variance was conducted for multigroup comparisons. P values less than 0.05 were considered to indicate significance.
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RESULTS
SAHA suppressed the overgrowth of HCC cells by inducing G1 phase arrest and apoptosis in vitro
In our previous study, we confirmed that SAHA suppressed the overgrowth of HepG2 cells and mediated apoptosis by 
promoting the ER stress-associated apoptotic pathway[15]. However, this was not demonstrated in Huh7 and MHCC97L 
cells. As presented in Figure 1A, HCC cell growth was notably suppressed in SAHA-treated cells; the semi-lethal dose 
was 12 μmol/L. Apoptosis in Huh7 and MHCC97L cells was determined using flow cytometry with different SAHA 
concentrations. Consistent with previous studies, SAHA induced apoptosis in Huh7 and MHCC97L cells (Figures 1B and 
C). The percentage of specific cell populations that were early apoptotic and late apoptotic throughout the apoptotic stage 
is shown in Figure 1C. In addition, cell cycle assay results showed that an increasing number of cells were blocked in the 
G1 phase (Figures 1D-F).

SAHA suppressed the migration and invasion of HCC cells
Both Huh7 and MHCC97L cells were tested under various treatment conditions (0 μmol/L or 3 μmol/L SAHA) to assess 
their ability to cross a membrane from low to high nutrient solution in vitro. Serum was used as an inducer, mimicking 
the process of tumor cell invasion into adjacent tissues in vivo. Cells invading through the semiporous membrane into the 
underlying medium containing a high serum concentration were photographed under an optical microscope (Figures 2A 
and B) and quantitatively analyzed (Figures 2C and D). The model cells were compared with the control sample, which 
was assumed to represent 100% invasion without any treatment. Huh7 and MHCC97L cells showed 78% and 68% lower 
migration and 44% and 30% lower invasion following treatment with 3 μmol/L SAHA, respectively. Further wound-
healing tests were used to verify how cancer cells interact and move. The results showed a gradual decrease in cell 
migration distance after SAHA treatment (Figure 2E). Overall, SAHA resulted in reduced cell invasion and migration in 
HCC cells.

SAHA enhanced the level of ER-phagy and augmented autophagy-mediated cell death in HCC cells
The effect of SAHA on FAM134B-mediated ER-phagy was assessed using western blotting. In HCC cells, SAHA increases 
the expression of proteins linked to the reticulophagy-related signaling pathway. We found increases in the expression of 
FAM134B, CCPG1, and autophagy-related protein Atg12 and the LC3-II/LC3-I ratio (Figures 3A-C). In the process of 
reticulophagy, ER fragments were delivered to lysosomes for final degradation. To detect the final state of ER autophagic 
lysosome formation, we used organelle markers that could trace the ER and lysosomes to detect the colocalization of 
both. We found that colocalization coverage of the ER and lysosomes increased in Huh7 and MHCC97L cells under 
SAHA treatment (Figure 3D). The above results suggested that SAHA could enhance the level of ER-phagy in HCC cells.

Previous research has reported that appropriate autophagy is a protective response under cellular stress conditions, 
but uncontrolled autophagy leads to autophagy-mediated cell death[29]. To further verify whether autophagic death 
mode exists in HCC cells under SAHA treatment, Huh7 and MHCC97L cells were pretreated with BafA1, a specific 
inhibitor of the late phase of autophagy that restrains autophagosomal fusion with lysosomes, 12 h before SAHA 
treatment. Nuclear double staining with Hoechst 33342 and PI was conducted to observe the level of cell death in the 
treated cells. The results showed that HCC cells treated with 12 μmol/L SAHA for 48 h after pretreatment with BafA1 
exhibited significantly lower cell death rates compared with cells treated with 12 μmol/L SAHA alone, indicating that 
autophagy-mediated cell death was involved in SAHA-induced HCC cell death (Figure 3E).

SAHA upregulated the level of histone acetylation modification and enhanced H4K16ac in the promoter region of 
FAM134B in HCC cells
After SAHA treatment, the levels of H3K27ac, total H4ac, H4K5ac, H4K12ac, and H4K16ac in Huh7 and MHCC97L cells 
were determined using western blotting. We found that various doses of SAHA could upregulate the levels of these 
proteins (Figures 4A-C). Histone hyperacetylation results in gene transcription activation, and recent findings have 
shown that H4K16ac is linked to the regulation of autophagy-related genes; therefore, we further focused on the 
regulatory role of H4K16ac in gene expression. We conducted ChIP assays to confirm whether the regulation of FAM134B 
transcription by SAHA was mediated by H4K16ac upregulation. Our results showed that H4K16ac in the FAM134B 
promoter region was significantly increased in Huh7 cells (Figure 4D).

SAHA disturbed Ca2+ homeostasis and upregulated the expression of AMFR and MERCS-related proteins in HCC cells
After SAHA treatment, the level of cytosolic Ca2+ in Huh7 and MHCC97L cells was determined using Rhod-2 AM Red 
staining, and mitochondrial Ca2+ was colocalized with Mito-Tracker Green and Rhod-2 AM Red. The results showed that 
SAHA markedly elevated cytosolic and mitochondrial Ca2+ levels (Figures 5A and B). Classical papers reported that 
increased cytosolic Ca2+ could increase the expression of AMFR, which targets the outer mitochondrial membrane (OMM) 
for ubiquitination and degradation[30-32]. We evaluated the protein level of AMFR in Huh7 and MHCC97L cells and 
found that SAHA could considerably increase AMFR protein levels. The IP3R-GRP75-VDAC1 complex is one of the most 
significant components of MERCS, which regulates ER-mitochondrial calcium flux. To determine the altered expression 
of MERCS in response to SAHA, the levels of IP3R, GRP75, and VDAC1 were examined using protein blots. Similar to 
our hypothesis, SAHA administration raised the protein levels of the above three proteins relative to the control group 
(Figures 5C-E). These findings showed that SAHA contributed to calcium buildup in the mitochondria by enhancing the 
interaction between the ER and mitochondria.
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Figure 1 Impact of suberoylanilide hydroxamic acid treatment on cell viability, cell cycle dispersion, and cellular apoptosis in Huh7 and 
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MHCC97L cells. A: Huh7 and MHCC97L cells were treated with 0, 0.5, 1, 3, 6, 9, 12, 18, and 24 μmol/L suberoylanilide hydroxamic acid (SAHA) for 48 h. The 
proliferation of Huh7 and MHCC97L cells upon SAHA treatment was monitored using a cell counting kit-8 assay; B-F: Huh7 and MHCC97L cells were exposed to 0, 
1, 3, 6, and 12 μmol/L SAHA for 48 h. The proportions of apoptotic cells and the cell cycle dispersion were detected using flow cytometer. Experiments were repeated 
thrice. Representative results from three independent replicate assays are shown. Data are exhibited as mean ± standard deviation. aP < 0.05 vs 0 μmol/L group (n = 
3). PI: Propidium iodide.

Figure 2 Impact of suberoylanilide hydroxamic acid treatment on the migration and invasion of Huh7 and MHCC97L cells. A and B: During 
experimental verification, the mobile ability of hepatocellular carcinoma cells could not be observed in the 6 μmol/L and 12 μmol/L suberoylanilide hydroxamic acid 
(SAHA) groups and even the cell growth was directly inhibited. Therefore, we selected 3 μmol/L SAHA to treat Huh7 and MHCC97L cells in a transwell assay. Both 
cell lines were vehicle-treated with 0.1% dimethyl sulfoxide or exposed to 3 μmol/L SAHA for 48 h. The migration and invasion behavior of cells was evaluated by 
calculating the cells stained using crystal violet. Representative pictures of invaded hepatocellular carcinoma cells from three independent replicate assays are 
exhibited; C and D: Statistical graphs; E: In the cell scratch experiment, the space in the middle was artificially divided into regions to observe the motility of Huh7 and 
MHCC97L cells upon treatment with various doses of SAHA (0, 1, 3, 6, and 12 μmol/L) for 48 h. All cells were observed under an inverted microscope with a 40-fold 
objective lens. Data are exhibited as mean ± standard deviation. aP < 0.05 vs control group (n = 3).

SAHA treatment activated the mitochondrial apoptotic pathway by decreasing mitochondrial membrane potential
After SAHA treatment, mitochondrial membrane potential was monitored via JC-1 staining. We found that SAHA 
treatment reduced mitochondrial membrane potential (Figures 6A and B). To investigate the particular SAHA-induced 
apoptotic processes, the levels of cyt c, caspase-3, and proteins related to the Bcl-2 family were detected using western 
blotting. The experimental results revealed that SAHA upregulated the expression of cyt c, cleaved caspase-3, and Bax 
and downregulated the expression of Bcl-2 (Figures 6C-E). These results clearly indicated that the mitochondrial 
membrane potential was at a lower level, and the mitochondrial apoptotic pathway was activated under the action of 
SAHA.
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Figure 3 Impact of suberoylanilide hydroxamic acid treatment on the level of endoplasmic reticulum-phagy and autophagy-mediated cell 
death in Huh7 and MHCC97L cells. A-C: Huh7 and MHCC97L cells were exposed to 0, 1, 3, 6, and 12 μmol/L suberoylanilide hydroxamic acid for 48 h. 
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Proteins related to the reticulophagy pathway were detected using western blotting. Relative protein expression levels were normalized to β-actin; D: The 
colocalization coverage of the endoplasmic reticulum and lysosomes were observed using a confocal microscope (× 400). Representative pictures from three 
independent replicate assays are exhibited; E: Huh7 and MHCC97L cells were pretreated with 0.5 nmol/L BafA1 for 12 h, followed by 12 μmol/L suberoylanilide 
hydroxamic acid treatment for 48 h. Hoechst 33342/propidium iodide (PI) double staining localization assay was utilized to observe nuclear coagulation. After Hoechst 
33342/PI double staining, the death rate of hepatocellular carcinoma cells was quantified based on the ratio of pink cells/blue cells. Experiments were repeated thrice. 
Representative pictures from three independent replicate assays are shown. Data are exhibited as mean ± standard deviation. aP < 0.05 vs 0 μmol/L group. SAHA: 
Suberoylanilide hydroxamic acid; ER: Endoplasmic reticulum; FAM134B: Family with sequence similarity 134 member B.

Figure 4 Impact of suberoylanilide hydroxamic acid treatment on the levels of histone H4 lysine 16 acetylation in the promoter region of 
family with sequence similarity 134 member B in Huh7 and MHCC97L cells. A-C: Huh7 and MHCC97L cells were exposed to 0, 1, 3, 6, and 12 μmol/L 
suberoylanilide hydroxamic acid for 48 h. Relative protein levels of histone H3 lysine 27 acetylation (H3K27ac), total H4ac, H4K5ac, H4K12ac, and H4K16ac were 
normalized to total histone H4. Representative western blot images from three independent replicate assays are exhibited; D: Huh7 cells were exposed to 0 μmol/L or 
6 μmol/L suberoylanilide hydroxamic acid for 48 h. Quantification of the acetylated histone H4K16-related promoter region of family with sequence similarity 134 
member B in Huh7 cells was measured using chromatin immunoprecipitation assay and quantitative polymerase chain reaction. Data are exhibited as mean ± 
standard deviation. aP < 0.05 vs 0 μmol/L group (n = 3). FAM134B: Family with sequence similarity 134 member B; ChIP: Chromatin immunoprecipitation.

DISCUSSION
SAHA, also known as vorinostat, is an HDACi that has shown tumor-suppressive properties in clinical trials[33]. 
Findings have revealed that SAHA could suppress cell proliferation and accelerate apoptosis in multiple malignant 
tumor cells. Scholars have demonstrated that SAHA increased the expression of death receptor 5 in liver cancer cells, 
which led to the initiation of the death receptor-mediated apoptosis pathway[34]. Furthermore, SAHA contributed to the 
initiation of the mitochondria-related apoptosis pathway by enhancing the protein level of Bim and Bax[35]. Our previous 
study found that SAHA could initiate the ER stress-related apoptotic pathway to foster apoptosis in liver cancer cells by 
upregulating the protein level of CHOP, a transcription factor that accelerates proapoptotic gene transcription[15]. In the 
present study, we found that SAHA suppressed the proliferation and induced cell cycle arrest in Huh7 and MHCC97L 
cells. Moreover, SAHA initiated Huh7 and MHCC97L cell apoptosis.

We also indicated that SAHA could augment the expression of FAM134B, a putative cancer suppressor gene. Studies 
have uncovered the pivotal role of FAM134B in multiple malignancies. Lee et al[20] reported that FAM134B may exert 
anticancer effects by influencing mitochondrial function and inducing cell cycle arrest in colon cancer. FAM134B also acts 
as a cancer suppressor in breast carcinoma. Upregulating FAM134B expression was significantly correlated with a higher 
survival in patients with breast carcinoma[36]. Zhong[37] confirmed that FAM134B was decreased in liver cancer, and its 
decreased expression was correlated with malignant liver cancer. In contrast, upregulation of FAM134B inhibited HepG2 
cell proliferation and enhanced cell apoptosis. FAM134B was proposed as the first discovered mammalian receptor of 
reticulophagy[38,39], a type of selective phagocytosis. As an ER-anchored protein, FAM134B mediates the sequestration 
of ER fragments into phagophore membranes through its LC3-interacting region, which binds the autophagy modifier 
protein LC3[40-42]. In the present study, we detected the proteins related to ER-phagy in Huh7 and MHCC97L cells 
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Figure 5 Impact of suberoylanilide hydroxamic acid treatment on Ca2+ homeostasis and the expression of autocrine motility factor 
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receptor and proteins related to mitochondria-endoplasmic reticulum contact sites in Huh7 and MHCC97L cells. A: Huh7 and MHCC97L cells 
were exposed to 0, 1, 3, 6, and 12 μmol/L suberoylanilide hydroxamic acid (SAHA) for 48 h and stained with Rhod-2 AM. The cells were observed under a confocal 
microscope (× 400 magnification); B: Huh7 and MHCC97L cells were exposed to 0, 1, 3, 6, and 12 μmol/L SAHA for 48 h and simultaneously stained with Mito-
Tracker Green and Rhod-2 AM Red. The cells were observed under a confocal microscope (× 400 magnification). The scale is 100 μm; C-E: Representative western 
blot images showed the expression of inositol 1, 4, 5-trisphosphate receptor type 1, glucose-regulated protein 75, voltage-dependent anion channel 1, and autocrine 
motility factor receptor in Huh7 and MHCC97L cells treated with SAHA for 48 h. Relative protein expression levels were normalized to β-actin. Data are exhibited as 
mean ± standard deviation. aP < 0.05 vs 0 μmol/L group (n = 3). AMFR: Autocrine motility factor receptor; IP3R1: Inositol 1, 4, 5-trisphosphate receptor type 1; 
GRP75: Glucose-regulated protein 75; VDAC1: Voltage-dependent anion channel 1.

Figure 6 The impact of suberoylanilide hydroxamic acid treatment on mitochondrial membrane potential and the expression of proteins 
related to the mitochondrial apoptotic pathway in Huh7 and MHCC97L cells. A and B: After being treated with 0, 1, 3, 6, and 12 μmol/L suberoylanilide 
hydroxamic acid for 48 h, the mitochondrial membrane potential in Huh7 and MHCC97L cells was analyzed using flow cytometry with bivariable JC-1 dye 
(mitochondrial membrane potential probe). Representative pictures from three independent replicate assays are exhibited; C-E: Representative western blot images 
showed the related protein expression in Huh7 and MHCC97L cells treated with 0, 1, 3, 6, and 12 μmol/L suberoylanilide hydroxamic acid for 48 h. Relative protein 
expression levels were normalized to β-actin. Data are exhibited as mean ± standard deviation. aP < 0.05 vs 0 μmol/L group (n = 3).

treated with various doses of SAHA. We found that the expression levels of FAM134B, Atg12, and LC3II/LC3I were 
considerably upregulated. Moreover, SAHA augmented the colocalization of ER and lysosomes in Huh7 and MHCC97L 
cells. The above results indicated that SAHA treatment enhanced the level of ER-phagy.

ER-phagy is a protective response under cellular stress conditions, but uncontrolled autophagy leads to the depletion 
of organelles and key proteins, which in turn lead to caspase-independent cell death, also known as autophagy-mediated 
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cell death[43]. Recent findings have revealed that SAHA could induce autophagy-mediated cell death in malignant tumor 
cells[44,45]. In fact, a decrease in cell viability detected using CCK-8 was not the same as apoptosis induction, as revealed 
in this study. We found that 12 μmol/L SAHA resulted in markedly reduced Huh7 and MHCC97L cell proliferation 
levels (Figure 1), with proliferation being inhibited by approximately 50%; however, the rate of early apoptosis was only 
about 25%. This phenomenon reveals that SAHA may also elicit other types of cell death to suppress the proliferation of 
Huh7 and MHCC97L cells, such as autophagy-mediated cell death.

To confirm this hypothesis, we investigated cells with or without pretreatment with BafA1, a specific inhibitor of the 
late phase of autophagy that restrains autophagosomal fusion with lysosomes. Notably, BafA1-mediated autophagy 
inhibition reduced SAHA-induced cell death. These results confirmed that SAHA could enhance autophagy-mediated 
cell death, potentially by promoting FAM134B-mediated ER-phagy. However, the specific mechanism by which SAHA 
regulated FAM134B expression in Huh7 and MHCC97L cells remains elusive. As an HDACi, the essential role of SAHA 
is the enhancement of histone acetylation. In previous research, we revealed that SAHA markedly augmented the 
acetylated histones H4K5 and H4K12 in HepG2 cells[15]. In the present study, SAHA was shown to augment H4K16ac. In 
addition, Füllgrabe et al[17] reported that H4K16ac was linked to altered gene expression, including the modulation of 
autophagy-related genes; however, it was unclear whether H4K16ac regulated FAM134B transcription and its associated 
ER-phagy. We used ChIP to detect H4K16ac in the FAM134B promoter region. Our findings revealed that FAM134B 
promoter H4K16ac was considerably elevated in Huh7 cells exposed to SAHA, which enhanced the FAM134B 
transcription.

As a key organelle in eukaryotic cells, the ER contributes to protein synthesis and maintenance of calcium homeostasis
[46,47]; hence, ER dysfunction results in the agglomeration of protein aggregates and disturbance of calcium homeostasis 
in the ER. Moreover, the ER contributes to organelle communication[27,48]. For example, the ER can interact with 
mitochondria through MERCS, as the short distance (15-20 nm) between the ER and OMM enables ER-anchored proteins 
to interact with OMM proteins[49]. The IP3R1-GRP75-VDAC1 complex is a central component of MERCS, which is 
involved in regulating calcium flow[50]. Emerging evidence has indicated that the imbalance of Ca2+ between the ER and 
mitochondria by MERCS leads to calcium overload in the mitochondria, which activates the mitochondria-associated 
apoptotic pathway[51].

Furthermore, under ER stress conditions, increased cytosolic Ca2+ would elevate the level of ER E3 ligase AMFR, which 
targets the OMM for ubiquitination and degradation[32]. High AMFR levels accelerate OMM degradation, which brings 
the inner mitochondrial membrane closer to the ER, thus promoting interplay between the ER and mitochondria[30]. In 
the present study, we revealed that SAHA upregulated the expression of MERCS-related proteins, including IP3R1, 
GRP75, and VDAC1, thereby enhancing the exchange of Ca2+ from the ER to the mitochondria, along with mitochondrial 
Ca2+ overload. Additionally, SAHA augmented cytosolic Ca2+ and increased AMFR expression, thus decreasing 
mitochondrial membrane potential and elevating mitochondrial membrane permeability, resulting in the release of 
proapoptotic proteins. As expected, we found that SAHA upregulated the expression level of mitochondria-dependent 
apoptotic proteins, including cytochrome c, cleaved caspase-3, and Bax but downregulated the expression of Bcl-2. The 
above results revealed that SAHA treatment enhanced the interplay between the ER and mitochondria and promoted 
Ca2+ transmission from the ER to the mitochondria, thereby activating the mitochondria-related apoptotic pathway.

This study had a few limitations. Despite the presence of numerous reticulophagy receptors, we focused on only 
FAM134B in this manuscript. For comprehensive knowledge, our team will verify multiple receptors in subsequent 
laboratory studies. Knocking down the gene encoding FAM134B could verify if it is a key gene in the pathway leading to 
HCC death. In this experiment, H4K16ac, a highly relevant acetylation site, was selected for the study. However, SAHA 
acts as a broad-spectrum deacetylase inhibitor influencing numerous acetylation sites, which need to be further verified 
in subsequent experiments. Results of this study indicated that SAHA can inhibit the proliferation of liver cancer cells in 
vitro; however, in vivo analyses could confirm the consistency of its effectiveness. Basic medical research serves the clinic, 
and the clinical verification of various aspects is more persuasive. Our study provided basic information that aids 
ongoing and prospective in vivo experiment.

CONCLUSION
The HDACi SAHA initiated apoptosis and autophagy-mediated cell death in Huh7 and MHCC97L cells to exert 
antitumor activity in HCC. Our results underscore a crucial link between the induction of ER-phagy and H4K16ac-linked 
FAM134B gene expression, which facilitates FAM134B-mediated ER-phagy. Moreover, we presented evidence that 
suggested that SAHA induced the mitochondria-associated apoptotic pathway in Huh7 and MHCC97L cells by 
enhancing the interplay between the ER and mitochondria and promoting Ca2+ exchange. In summary, SAHA promoted 
FAM134B-mediated ER-phagy, which acted synergistically with the mitochondrial apoptotic pathway to promote HCC 
cell death.

ARTICLE HIGHLIGHTS
Research background
Suberoylanilide hydroxamic acid (SAHA) has been demonstrated to trigger multiple forms of cell death in hepatocellular 
carcinoma (HCC). Family with sequence similarity 134 member B (FAM134B), a reticulophagy receptor, has been 



Li JY et al. Reticulophagy enhances HCC cell death

WJG https://www.wjgnet.com 5050 September 14, 2023 Volume 29 Issue 34

recognized as a cancer suppressor protein in multiple tumors, including HCC. However, few researchers have focused on 
the relationship between reticulophagy and SAHA-induced HCC cell death.

Research motivation
Reticulophagy is involved in a variety of human cancer pathologies. However, its specific function in the modulation of 
SAHA-initiated HCC cell death remains unproven.

Research objectives
To validate the potential regulatory mechanisms of the FAM134B-mediated reticulophagy in SAHA-induced HCC cell 
death.

Research methods
The proliferation, apoptosis, and cell cycle of SAHA-treated Huh7 and MHCC97L cells were quantified using cell 
counting kit-8 and flow cytometry. The migration and invasion of Huh7 and MHCC97L cells were measured using the 
transwell assay. Proteins related to the reticulophagy pathway, mitochondria-endoplasmic reticulum contact sites, 
intrinsic mitochondrial apoptosis, and histone H4K16 acetylation were detected using western blotting. ER and lysosome 
co-localization, and mitochondrial Ca2+ levels were observed via confocal microscopy. Autophagy-mediated cell death 
was validated through Hoechst33342 staining and propidium iodide colocalization. The enrichment of histone H4 lysine 
16 acetylation in the FAM134B promoter region was determined using chromatin immunoprecipitation.

Research results
SAHA treatment augmented the expression of proteins related to the reticulophagy pathway and enhanced the level of 
reticulophagy in HCC cells. Chromatin immunoprecipitation experiments confirmed that SAHA regulated FAM134B 
expression by increasing the histone H4 lysine 16 acetylation in the FAM134B promoter region. SAHA interfered with 
Ca2+ homeostasis in HCC cells and upregulated the expression of autocrine motility factor receptor-related and 
mitochondria-endoplasmic reticulum contact sites-related proteins. Furthermore, SAHA reduced mitochondrial 
membrane potential and aggravated the activation of the reticulophagy-mediated mitochondrial apoptosis pathway and 
HCC cell death.

Research conclusions
SAHA stimulated excessive reticulophagy and induced autophagy-mediated cell death, which acted synergistically with 
the mitochondria-dependent apoptotic pathway to facilitate HCC cell death.

Research perspectives
FAM134B-induced reticulophagy may further provide a novel avenue for more effective interventions in HCC treatment. 
Our results confirmed that reticulophagy participates in SAHA-induced apoptosis and autophagy-mediated cell death in 
HCC cells, where SAHA-induced regulation of FAM134B expression via histone H4 lysine 16 is the key to HCC cell death.
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